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Abstract

Over the past decade, advancements in computational frameworks and processing power have made deep neural networks
increasingly viable for material modeling. However, purely data-driven models can yield non-physical predictions due
to the lack of physical constraints. While recent works that incorporate physics into the training process partially
address this issue, they offer no guarantees beyond the scope of the training data. To tackle this challenge, we propose a
novel approach that embeds the neural network within the material model, inherently fulfilling thermodynamic laws. The
network represents only the unknown physics allowing us to integrate knowledge accumulated from decades of constitutive
modeling research into the data-driven methodology. By analyzing the trained, embedded networks, we recover existing
evolution laws from artificial training data and discover new evolution laws from experimental data. The discovered
evolution laws for isotropic and kinematic hardening can qualitatively predict an experimentally observed yield strength
evolution, which conventional evolution laws cannot describe.
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1. Introduction

Traditional material modeling requires researchers to
propose various model equations and evaluate their abil-
ity to describe observed material behavior. In recent years,
various alternatives to this approach have been suggested.
The model-free approach, introduced by Kirchdoerfer and
Ortiz (2016), aims to circumvent the modeling altogether
and instead rely directly on an extensive database of ex-
perimental data. Another alternative is using a generic
model to encode all material behaviors. A neural network
is such a generic model according to the universal func-
tion approximation theorem (Hornik et al. (1989)). With
the rising availability of easy-to-use implementations and
computational power, this approach has received increas-
ing attention in the last decade. However, the idea is not
new, cf. e.g. Ghaboussi and Sidarta (1998), but it also re-
quires an extensive database of stress-strain history data.
Unfortunately, such databases are not readily available due
to the high cost and time resources needed to run experi-
ments.

Physics Informed Neural Networks (PINNs) combine
physical constraints with available training data by includ-
ing known physical laws in the loss functions. For exam-
ple, Borkowski et al. (2022) added positive plastic dissi-
pation as a regularization term to improve their model.
Masi et al. (2021) introduces the “Thermodynamics-based
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ANN”, intrinsically fulfilling the first law of thermodynam-
ics and making it easy to regularize wrt. positive dissipa-
tion (second law of thermodynamics). Heider et al. (2020)
used spectral decomposition to reduce the required train-
ing data from experiments and enforce material objectiv-
ity (frame invariance), and later used this approach with
recurrent neural networks and transfer learning in Fuchs
et al. (2021). Malik et al. (2022) also use invariants as
inputs to a neural network embedded in their model to
describe the yield surface, which was trained on multi-
scale simulations of foam structures. Wen et al. (2021)
trained a tree-based regressor for plastic slip rate and
isotropic hardening modulus before embedding this in a
viscoplastic model to evaluate lithium’s temperature and
rate-dependent behavior.

Although the abovementioned approaches show impres-
sive abilities to describe constitutive behaviors, they lead
to black-box models. Using a completely different idea,
Flaschel et al. (2021) introduced a novel method to iden-
tify hyperelastic material behavior based on full-field data
and sparse regression. The concept was recently extended
to linear viscoelasticity, Marino et al. (2023). For neural
networks, Koeppe et al. (2022) identified model behavior
using a Recurrent Neural Network, and Haghighat et al.
(2023) used Feed-Forward PINNs to re-identify material
parameters from noisy data.

In this paper, we propose to embed a neural network
into the standard dissipative constitutive model structure.
This idea is similar to Watson and Gupta (1996), who
embedded neural networks when modeling microwave cir-)
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cuits to represent missing physics. When applied to ma-
terial modeling, this approach enables intrinsic fulfillment
of the laws of thermodynamics and frame invariance, inde-
pendent of training data. Furthermore, by describing the
evolution equations, we are free to choose any time inte-
gration scheme, and in the present study, we use the im-
plicit Backward-Euler. Once the model with an embedded
neural network has been trained with experimental data,
we analyze the neural networks to discover interpretable
analytical evolution equations. Finally, we automatically
generate new material models that are efficient, accurate,
and thermodynamically consistent.

The paper is organized as follows: In Section 2, we derive
and motivate the consistent modeling framework that em-
beds a neural network. Section 3.1 describes how the ma-
terial models are trained to experimental data, while Sec-
tion 3.2 outlines the method to discover analytical equa-
tions approximating the trained neural network. For the
results in Section 4, we first show that the proposed ap-
proach works for artificial data generated by a standard
J2-plasticity model with Ohno-Wang kinematic hardening
in Section 4.1. Thereafter, we apply it to experimental
data from Meyer and Ahlström (2023), showing that we
can significantly improve existing models in Section 4.2.
Sections 5 and 6 discuss and summarize our findings. Fi-
nally, in Appendix A, we describe key implementation de-
tails for obtaining the parameter sensitivity of material
models with embedded neural networks and implicit time
integration.

2. Model formulation

Strain-driven material models calculate the stress, σ,
for a given time history of strains, ε. In addition to fit-
ting experimental data, it is widely accepted that material
models respect the following physical constraints:

• A convex Helmholtz’ free energy.

• A non-negative dissipation.

• Frame invariance.

The Helmholtz’s free energy, Ψ , for a plasticity formu-
lation considering linear elasticity with isotropic and kine-
matic hardening, can typically be formulated as

Ψ(ε, εp, b, k) := Ψe + Ψp (1)

Ψe :=
1

2
[ε− εp] : E : [ε− εp]

Ψp :=
1

3
Hkinb : b+

1

2
|Hiso|k2

where ε and εp are the total and plastic strains, respec-
tively. E is the 4th order elastic stiffness tensor, while
Hkin and Hiso are the kinematic and isotropic hardening
moduli. b and k are internal variables associated with
kinematic and isotropic hardening. Thermodynamic sta-
bility requires that Ψ is a convex function, as discussed in

Maugin (1992); Lemaitre and Chaboche (1990); Lubarda
(2008). For the specific form in Equation (1), it is suffi-
cient that E is positive definite and that Hkin is positive to
obtain a convex function. The absolute value of Hiso en-
ables isotropic softening while maintaining the convexity.
This choice is further discussed in Section 2.1.

In this work, the isotropic von Mises effective stress is
used to define the yield criterion as

Φ := fvM(σ − β)− [Y0 + κ] (2)

fvM(x) :=

√
3

2
x : xdev

where Y0 is the initial yield limit. •dev is the deviatoric
part of the tensor •, β is the back-stress conjugated to b,
and κ is the isotropic hardening stress conjugated to k.
The stresses are then defined by the free energy as

σ :=
∂Ψ

∂ε
= E : [ε− εp] (3a)

β := −∂Ψ
∂b

= −2

3
Hkinb (3b)

κ := −∂Ψ
∂k

= −|Hiso|k (3c)

Following these definitions, the dissipation is given as

D = σ : ε̇− Ψ̇ = σ : ε̇p + β : ḃ+ κk̇ (4)

where the Clausius-Duhem dissipation inequality requires
that D ≥ 0. Associative evolution laws maximize D, and
is typically employed for the plastic strains. For ḃ and k̇,
this leads to linear hardening laws that do not accurately
capture experimentally observed material behaviors, mo-
tivating the use of non-associative evolution laws. As an
example, the evolution laws for Armstrong-Frederick kine-
matic hardening (Frederick and Armstrong (2007)) and
Voce isotropic hardening, together with the associative
evolution of plastic strains, are given by

ε̇p = λ̇ν (5a)

ḃ = −λ̇gkin(·) = −λ̇
[
ν − 3

2

β

β∞

]
(5b)

k̇ = −λ̇giso(·) = −λ̇
[
1− κ

κ∞

]
(5c)

where

ν :=
∂Φ

∂σ
=

3

2

σdev − βdev

fvM(σ − β)
(6)

The functions gkin(·) and giso(·) denote arbitrary evolution
laws that are discussed later, while the right hand side
shows the specific Armstrong-Frederick and Voce harden-
ing laws.

The plastic multiplier, λ̇, is given by the KKT load-
ing/unloading conditions,

Φ ≤ 0, λ̇ ≥ 0, Φλ̇ = 0 (7)
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for rate independent behavior. For viscoplastic behavior,
λ̇ is defined by an overstress function, η,

λ̇ =
1

t∗
η(σ,β, κ) (8)

where η ≥ 0 is unitless and t∗ > 0 is a characteristic time.
In this work, we adopt the Norton overstress function,

η =

[ 〈Φ〉
Y0

]n
(9)

where n is a material parameter and 〈•〉 := max(•, 0) is
the Macaulay bracket. For the evolution laws in Equation
(5), the dissipation inequality is fulfilled,

D = λ̇

[
Y0 +

3

2

β : β

β∞
+

κ2

κ∞

]
≥ 0 (10)

if β∞ > 0 and κ∞ > 0. We will denote this com-
plete model, with the Norton overstress function, as the
“Chaboche”-model. It is well known that this model can-
not accurately describe the behavior of many materials. A
critical modeling choice is the form and parameterization
of the hardening evolution laws (5b) and (5c). As these
functions are unknown, a universal function approxima-
tor, such as a neural network, is suitable to model these.
However, such a material model must fulfill the previously
mentioned criteria.

Convexity is already assured by not modifying the free
energy. For dissipation, the forms in Equations (5) mo-
tivates us to propose the following ansatz for evolution
equations

ḃ = −λ̇
[ [

1− [ν : β] NNk,ν

]
ν −NNk,ββ

]
(11a)

k̇ = −λ̇ [1− κNNiso] (11b)

where NNk,ν , NNk,β , and NNiso are scalar outputs from a
neural network. The scalar factors, ν : β and κ, in front
of NNk,ν and NNiso, makes it possible to inherently fulfill
the Clausius-Duhem dissipation inequality, D ≥ 0,

D = λ̇
[
Y0 + [ν : β]2NNk,ν

+ [β : β]NNk,β + κ2NNiso

]
(12)

by requiring positive neural network outputs. A non-
negative activation function in the last layer fulfills this
requirement; see Section 2.3. Furthermore, those scalar
factors cause Hkin and Hiso to retain their physical inter-
pretation wrt. the initial plastic stiffness.

Finally, we require a frame invariant model formulation,
implying that the model response is independent of the
chosen coordinate system. In particular, tensor compo-
nents are neither inputs nor outputs of the neural network;
inputs are independent invariants of the current material
state, and outputs are the scalar factors in Equation (11).
In the most general case for the proposed model, we can

then use the following 19 invariant inputs (see e.g. Boehler
(1977))

κ tr(ε2
p) tr(β2)

tr(νβ) tr(νεp) tr(βεp) tr(β2ε2
p)

tr(ν3) tr(ε3
p) tr(β3) tr(β2εp)

tr(νβ2) tr(νε2
p) tr(νβεp) tr(βε2

p)

tr(ν2εp) tr(ν2β) tr(ν2β2) tr(ν2ε2
p)

(13)

noting that tr(ν2) = 3/2 is not used as it is constant.
Furthermore, the von Mises yield criterion implies that
tr(ν) = tr(εp) = tr(β) = 0 and that these tensors are
symmetric. The choice of using ν instead of, e.g., σdev, is
motivated by the dependence between κ, other invariants,
and the effective stress for rate-independent loading. The
final model uses a reduced set of the above invariants, as
discussed in Section 2.3.

While the presented model is initially isotropic, struc-
ture tensors, cf. e.g. Holzapfel and Ogden (2010), can ex-
tend the model to anisotropic responses. For example, a
constant anisotropic elastic stiffness, E, would add to the
invariants by considering, e.g., β : E : β. However, in the
case of isotropy, this reduces to 2Gtr(β2) (where G is the
elastic shear modulus) and does not add an independent
invariant. Similarly, an evolving 4th order anisotropy ten-
sor, C, can be used in the yield criterion (cf. Meyer and
Menzel (2021)). This tensor would be another state vari-
able giving rise to additional invariants, such as β : C : β.

2.1. Isotropic softening
The discussion so far has considered an initially harden-

ing behavior. However, many metallic materials, such as
e.g. carbon steel, may exhibit initial isotropic softening. A
negative hardening modulus, Hiso < 0, results in isotropic
softening, neglecting the absolute value in Equation (1).
However, without the absolute value, the Helmholz free
energy becomes concave for a negative hardening modu-
lus. Therefore, for Hiso < 0, we use the following evolution
law instead:

k̇ = λ̇

[
1 + κNNiso +

κ

Y0

]
(14)

In this case, κ ≤ 0, and the evolution of k has the opposite
sign in comparison to in Equation (11b). The additional
term, κ/Y0 ensures that the dissipation,

D = λ̇

[ [√
Y0 +

κ√
Y0

]2

+ NNk,ν [ν : β]2

+ NNk,ββ : β + κ2NNiso

]
(15)

is non-negative for non-negative outputs from the neural
network. For a zero-valued network, this corresponds to a
isotropic saturation stress of −Y0.

3



2.2. Convergence requirements

The neural networks are chosen for their ability to ap-
proximate any function. However, during training, this
implies that the predicted material response can become
non-convergent. In practice, we have found it necessary to
i) avoid a zero-sized yield surface and ii) avoid too rapid
softening. Both these lead to lack of solutions to the lo-
cal plasticity residual equations. The constraints described
below aid convergence during training but should typically
not affect the response of trained models.

2.2.1. Minimum yield strength
An isotropic yield limit Y0 + κ < 0 yields Φ > 0. This

result contradicts the KKT conditions and prevents solu-
tions to the local plasticity problem. To ensure a positive
yield limit, we constrain the isotropic hardening stress, κ,
via the smooth bounds function h defined as

h(x, a, b) :=

{
x x−b

a−b ≥ 1

[a− b] exp
(
x−a
a−b

)
+ b x−b

a−b < 1
(16)

For a > b, h provides a smooth lower bound of x such that

h(x, a, b) =

{
x x ≥ a
b x→ −∞ (17)

where we note that dh/dx→ 1 as x→ a. Specifically, we
constrain κ as

κ̂ = h(κ+ Y0, Ylow, Ymin)− Y0 (18)

and use κ̂ in the yield criterion such that Y0 + κ̂ ≥ Ymin.
In all cases, Ylow = 2Ymin = 40 MPa.

2.2.2. Maximum softening
In a more detailed analysis compared to Meyer (2020),

we analyze the existence of a solution for a rate-
independent material. Specifically, we consider a loading
with ε̇ = ε̇n, where ε̇ > 0 and n is a 2nd order, normalized
tensor, describing the loading direction. The KKT condi-
tions in Equation (7), implies that Φ̇ = 0 during plastic
loading, resulting in

σ̇dev = 2Gε̇ndev − 2Gλ̇ν (19)

Φ̇ = 0 = 2Gε̇ν : ndev−

λ̇

[
3G+

2

3
Hkinν : gkin(·) + |Hiso|giso(·)

]
(20)

where we have isotropic elasticity with shear modulus G,
and gkin(·) and giso(·) are defined in Equation (5), with
specific forms in Equations (11) and (14). During plastic
loading, ν : ndev > 0, implying that

3G+ [2Hkin/3]ν : gkin(·) + |Hiso|giso(·) > 0 (21)

is required as λ̇ ≥ 0. To fulfill this requirement, we con-
strain the evolution laws by using the smooth bounding
function h from Equation (16) as

ĝiso(·) =
h(|Hiso|giso(·),−1.8G,−2.0G)

|Hiso|
(22)

ν : ĝkin(·) =
h
(

2Hkin

3 ν : gkin(·), −G5 , −G2

)
2Hkin/3

(23)

These bounds ensure that

3G+ [2Hkin/3]ν : gkin(·) + |Hiso|giso(·) > 0.5G (24)

As most materials only exhibit isotropic softening, more
isotropic than kinematic softening is allowed. While Equa-
tion (22) directly modifies the isotropic hardening law, the
limit for the kinematic evolution is implicit. A scaling fac-
tor, s, for the neural network outputs yields,

ĝkin(·) = ν − s [ν : β] NNk,νν − sNNk,ββ (25)

s =
Hkin − h

(
2
3Hkinν : gkin(·), −G5 , −G2

)
Hkin − 2

3Hkinν : gkin(·) (26)

such that s = 1 if [2/3]Hkinν : gkin(·) > −G/5. Using the
modified functions, ĝiso and ĝkin in the evolution of κ and
β, ensures that a solution can be found.

2.3. Network architecture and scaling
Considered as a function, a feed-forward neural network

accepts a vector of inputs, x0, and gives a vector of out-
puts, xN , by passing through its N layers. The layer i is
described as

xi = ai.(Ai
xi−1 + bi) (27)

where the notation a.(x) implies application of the activa-
tion function a on each component of the vector x individ-
ually. The trainable parameters of the network are then
the weights in the matrices A

i
and the bias vectors bi for

i ∈ [1, N ].
In this study, we reduce the number of invariants from

Equation (13) and consider the following six:

I1 = κ, I2 = β : β, I3 = ν : β,

I4 = β : εp, I5 = ν : εp, I6 = εp : εp

(28)

as network inputs. These choices are motivated by the von
Mises yield surface.

During the development of the model we tested a few dif-
ferent network dimensions and activation functions, and,
while many gave good results, a network consisting of five
layers with widths 6-6-6-6-5-3 produced the most stable
results. The activation function for the first four layers
was chosen as ai(x) = tanh(x), while the last activation
function, a5(x) = x2 ensured the previously discussed non-
negativity of the output.
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In the evolution laws, Equations (11) and (14), the unit
of the network outputs is the inverse of stress. To make
the networks unit independent and to ensure weights with
reasonable magnitudes, the network outputs are divided
by a constant, NN0 = 1000 MPa. Similarly, many of the
inputs also have the unit of stress. These are divided by
NNn

0 , where n is an exponent depending on the input’s
unit (e.g. n = 2 for tr(β2)).

3. Training

Section 3.2Section 3.1

Neural Network 
model formulation

Experimental 
stress-strain data

Chaboche model 
formulation

Trained Neural 
Network model

Trained Chaboche 
model

Invariant time 
history data

Discovered model 
formulation

Trained discovered 
model

Sparse regression

Section 2

Figure 1: Training methodology workflow

The overall training procedure in this paper is described
in Figure 1, along with the relevant sections. The start-
ing points are the Neural Network and Chaboche models,
formulated in Section 2. Independent of the material for-
mulation, we use the same training process as described in
Section 3.1. Section 3.2 outlines the methodology for dis-
covering new analytical evolution equations based on the
trained Neural Network model. After equation discovery,
a new model is automatically generated and trained with
experimental data following the process in Section 3.1.

3.1. Training of material models
Parameter identification for classical material modeling

is closely related to training in machine learning: the end
goal is to minimize some objective or loss function wrt. a
set of parameters. A difference between regular material
models and neural networks is that neural networks are
overparameterized such that multiple equivalent minima
may exist. Because our models may include overparam-
eterized neural networks, we use training algorithms and
procedures from machine learning. It turns out that these
approaches perform well for regular material models, and
we use the same training procedure irrespective of the ma-
terial model type.

3.1.1. Parameter bounds and penalization
The elastic parameters are fixed to Young’s modulus,

E = 210 GPa, and Poisson’s ratio, ν = 0.3. For some
parameters participating in the parameter identification,
reasonable bounds may be given a-priori. One example
is the initial yield strength, Y0. We use gradient-based
optimization in the present work, which requires differen-
tiable constraints. Using the smooth bounding function

in Equation (16) for both upper and lower bounds en-
sures differentiability. One issue with this function is that
the gradient vanishes when the value of a parameter ap-
proaches the hard bounds. To remedy this, we first scale
the data such that values within the smooth bounds are
between 0 and 1, and use the so-called “epsilon insensitive
loss”, cf. Lee et al. (2005), to apply L2 regularization on
the distance of scaled values to this range (i.e. both -0.1
and 1.1 are penalized by 0.12).

Another common issue with neural networks is unstable
training due to exploding gradients, which L2 regulariza-
tion also remedies Pascanu et al. (2013). In the present
study, however, the regular L2 penalization of the neural
network’s weights and biases reduced the training perfor-
mance. Therefore, all network parameters were treated
as regular material parameters, with soft bounds -1 and
1. The only exceptions were the biases in the last layer,
where bounds yielding reasonable saturation levels were
used (cf. parameters κ∞ and β∞ in the Chaboche model).

In summary, given a design variable x, the actual pa-
rameter p used in the model is calculated as

gp(p) =
p− pmin

pmax − pmin

p̂ =


h
(
x, 1, g

(
ph

max

))
x > 1

x 0 ≤ x ≤ 1

h
(
x, 0, g

(
ph

min

))
x < 0

(29)

p = p̂ [pmax − pmin] + pmin

where pmin and pmax are the soft bounds (cf. a in Equa-
tion (16)) and ph

min and ph
max the hard bounds (cf. b in

Equation (16)). Consequently, each parameter pi has a
corresponding design variable xi, which is between 0 and
1 if inside the soft bounds. Values outside these bounds
are added to the regularization loss, Lr,

Lr :=

Np∑
i=1

gx(xi)
2, gx(x) =

 x x < 0
0 0 ≤ x ≤ 1

x− 1 x > 1
(30)

3.1.2. Loss function
To have comparable values for the errors between each

experiment, simulated stress components, σs
ij , and experi-

mentally measured stress components, σe
ij are normalized

by the number of simulation steps, Nstp and the stress
range in the experiment.

σ̂•ij =
σ•ij√

Nstp

[
max

(
σe
ij

)
−min

(
σe
ij

)] (31)

for • either s (simulated) or e (experiment).
Using these normalized stresses, the following loss, Lk
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is calculated for each simulation, k,

Lk :=
∑
ij

[
N∑
l=1

[
σ̂s
ij(tl+10)− σ̂e

ij(tl)
]2

+

N−10∑
l=1

[[[
σ̂s
ij

]
l10
−
[
σ̂s
ij

]
l

]
−
[[
σ̂e
ij

]
l10
−
[
σ̂e
ij

]
l

]]2]
(32)

where
[
σ̂•ij
]
l
denotes the stress in time step l. The first

term in Equation (32) is the standard L2-loss function.
While Vlassis and Sun (2021) showed that Sobolev train-

ing is advantageous for learning accurate models, the ex-
perimental training data in the present study does not have
the required derivative information. However, finite differ-
ences can approximate the directional derivative along the
loading direction, which the second term in Equation (32)
uses to regularize the loss function. This addition serves
two purposes: Firstly, solutions with oscillation stress re-
sponses may occur due to the neural networks’ high flexi-
bility. The regularization penalizes such oscillations. Sec-
ondly, most experimental scatter in stress-strain curves is
variation between test samples. While the curves for re-
peated experiments have similar shapes with low noise, the
stress levels may vary slightly. Penalizing the difference in
stress changes gives more importance to the shape of the
curve, making the loss function less sensitive to sample
variations.

For a given batch of M experiments, the total loss is
then calculated as

L := Lr +
1√
M

M∑
k=1

Lk (33)

where Lr is defined in Equation (30).

3.1.3. Optimizer and training procedure
Three different gradient-based optimizers, available in

Flux.jl (Innes (2018)), were tested: RMSProp (Tieleman
and Hinton (2012)), Adam (Kingma and Ba (2015)), and
RAdam (Liu et al. (2020)). For the specific problem, the
RAdam optimizer gave the most reliable results. While
RMSProp and Adam performed similarly, the final losses
were somewhat higher for some initial guesses. A coarse
sweep revealed that while fine-tuning could improve the
convergence rate, the default values worked sufficiently
well for the present study. While efficient implementations
of parameter sensitivity for neural networks are abundant,
this is not true for nonlinear material models with im-
plicit time integration. Appendix A outlines our efficient
method for obtaining this sensitivity that the gradient-
based optimizers require.

The expressiveness of the embedded neural network im-
plies that multiple local minima exist. Several strategies
for avoiding getting stuck in such local minima exist in the
literature, such as “Adaptive activation functions” Jagtap
et al. (2020) and mini-batch training Keskar et al. (2017).

In this study, we experienced that mini-batch training sig-
nificantly improved the performance when we used one
experiment in each batch. In addition, one experiment is
used as a validation to prevent overfitting. The overall
training procedure consists of the following steps to learn
the scaled parameters x:

• For Nminibatch updates:

– Simulate and update x for each mini-batch set.

– Simulate the validation set: Save loss.

– Simulate the full set: Save loss and update x.

• For Nfullbatch updates:

– Simulate the validation set: Save loss.

– Simulate the full set: Save loss and update x.

where the full set typically is the collection of all mini-
batches. The experiment in the validation set is never
used to update the parameters.

3.2. Equation discovery
The equation discovery aims to identify analytical ex-

pressions that describe the evolution laws, i.e. the neu-
ral network outputs, NNiso, NNk,β , and NNk,ν . Various
techniques exist, such as symbolic regression (cf. Holland
(1992) (originally published 1975)) and sparse regression
(cf. e.g. Brunton et al. (2016)). Herein, we adopted a mod-
ified sparse regression technique based on Flaschel et al.
(2021), described in more detail below.

We start up with a database of candidate functions.
While in theory, one could fit the material response to
all possible function combinations, this is infeasible due
to the high number of possible combinations. Instead, we
use our trained neural network model to generate train-
ing data for the discovery, consisting of the outputs of the
neural network: [NNiso,NNk,β ,NNk,ν ] for many different
combinations of the input invariants: [I1, . . . , I6]. Least
square regression can then be used to find coefficients for
each candidate function. However, this would lead to long
expressions with many paramaters, motivating the need
for sparse regression techniques.

3.2.1. Generation of input data
Assuming that the neural network is fully trained and

accurately describes the evolution laws for all possible sce-
narios, we could use a large set of random invariant values
as input data to generate a database of the network’s out-
puts. In practice, however, the network is only trained on
invariants encountered during training. Consequently, we
run the full training batch while calculating and saving the
invariants, I1, . . . , I6 in each time step. We then calculate
the network outputs corresponding to invariants in each
time step.

Each invariant, as well as each network output, is scaled
by its maximum absolute value. The scaled invariants
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fulfill Îi ∈ [−1, 1] for all time steps. Due to the activa-
tion function in the last layer, the scaled outputs fulfill
ŷ• ∈ [0, 1] in all time steps (where • represents iso, k, ν,
or k, β). Finally, duplicate values are removed from the
training set.

3.2.2. Generation of candidate functions
Each candidate function, fi(Î), should take as input a

vector Î of scaled invariants (discussed above) and return
a scalar output. The approximation of the scaled total
output, ŷ, is then

ŷ ≈
∑
i

p̂ifi(Î) (34)

For this approach to be suitable, considering the scaling
of the invariants, we require that f are positively homo-
geneous functions. This implies that polynomials are al-
lowed, but not, e.g., trigonometric functions or exponential
functions. Given these restrictions, we build a basis with
the following elementary basis functions:

• Polynomials of Ij up to 2nd order.

• Polynomials of
〈
Ij
〉
up to 2nd order.

• Polynomials of
〈
−Ij

〉
up to 2nd order.

• Combinations of
〈
Ij
〉n with rational and integer expo-

nents, n ∈ {0, 1, 2, 1/2, 1/3} (max 3 factors per term).

• Combinations of
〈
−Ij

〉n with rational and integer ex-
ponents, n ∈ {0, 1, 2, 1/2, 1/3} (max 3 factors per
term).

where the use of the Macaulay bracket, 〈•〉, enables dif-
ferent parameters for positive and negative values of the
same inputs. This gives in total 2680 possible functions
after filtering out some known equivalent bases (e.g. we
know that I3 = β : β ≥ 0 so all terms containing 〈−I3〉
can be removed). Additionally, from each group of func-
tions with matching values for every sample in the dataset,
only the one with the lowest number of active invariants
is retained.

The limitation of positive homogeneous function can be
lifted by not scaling the invariant inputs, which could al-
low more general candidate functions, such as exponential
functions. In these cases, it often makes sense to include
a parameter inside the functions, i.e. exp(pκ), where p is
a parameter. While this is not directly compatible with
the standard regression technique, Marino et al. (2023)
use a large set of parameterized exponential functions in
combination with k-means clustering to find suitable val-
ues. Similar to symbolic regression, this approach makes
it possible to use more general candidate functions.

3.2.3. Discovery
Given a number of candidate functions, the goal is to

identify which functions can best represent the neural net-
work outputs. To study the trade-off between complexity
and accuracy, we would like to construct the Pareto front
by comparing the loss and the number of active functions.
For a low number, NA, of active functions and a reasonable
number, NC, of candidate functions, it is possible to try
all possible combinations. The number of combinations
is the binomial; NC choose NA. Consequently, the num-
ber of possible combinations increases quickly with both
the number of active functions and the available candidate
functions. For the experimental data discussed later, af-
ter filtering based on the dataset, 869 candidate functions
remained. For this case, there are about 110 million pos-
sible combinations for three terms, which takes about 10
minutes to evaluate (on a regular laptop) for each network
output. Increasing to four terms yields about 24 billion
candidates, which, while still feasible, motivates the use of
more efficient algorithms. Therefore, we employ the sparse
regression algorithm described in Flaschel et al. (2021) to
reduce the number of candidate functions. Specifically,
running the sparse regression with multiple initial guesses
determines the most frequently selected terms. We then
run a binomial search using these terms as candidate func-
tions. This selection method is validated by running the
binomial search directly for up to three terms.

4. Results

4.1. Artificial data
To validate the proposed workflow, we use artificial

data generated by a known plasticity model. Specifically,
the Ohno-Wang kinematic hardening law Ohno and Wang
(1993),

ḃ = −λ̇
[
ν − 3

2

β

fvM(β)

〈ν : β〉
β∞

[
fvM(β)

β∞

]m]
(35)

In contrast to the Armstrong-Frederick hardening law, the
neural network cannot exactly represent this equation. For
the training data generation, we use kinematic hardening
parameters Hkin = 500 GPa, β∞ = 500 MPa, and m =
2. In addition, we have elastic parameters E = 210 GPa
and ν = 0.3, initial yield limit Y0 = 350 MPa, Voce-type
isotropic hardening (Equation (5c)) with Hiso = 25 GPa,
and κ∞ = 100 MPa, and Norton overstress (Equations (8)
and (9)) with t∗ = 1 s and n = 2.

4.1.1. Model training
The artificial training data is generated by simulat-

ing strain-controlled biaxial experiments, corresponding
to axial-torsion loading of tubular specimens. The load-
ing is defined by ε11 and ε12, while ε13 = ε23 = 0 and
σ22 = σ33 = 0. Four different time histories of ε11 and
ε12 are simulated to create three mini-batch sets for train-
ing and one set for validation. We then follow the training
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Figure 2: Loss function evolution for model training on artificial data

strategy outlined in Section 3, resulting in the loss function
evolution in Figure 2. In this case, the lowest validation
loss occurs during the mini-batch training phase in epoch
2845.

The low relative losses in Figure 2 show that the neu-
ral network evolution can replicate the material response
for the Ohno-Wang evolution law. Furthermore, Figure
3a shows the axial and shear stress responses compared to
the first training batch with artificial experimental data.
The results are similar for the two other training batches.
As for the training data, no visual difference can be ob-
served between the neural network model and the artificial
experiment data in the validation case in Figure 3b.
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Figure 3: Simulated (Sim) axial, σ11, and shear, σ12, stress responses
compared to the artificial experimental data (Exp).

4.1.2. Equation discovery
The previous subsection showed that the neural network

could approximate the Ohno-Wang evolution law consid-
ering the overall material response. The next question
is whether this evolution law can be re-identified from the
trained neural network, assuming the correct equations are
part of the candidate functions. For the specific material
parameters used to generate the artificial data, in particu-
lar m = 2, and considering the structure of the kinematic
evolution law in Equation (11a), we expect to identify

NNiso = p1

NNk,β = p2 〈I3〉
√
I2, I3 = ν : β, I2 = β : β (36)

NNk,ν = 0

where p1 and p2 are constants that depend on the scaling
used in the sparse regression. Since we only expect to find
one term per network output, we just run the binomial
search for up to two terms. Table 1 also includes the loss
when using zero terms (expected for NNk,ν). The reported
losses are the L2-losses divided by the number of samples
and the square of the scaling factor for the network out-
put. This scaling enables comparisons with the losses for
experimental data in the next section.

For the NNiso output, the loss reduces four orders of
magnitude by using one constant term, which is also the
expected final expression. Adding a second term does re-
duce the loss further, but only by a factor of 3.5. The loss
also drops four orders of magnitude when adding a single
term to the NNk,β output. The added term is equivalent
to that in Equation (36), noting that I2 = β : β ≥ 0,
such that 〈I2〉 = I2. Finally, the loss for the NNk,ν output
is very low without any terms. Adding one or two terms
reduces the loss only marginally. These findings show that
the expressions in Equation (36) have been identified.

Table 1: Discovered equations for artificial training data

loss equation
NNiso

1.2 · 102 -
2.4 · 10−2 p1

6.9 · 10−3 p1 + p2 〈I1〉2 3
√
〈I2〉 〈I3〉2

NNk,β

7.1 · 100 -
9.0 · 10−4 p1

√
〈I2〉 〈I3〉

6.1 · 10−4 p1

√
〈I2〉 〈I3〉 − p2

√
〈I3〉

NNk,ν

1.7 · 10−4 -
1.2 · 10−4 p1 〈−I5〉
2.1 · 10−5 p1

3
√
〈I1〉 3

√
〈I2〉

√
〈I3〉+ p2

3
√
〈I1〉 3

√
〈I3〉
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4.2. Experimental data

Having demonstrated that the proposed procedure
works for artificial data with a known solution, we apply
it to uniaxial experimental data from Meyer and Ahlström
(2023).

4.2.1. Model training
Similar to above, we choose five different cases: For

training, we use monotonic loading and cyclic response
for ε11 = ±0.25 % (50 cycles), ε11 = ±0.8 % (3 cycles),
and ε11 = ±1.2 % (3 cycles). As validation, we use
ε11 = ±0.4 % with 25 cycles. The number of cycles were
chosen such that the hysteresis loops are approximately
stable during the last cycle. For the mini-batch updates,
only five (out of 18) steps were used for the monotonic
loading, ten cycles for ε11 = ±0.25 % and one cycle for
ε11 = ±0.8 % and ε11 = ±1.2 % to reduce the computa-
tional time slightly.

Figure 4 shows the evolution of loss during the training
process for the neural network and Chaboche models. For
the Chaboche model, the training and validation losses de-
crease rapidly before remaining constant during each train-
ing phase. After the mini-batch training phase (first 5000
epochs), an additional slight decrease in the losses occur.

The training loss for the neural network model shows (on
average) a continuous reduction in the loss, initially rela-
tively rapid before slowing down. The validation loss for
the neural network model reduces to an initial minimum
within the first 50 epochs before increasing again during
the following 250 epochs. Thereafter, it slowly decreases
following the trend of the training loss in the mini-batch
updates. In the full-batch updates, it reduces further be-
fore rising toward the end. This increase indicates overfit-
ting, and the parameters from epoch 9467, which had the
lowest validation loss, are used.

The material in Meyer and Ahlström (2023) exhibits a
stress plateau followed by hardening. When analyzing the
split between isotropic and kinematic hardening, a rapid
decrease in isotropic yield strength combined with a cor-
responding increase in back-stress (Fig. 10 in Meyer and
Ahlström (2023)). The trained material behavior approx-
imates this behavior as well, seen by the hardening mod-
uli, Hiso ≈ −162 GPa and Hkin ≈ 131 GPa (see Table 2),
which approximately balance each other, as seen in Figure
5. After the initial plateau phase, where the model shows
too high stresses, the fit is almost perfect for the remaining
loading.

The load case of ε11 = ±0.25 %, Figure 6, is hard to
fit because the almost fully elastic behavior in the initial
cycle. Due to isotropic softening, the plastic strain ampli-
tude increases in subsequent cycles, making the model very
sensitive to the initial behavior. After training, this exper-
iment has the highest relative loss of all cases, including
the validation case. Despite these challenges, the model
can obtain a reasonable loop shape in the 50th cycle. In
the training case with ε11 = ±1.20 %, Figure 7, the overall
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Figure 4: Loss function evolution for model training on experimental
data
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Figure 5: Response of the neural network model for monotonic load-
ing (training)
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Figure 6: Response of the neural network model in the first (solid)
and 50th cycle (dashed) for ε = ±0.25% (training)
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loop shapes fit very well with experimental results. Even
so, there is a slight waviness compared to the experimental
curves.

For the validation case, in Figure 8, there are some dis-
crepancies between the model response and the experiment
in the second half-cycle. The model shows a more distinct
elastic-to-plastic transition compared to the experiments.
However, in the 25th cycle, the stress-strain curves are
very similar, indicating that the model works quite well
for the validation case.

4.2.2. Equation discovery
The results in the previous section show that the neural

network model can simulate the experimental results rea-
sonably well. While this model could be used directly, it
contains black-box elements for the evolution laws. Fur-
thermore, it is less efficient than a regular material model
due to the embedded networks. Instead, we identify sparse
symbolic approximations of the network outputs. For 0-3
terms, we use a direct binomial search. This method finds
the best solution since it tests all possible combinations.
To be able to find expressions with more than three terms,
we apply the selection method described in Section 3.2.3.
We then run a binomial search on the selected candidate
functions to identify up to 6 terms. As a final comparison,
we also perform a direct sparse regression with a varying
penalty factor to obtain expressions with different num-
bers of terms. The results in Figure 9 show that i) the
direct binomial search always finds the lowest loss for the
given number of terms, and ii) that losses for sparse regres-
sion followed by the binomial search are only moderately
higher. In most cases, the sparse regression followed by a
binomial search leads to lower losses than simply increas-
ing the penalty parameter until solutions with few enough
terms are found. The variability in the sparse regression
results highlights the issues with local minima discussed
in Flaschel et al. (2021).

4.2.3. Discovered model
Based on the results in Figure 9, we evaluate three mod-

els closely: i) three terms from direct binomial search, ii)
four and iii) six terms from sparse regression followed by
a binomial search. Figure 10 shows the training evolu-
tion for the two first cases compared to the neural net-
work model training. Starting with the exact values for
the identified parameters would yield a faster convergence,
but all models start with a random initial guess to ensure a
fair comparison. Using three identified terms for each net-
work output slightly improves the training loss compared
to the Chaboche model and greatly reduces the valida-
tion loss (cf. Figure 4). With four terms, the discovered
model obtains training and validation losses comparable
to the neural network model. Using the identified model
with six terms gives a marginal improvement: The train-
ing loss goes from 0.09 % to 0.08 %, and the validation loss
from 0.08 % to 0.07 %. Such marginal improvements do
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Figure 7: Response of the neural network model in the two first
cycles for ε = ±1.2% (training)
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Figure 8: Response of the neural network model in the first (solid)
and 25th cycle (dashed) forε = ±0.40% (validation)
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not justify the increased model complexity, and Figure 10
excludes these results for clarity.

As four terms seem required for an accurate model, the
remaining discussion in this section considers this case, for
which the evolution equation for isotropic hardening is

k̇ = λ̇

[
1 +

κ

Y0

+ κ
〈
piso,1 κ+ piso,2 ν : εp

+ piso,3 〈ν : β〉+ piso,4 〈−ν : β〉2
〉]

(37)

where piso,i are new material parameters. The last term
within the outer brackets corresponds to κNNiso in Equa-
tion (14). Positive network output values, NNiso ≥ 0, used
in the sparse regression, do not guarantee that the approx-
imation of NNiso is always positive. The expression cor-
responding to NNiso is, therefore, wrapped in a Macaulay
bracket. In addition to ensuring thermodynamic consis-
tency, this addition improved the predictive ability of the
model of the yield strength evolution in Section 4.2.4.

For kinematic hardening, the NNk,ν and NNk,β parts
have four terms each, with the complete evolution equa-
tion,

ḃ = λ̇

[
− ν + [ν : β]

〈
pk,ν1

κ+ pk,ν2
κ ||β||2

+ pk,ν3
||β||+ pk,ν4

3
√
〈−ν : β〉

〉
ν

+

〈
pk,β1

[β : ν] ||β||2 + pk,β4

√〈
ν : εp

〉 ∣∣∣∣εp

∣∣∣∣2/3
+ pk,β3

〈
ν : εp

〉 ∣∣∣∣εp

∣∣∣∣2 + pk,β2
〈β : ν〉

〉
β

]
(38)

using the same approach as in Equation (37) to ensure a
positive dissipation. Table 2 shows that all models have
similar initial yield stress, Y0, and viscoplastic parameters
(t∗ and n). While the hardening moduli differ between
the models, especially for the Chaboche model, the initial
hardening modulus, Hiso + Hkin is within 15 GPa for all
models.

As expected from the lower training loss, the identified
model fits the monotonic stress-strain curve in Figure 11

Table 2: Trained parameter values for the neural network model
(NN), the identified model with 4 terms (Id.), and the Chaboche
model (Ch.).

NN Id. Ch. Unit

Y0 495.0 487.9 486.8 MPa
Hiso -162.2 -159.9 -70.02 GPa
Hkin 131.4 114.3 33.51 GPa
t∗ 51.87 55.26 71.31 ms
n 6.885 7.473 6.591 -
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Figure 10: Loss function evolution for training of identified models
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Figure 11: Response of the Chaboche and identified model for mono-
tonic loading (training)
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Figure 12: Response of the Chaboche and identified model in the
first (solid) and 50th cycle (dashed) for ε = ±0.25% (training)
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much better than the Chaboche model. However, com-
pared to the neural network model in Figure 5, the stress
increase deviates more from the experiment in the last two
cycles. In the case of ε11 = ±0.25 % (Figures 6 and 12),
all three models behave practically fully elastic in the first
cycle. In the 50th cycle, however, the neural network and
identified models give a smoother elastic-to-plastic transi-
tion, much closer to the observed experimental behavior
than the Chaboche model.

For the case of ε11 = ±1.20 % in Figure 13, the identi-
fied is more accurate than the Chaboche model during the
elastic-to-plastic transition and towards the end of each
cycle. For this case, the neural network model, Figure 7,
exhibited a slight waviness, as previously discussed. This
waviness is much more evident for the identified model,
the causes for which are discussed in Section 5.3.

In the validation case with ε11 = ±0.40 % (Figure 14),
the identified model performs similar to the neural net-
work model, with a more distinct elastic-to-plastic transi-
tion than the experiment in the second half-cycle, but with
an excellent agreement in the 25th cycle. The Chaboche
model cannot capture this smoother loop shape and pre-
dicts an almost bi-linear stress-strain curve for both cycles.

4.2.4. Yield evolution
Meyer and Ahlström (2023) measured the yield strength

explicitly by probing. Due to the smooth elastic-to-plastic
transition for the material, it is generally difficult to accu-
rately detect the yield point directly from the stress-strain
curve. Consequently, this is also difficult for the mate-
rial model to learn based solely on stress-strain data. The
primary motivation for the study in Meyer and Ahlström
(2023) was to investigate the hypothesis that the isotropic
hardening only depends on the accumulated plasticity, λ.
Figure 15 shows that the Chaboche model (circular mark-
ers), with Voce hardening, follows the expected gray line,
σy = Y0 + κ∞[1− exp(−Hisoλ/κ∞)], for all different load
cases. However, the experimental results show that the
yield strength evolution depends on the loading case.

The neural network and the identified models have simi-
lar evolution behavior in all load cases. For ε11 = ±0.25 %,
the material softens initially before obtaining a constant
yield stress. This evolution is qualitatively the same as the
experimental results. All models underpredict the plastic-
ity in the first cycles for this loading case, causing the
curves to shift to the left compared to the experiments.

For ε11 = ±0.4 %, the neural network and identified
models correctly predict a somewhat lower yield strength
than for 0.25 % but do not fully capture the continued
softening in the first cycles down to the level of the higher
strain amplitudes. For these amplitudes, however, lower
yield strengths are correctly identified, as well as the con-
stant level.

For the monotonic loading, the neural network and iden-
tified models capture the initial softening followed by hard-
ening. While the models exaggerate this effect compared
to the experiments, they could still qualitatively predict
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Figure 13: Response of the Chaboche and identified model for the
first two cycles with ε = ±1.2% (training)
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Figure 14: Response of the Chaboche and identified model in the
first (solid) and 25th cycle (dashed) for ε = ±0.40% (validation)
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the yield strength behaviors from training on the stress-
strain curves.

5. Discussion

5.1. Identification of known evolution laws
As previously discussed, Figures 2 and 3 show that the

neural network model can predict the response for harden-
ing laws that the neural network cannot represent exactly.
The results in Table 1 showed that the exact evolution
laws could be re-identified by analyzing the trained neural
network embedded in the material model. This test shows
the potential of the proposed method.

5.2. Capabilities of the neural network model
A sufficiently large feed-forward neural network is a uni-

versal function approximator that can describe any func-
tion (Hornik et al. (1989)). From this point of view, one
would expect that it should be possible to train the neural
network model to fit the experimental data exactly, which
the results show that it does not do. There are many
possible explanations, some of which are discussed in the
following paragraphs.

The network layout described in Section 2.3 is not a
universal function approximator. That is not only due
to an insufficient size but also because the last activation
function prevents negative values. This constraint ensures
fulfillment of the 2nd law of thermodynamics and is essen-
tial to ensure the physical correctness of the model. We
have observed that it improves the model’s predictive abil-
ities, even though it increases the training loss slightly, as
expected.

Using larger networks did not significantly improve the
results, possibly due to the increased complexity of the
non-convex optimization problem. However, this result
may also indicate deficiencies in the model structure.
For example, the standard model assumption of a well-
separated elastic and plastic region is only valid for a ho-
mogeneous material. Actual test samples consist of a poly-
crystalline material in which different grains yield at dif-
ferent stress levels, giving a smooth elastic-to-plastic tran-
sition upon load reversal. Modeling frameworks for rate-
independent models with smooth elastic-to-plastic transi-
tions were already proposed in the 90s, by e.g. Lubliner
et al. (1993). However, the smooth transition also occurs
during reloading, see e.g. Lubliner et al. (1993); Rubin and
Forest (2020), which is not the case for the results in Figure
5. This transition remains a challenge, even with the very
general evolution laws represented by the neural network,
highlighting the need for alternative modeling frameworks.

5.3. Interpretation of the identified behavior
Overall, the identified evolution equation results in a

reasonable behavior that is qualitatively similar to the ex-
perimental results. The main exception is the waviness
observed in Figure 13 for ε11 = ±1.20 %. Figure 16 shows

ε11 I1 = κ I5 = ν : εp
σ11 I3 = ν : β
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Figure 16: Invariant evolution

the time evolution of three different invariants, the axial
strain, and the axial stress for the two first cycles. All val-
ues are normalized by the maximum absolute value to vi-
sualize the evolution of quantities of different magnitudes.
For comparison, the yield strengths shown in Figure 15 are
given by Y0 + κ at the end of each cycle.

In Figure 16, I1 = κ decreases initially. After the
load reverses, it increases rapidly before decreasing again.
The remaining cycles follow this cyclic pattern of ini-
tial hardening followed by softening. The neural network
model gives the same behavior. For the identified law,
the term 〈−ν : β〉 is responsible for the sudden harden-
ing upon load reversal, which makes it possible to model
the smooth elastic-to-plastic transition. After the peak of
isotropic hardening, a waviness initiates. Many identified
terms contain Macaulay brackets, resulting in discontinu-
ous derivatives at zero, contributing to the continued wavi-
ness. However, in the remaining experiments and even in
other parts of the ε11 = ±1.20 % experiment, the behavior
is smooth.

While the Macaulay terms introduce some challenges in
the model, they differentiate between loading cases. In
particular, the difference in isotropic hardening for plas-
tic loading and unloading in Figure 16 seems to be the
main factor in predicting the correct qualitative evolu-
tion of the yield strength in Figure 15. Very few physi-
cal processes show abrupt changes in behavior: While it
is reasonable to expect a different behavior directly upon
load reversal, abrupt changes are unexpected when ν : εp

changes sign during monotonic loading. Smoother changes
occur by considering, e.g., quadratic terms as

〈
ν : εp

〉2.
On the other hand, such terms will grow fast as εp in-
creases, leading to worse extrapolation. Nonlinear terms
with sigmoidal shapes are attractive here (cf. e.g. the tanh
activation functions used in the neural network). While
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those functions are unsuitable for sparse regression, they
are compatible with symbolic regression. Udrescu and
Tegmark (2020) outperformed all available symbolic re-
gression software for the physics problems in “Feynman
Lectures on Physics” by first training a neural network
on the data and then applying symbolic regression on the
trained network. That approach aligns with the work pre-
sented herein and provides interesting future extensions.

5.4. Implications and opportunities for future studies

While the previous paragraph mentioned possibilities for
improved equation discovery, the present section concerns
how to improve the neural network model. The presented
model starts from a basic plasticity model with isotropic
and kinematic hardening. It is well known that plastic
loading can result in both an anisotropic yield surface and
stiffness degradation. These effects motivate extending the
present model by introducing an evolving yield surface and
damage evolution. While such extensions are straightfor-
ward, sufficient suitable experimental training data is re-
quired.

The suitability of training data is also an important con-
sideration when designing the experiments. The predicted
yield strength evolution in Figure 16 was unexpected for
the authors. This finding offers essential information for
designing experiments to understand yield evolution bet-
ter. For example, varying the strain amplitude would pro-
vide more valuable data as the cyclic responses stabilize
after only a few cycles.

6. Contributions

In this paper, we present an approach that embeds a
neural network within a conventional material modeling
framework. Key advantages of our approach include the
intrinsic satisfaction of thermodynamics, frame invariance,
and the ability to employ implicit time integration. More-
over, we could discover analytical expressions for the evo-
lution laws by learning from the trained neural network
using both artificial and experimental data. The iden-
tified laws reveal an interaction between kinematic and
isotropic hardening. These new interaction terms enabled
the prediction of experimentally observed behaviors of
yield strength evolution for various loading cases.
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A. Sensitivity for parameter identification

Because neural networks have many parameters, a
gradient-based optimization algorithm is desired. It re-
quires the sensitivity of the loss, Lk(p), in Equation (32),
with respect to the material parameters p. As Lk is an
explicit function of the simulated time history of stresses,
it suffices to calculate the derivative of stress wrt. material
parameters. We start by briefly reviewing the implementa-
tion of an elasto-plastic material model to make it easier to
explain the various functions required to obtain the sought
sensitivity.

A.1. Material response
A general strain-driven, history-dependent, material

model, can be considered as two functions1,

σ = mσ(p, ε, ns,∆t) (39a)
s = ms(p, ε,

ns,∆t) (39b)

where s denotes the hidden material state and ∆t is the
time increment. The notation n• implies the value of • in
the previous time step. For the models considered in this
study, the state is given by s = [εp, κ,β].

A standard plasticity model implementation (excluding
tangent stiffness calculation for brevity) consists of the fol-
lowing steps.� �

1 function material_response(p, ε, ns, ∆t)
2 σ_trial = elastic_response(p, ε, ns)
3 Φ_trial = yield_criterion(p, σ_trial, ns)
4 if Φ_trial <= 0 # Elastic response
5 return σ_trial, ns
6 else # Plastic response
7 # Find X such that R(X, p, ε, ns, ∆t) = 0
8 X = solve_nonlinear(R, p, ε, ns, ∆t)
9 σ, s = plastic_response(X, p, ε, ns, ∆t)
10 return σ, s
11 end
12 end� �
The trial stress, σtrial = E :

[
ε− nεp

]
, on Line 2, is the

stress assuming that the current load stress is elastic. If
the trial state is inside the current yield surface, Φ ≤ 0,
the response is elastic, and the trial stress is the correct
solution (Line 5). Otherwise, the response is plastic, and
the state variables and stress must be calculated by solving
a nonlinear equation system, R(X,p, ε, ns,∆t) (cf. Box
7.1 in Neto et al. (2008) for a simplified example). Given
the solution, X(p, ε, ns,∆t), which is an implicit function
via the nonlinear iterations, the updated state variables
and stress can be calculated (Line 9).

To later calculate the sensitivity of the loss, dLk/dp, we
will need the 6 sensitivities,

dmy

dz
,

y ∈ {σ, s}
z ∈ {ε, ns, p} (40)

1Although in practice calculated together in a single function.
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The derivatives are trivial and efficient to compute
for elastic steps with automatic differentiation. In the
case of a plastic response, however, the implicit function
X(p, ε, ns,∆t) poses a problem. Therefore, we extend
a standard approach for calculating the material tangent
stiffness. Specifically, the residual function will always be
zero for any input p, ε, or ns, i.e.

dR

dz
= 0 =

∂R

∂X

dX

dz
+
∂R

∂z
(41)

With the function plastic_response on Line 9 denoted
as m̂y(X,p, ε, ns,∆t), the sought derivatives are

dmy

dz
=

dm̂y

dX

dX

dz
+
∂m̂y

∂z

= −dm̂y

dX

[
∂R

∂X

]−1
∂R

∂z
+
∂m̂y

∂z
(42)

for plastic loading (Φtrial > 0). The functions R and
m̂y are explicit (do not contain any iterations), and their
derivatives can be efficiently calculated with automatic dif-
ferentiation.

A.2. Stress state iterations

In most experiments, not all stress and strain compo-
nents are measured. For the uniaxial and biaxial experi-
ments considered in this study, one normal and one shear
stress component and the corresponding strain compo-
nents are available in the results. The two other normal
stresses are zero, while the remaining shear strains are as-
sumed to be zero. The corresponding normal strains are
unknown, and so are the corresponding shear stresses (al-
though these are typically zero). The measured strains
are the simulation inputs, and the measured stresses are
the outputs. In addition, we have the constraint that the
other assumed values (normal stresses and shear strains)
must be zero. Hence, from the modeling point of view, we
have the known stress components, σ̃, and the correspond-
ing unknown strain components, ε̃. In this paper, these
components are •22 and •33. Additionally, we have the
unknown stress components, σ̂, and corresponding known
strain components, ε̂ (components •11, •12,•13, and •23

in this study). As the input to the material function is
the full strain tensor, an iterative procedure is required to
find the ε̃ resulting in the prescribed σ̃. Three different
outputs are the result of such an iterative procedure,

σ̂ = gσ̂ (ε̂, ns,p, σ̃) (43a)
s = gs (ε̂, ns,p, σ̃) (43b)
ε̃ = gε̃ (ε̂, ns,p, σ̃) (43c)

where typically σ̂ are the components considered in the
loss, Lk in Equation (32).

A similar trick as for the material response gives the
derivative of the unknown stresses, σ̂, wrt. the material

parameters: We use that the iterative function will always
give the same known stresses, σ̃, i.e.,

dσ̃

dp
= 0 =

dmσ̃
dp

+
dmσ̃
dε̃

dgε̃
dp

+
dmσ̃
d [ns]

d [ngs]

dp
(44)

allowing the derivative of the unknown strains to be cal-
culated as

dgε̃
dp

= −
[

dmσ̃
dε̃

]−1 [
dmσ̃
dp

+
dmσ̃
d [ns]

d [ngs]

dp

]
(45)

Given that derivative, the sensitivity of the unknown
stresses, σ̂, can be calculated as

dgσ̂
dp

=
dmσ̂
dp

+
dmσ̂
dε̃

dgε̃
dp

+
dmσ̂
d [ns]

d [ngs]

dp
(46)

However, from the last term in Equations (45) and (46),
the value of d[ngs]/dp, which stems from the previous time
step, has yet to be discussed: In the first time step, this
derivative is zero because the initial state is independent
of the material parameters. Assuming that the value in
the previous time step is known, the value in the current
time step can be calculated as

dgs
dp

=
dms
dp

+
dms
dε̃

dgε̃
dp

+
dms
d [ns]

d [ngs]

dp
(47)

This result can then be used in the following time step to
calculate dgσ̂/dp, and finally dLk/dp.

For performance reasons, it is important to note that
for each local iteration in the material model, i.e. solving
R(X,p, ε, ns,∆t) = 0, only the derivative ∂R/∂X needs
to be calculated. This derivative is also required without
sensitivity calculations. Furthermore, the algorithmic tan-
gent stiffness, dmσ/dε, must be calculated once per stress
state iteration. This calculation is also always needed. The
additional computations for calculating the material sen-
sitivities occur only at the end of each time step after the
local material model iterations and the stress state itera-
tions converge. This possibility reduces the computational
costs of obtaining the sensitivity.
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