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Abstract—Within the past few years, the accuracy of deep
learning and machine learning models has been improving
significantly while less attention has been paid to their respon-
sibility, explainability, and interpretability. eXplainable Artificial
Intelligence (XAI) methods, guidelines, concepts, and strategies
offer the possibility of models' evaluation for improving fidelity,
faithfulness, and overall explainability. Due to the diversity of
data and learning methodologies, there needs to be a clear
definition for the validity, reliability, and evaluation metrics of ex-
plainability. This article reviews evaluation metrics used for XAI
through the PRISMA systematic guideline for a comprehensive
and systematic literature review. Based on the results, this study
suggests two taxonomy for the evaluation metrics. One taxonomy
is based on the applications, and one is based on the evaluation
metrics.

Keywords—XAI, machine learning, deep learning, explainable
artificial intelligence, explainable AI, explainable machine learn-
ing; metrics; evaluation

I. INTRODUCTION

eXplainable Artificial Intelligence (XAI[1]) is concerned
with the development of methodologies for understanding the
underlying logic behind machine learning and deep learning
models' decision and generally, widely AI applications [2, 3].
The ultimate aspiration of XAI is to facilitate users in con-
structing a comprehensive and accurate cognitive representa-
tion of machine learning algorithm to encourage confidence
in its outputs [4, 5, 6]. Despite the numerous methods and
approaches proposed for explainability, scholars still have
no agreement on what an Explanation truly is and what
properties should be considered for it to be practical and
understandable for the end user [7]. Future research should
focus on the definition of explainability and structured formats
of Explanations that can encompass various attributes and
dimensions, incorporating as many aspects as possible.
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Additionally, explainability should be considered a con-
cept from psychology. It is linked to constructs such as
trust, transparency, and privacy, and humans are the final
consumers of explanations[8]. It reminds us that interactive
visual explanations are not an optional aspect of XAI. Thus,
in order to develop successful XAI models, research on
psychometrics should be performed. Many authors studied
the explainability in AI sub-domains through case studies
or surveys, motivating the need for fundamental research on
measuring explainability[9, 10, 11].

Researchers reviewed methods for explanations with neural
and Bayesian networks and clustered scientific contributions
devoted to extracting rules. The goals are to create rules
interpretable by humans while maintaining accuracy [12]. Few
scholars attempted a comprehensive survey and organization
of explainability methods as a whole [13]. Others identified
a broad set of requirements an explanation should meet to
be understandable by laypeople and provide actionable in-
formation to support decision-making [14, 15, 16]. In their
works, a thorough evaluation analysis highlighted the need for
a systematic analysis of the metrics related to explainability.

Consequently, this paper aims to fill this gap by systemati-
cally reviewing research studies in XAI, focusing on a subset
of peer-reviewed articles that tackled explainability from a
conceptual and theoretical point of view and proposed ap-
proaches to evaluate XAI methods. The conceptual framework
is that explainers build explainability methods that can be
evaluated using evaluation metrics. When creating interactive
visual explanations, explainers often rely on complex models
or numerical approximations [17, 18, 19, 20].

However, without a robust evaluation metric for explana-
tions, it is not easy to generalize the causality between a
trained model and its visual explainer. The absence of robust
evaluation can lead to inconsistencies and inaccuracies in the



explanations provided, making it challenging for users to un-
derstand the underlying concepts fully. Therefore, developing
a reliable evaluation metric is essential to ensure interactive
visual explanations are compelling and informative. With such
a metric, explanation quality and reliability can be better
assessed, allowing them to create more accurate and valuable
visualizations for AI practitioners.

II. METHODOLOGY

The methodology is based on the comprehensive literature
search integrated with systematic screening and literature
review following the PRISMA guideline. The fundamen-
tal search database is Scopus1 complemented with Google
Scholar 2. Scopus is a reliable search engine for peer-reviewed
scientific literature. Scopus indexes journals and conference
proceedings articles that meet adequate scientific standards
and measures. For this research, Scopus has been used to find
relevant articles. However, pioneers of AI may also use Arxiv3

and other preprints to share an early version of their articles
to make the results available faster. We also explore Google
Scholar when Scopus fails to find adequate literature or when
complementary information is needed. The initial queries
are ‘explainable artificial intelligence’, ‘XAI’, ‘explainable
AI’, ‘explainable machine learning’, and ‘explainable deep
learning’. The queries result in 6122 articles, including various
methods and applications of explainable machine learning and
deep learning.

The research methodology flow diagram, which follows
the PRISMA4 guideline, is visualized in Fig. 1. Through
the methodology ' fundamental three phases, the initial 6122
documents are refined to the desired and relevant articles,
including the XAI evaluation metrics. The initial documents
include a vast number of documents written about XAI.
Further screening is essential to refine what articles include
explainability evaluation metrics. The challenge is that there
is no common keyword to look for as explainability in
various applications and scientific domains might be defined
differently. We included a comprehensive list of keywords
and relevant phrases generally used to define explainability.
Here, it is worth mentioning that relying on the keywords of
‘evaluation metrics’ or ‘metrics’ cannot be efficient in finding
the relevant articles for explainability evaluation metrics be-
cause explainability can be defined and communicated through
different phrases, and also, the term ‘evaluation metrics’ might
not be directly communicated throughout the literature. There-
fore, exploring the literature using the relevant keywords to
explainability complemented with the keywords of ‘evaluation
metrics’ or ‘metrics’ is considered an efficient method to
remove the irrelevant articles.

Consequently, screening the keywords of metrics, eval-
uation, and explainability through the entire fields of the
articles results in 884 documents. Following keywords related

1https://www.scopus.com/home.uri
2https://scholar.google.com
3https://arxiv.org
4http://www.prisma-statement.org/
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Fig. 1. The research methodology flow diagram follows the PRISMA
guidelines to identify relevant literature and screen it to narrow down the
amount of literature.

to explainability were explored in this stage, i.e., Action-
ability, Transparency, Transferability, Completeness, Satisfac-
tion, Sensitivity, Stability, Informativeness, Robustness, Under-
standability, Monotonicity, Comprehensibility, Correctability,
Interpretability, Efficiency, Explicability, Explicitness, Faith-
fulness, Intelligibility, Interactivity, Interestingness after fur-
ther screening the titles, abstract and keywords the number of
relevant articles is reduced to 225.

After a second screening by reading and going through
articles the 155 articles had been removed. The excluded
articles were concerned with the evaluation metrics irrelevant
to explainability. Often the performance and accuracy had been
measured and the explainability had been discussed shortly.
In the final stage the articles were reduced to 75. At the next
stage the original studies and most relevant articles are selected
for review resulting in 70 articles classified according to the
metrics presented in the tables.

III. RESULT

XAI research has exponentially expanded during the past
five years. Fig. 2 on the next page illustrates the research
progress based on the number of published articles. The initial
inquiry is to find articles devoted to XAI results in 6122
articles. Explainability metrics are used to evaluate the quality
of the explainer or model for investigating how good the expla-
nation is. A limited number of articles in the literature include
evaluation metrics for measuring explainability. Around 884

https://www.scopus.com/home.uri
https://scholar.google.com
https://arxiv.org
http://www.prisma-statement.org/


Fig. 2. The initial queries for XAI literature resulted in 6122 articles. The
graph also indicates an upward trend in XAI research.

Fig. 3. After the first screening for explainability evaluation metrics, the
literature review revealed that there were less than half a thousand research
articles containing explanation metrics in 2022. However, there is an upward
trend in the use of explanation metrics in research.

articles include the evaluation inquiry in the title, abstract, or
keywords. Fig. 3 illustrates the distribution of other results
during the past five years.

Table III on the next page includes many studies on
Explainable Artificial Intelligence (XAI) written between 2021
and 2023. The authors have looked into various XAI-related
ideas, methods, and applications. The papers span multiple
topics, including sentiment analysis, cybersecurity, healthcare,
education, and industry. The authors used deep learning,
knowledge distillation, statistical testing, and other techniques
to create more accessible models for people to understand
and use. They have suggested assessment techniques, metrics,
and algorithms to measure how trustworthy and compre-
hensible AI models are. To increase the interpretability of
black-box models, the authors have also leveraged various
XAI tools, including SHAP, LIME, and LEAF. In general,
the contributions of the authors seek to improve human-AI
collaboration and address the difficulties of implementing AI
systems. As an AI application becomes ubiquitous, the demand
for explainability also grows. To address this, researchers have
proposed different evaluation metrics to measure the quality
of explanations produced by AI models.

According to Chinu and Bansal [21], the explanation metric
is crucial for assessing the effectiveness of answers in relief

application submissions. According to a study of Schwalbe and
Finzel [13], applications based on explainable techniques and
their matrices are gaining popularity. For example, Machlev
et al. [27] emphasizes the significance of explainability metrics
for power experts in understanding power quality distribution
classification to guarantee reliable decision-making. The im-
portance of explanation and its evaluation metric in locating
anomalies in IoT data for enhancing security was stated by
[28]. Vilone and Longo [41] discovered that despite the sub-
stantial body of knowledge created regarding explainability,
academics still need to have a general agreement regarding
how to define an explanation, and its validity and reliability
can be evaluated. In addition, Li et al. [32] note that although
many works have contributed to this line, the present endeavor
lacks a clear taxonomy and systematic review. To address this,
Mualla et al. [33], Li et al. [42] propose new explanation
techniques and use the metric used in LIME to evaluate the
quality of the explanation.

Meanwhile, Palatnik de Sousa et al. [34] argue that per-
formance metrics achieved by AI models can give users the
impression that there is no bias. Hence, explaining classifica-
tion and evaluating the explanation based on proper metrics
is necessary. Additionally, Amparore et al. [35] addresses the
problem of identifying a clear and unambiguous set of metrics
for evaluating Local Linear Explanations. They also propose
a LEAF framework for explanation evaluation to end-users.

Finally, for practical medical applications, Theunissen and
Browning [29] suggests that metrics for evaluating post-hoc
explanations are necessary. The metrics should evaluate the
accuracy of the explanation, and there should be procedures for
auditing the system to prevent biases and failures from going
unaddressed. In summary, various researchers have proposed
different metrics and frameworks to evaluate the quality of
explanations produced by AI models. While there is still
no consensus on how to define and evaluate explanations
and explainability metrics’ importance in understanding AI
models and ensuring trustworthy decision-making cannot be
overstated.

In our recent review of application-related research, we have
identified that the evaluation technique is not the sole focus of
interest but rather the explanation method itself. We found that
in many cases, explanation evaluation was only qualitatively
assessed, and the quality of the explanation was taken for
granted without using any specific evaluation technique. How-
ever, several terminologies were reintroduced, such as local
explanation, attribute, post-hoc explanation, sensitivity, trust-
worthiness, causal interpretation, traceability, and auditing. We
discovered that sensitivity measurement was used frequently in
the literature. This method is closely related to the taxonomy
in Fig. III on page 5. The sensitivity measurement evaluates
the impact of input features on the model’s output, which helps
to identify the most critical features. It allows us to understand
the contribution of each input feature to the model’s prediction
and to evaluate the explanation’s quality. However, other
terminologies, such as trustworthiness, causal interpretation,
traceability, and auditing, can provide additional insights into



TABLE I
THIS TABLE PROVIDES A SUMMARY OF THE MOST RELEVANT LITERATURE THAT APPLIED XAI TECHNIQUES IN SOLVING PROBLEMS WITH REAL-WORLD

DATA. IT HIGHLIGHTS THE RESEARCH THAT HAS UTILIZED XAI TECHNIQUES AND THEIR PRACTICAL APPLICATIONS.

Authors Year Source title Concept Application

Chinu and Bansal [21] 2023 New Generation Computing Explainable AI: To Reveal the
Logic of Black-Box Models

Interpretable; Transparency;
Quality metrics;

Schwalbe and Finzel [22] 2023 Data Mining and Knowledge
Discovery

A taxonomy for XAI methods XAI;
Interpretability;
Meta-analysis

Xi et al. [23] 2023 Biomedical Signal Processing
and Control

XAI Evaluation metric:
Traceability rate

Drug recommendation;
Explainability; Traceability

Kadir et al. [24] 2023 IUI'23 Companion Explaining Machine Learning
Model Explanations

Interpretability; GUI for Explanation

Melo et al. [25] 2022 Education Sciences XAI methods evaluation
metric

Educational data science;
Learning analytics

Mi et al. [26] 2022 Computers in Biology
and Medicine

KDE-GAN: A multimodal medical
image-fusion model knowledge
distillation and explainable AI

XAI in Medicine;
Image generation

Machlev et al. [27] 2022 IEEE Transactions on Industrial
Informatics

Measuring Explainability and
Trustworthiness of Power
Quality Disturbances Classifiers

XAI in Power;
Power quality
disturbances (PQDs)

Khan et al. [28] 2022 IEEE Internet of Things Journal A New Explainable Deep
Learning Framework for
Cyber Threat Discovery

Anomaly detection;
IIoT;
industrial networks

Theunissen and Browning [29] 2022 Ethics and Information Technology Putting explainable AI
in context: institutional
explanations for medical AI

AI and health;
Epistemic risk;
Ethical design

Ferraro et al. [30] 2022 Artificial Intelligence Review Evaluating eXplainable artificial
intelligence tools for hard disk
drive predictive maintenance

Predictive maintenance

Sarpietro et al. [31] 2022 IEEE Access Explainable Deep Learning System
for Advanced Silicon and Silicon
Carbide Electrical Wafer Defect
Map Assessment

Explainable architectures;
Hierarchical clustering

Li et al. [32] 2020 IEEE Transactions on
Knowledge and Data Engineering

A Survey of Data-Driven and
Knowledge-Aware eXplainable AI

Knowledge-base;

Mualla et al. [33] 2022 Artificial Intelligence A human-agent architecture for
explanation formulation

HCI;
Multi-agent systems

Vilone and Longo [12] 2021 Information Fusion Notions of explainability and
evaluation approaches for
explainable artificial intelligence

Evaluation methods;
Notions of explainability

Palatnik de Sousa et al. [34] 2021 Sensors Explainable artificial intelligence
for bias detection

Computerised Tomography

Amparore et al. [35] 2021 PeerJ Computer Science To trust or not to trust an explanation:
using LEAF to evaluate local
linear XAI methods

Local linear explanation;
Machine Learning Auditing

Karn et al. [36] 2021 IEEE Transactions on
Parallel and Distributed Systems

Cryptomining Detection in Container
Clouds Using System Calls
and Explainable Machine Learning

Anomaly detection;
Cryptomining; explainability

Lobner et al. [37] 2021 IEEE Access Explainable Machine Learning
for Default Privacy Setting Prediction

Privacy preference

Hartmann et al. [38] 2022 Springer link Explaining AI with Narratives Explainability, NL

Hartmann et al. [39] 2021 Trustworthy AI in the wild Interaction with Explanations User interaction

Hartmann et al. [38] 2022 ACL A survey on improving NLP
models with human explanations

User interaction

Biswas et al. [40] 2020 Springer Link Explanatory Interactive
Image Captioning

Image captioning

the explanation’s reliability and usability.
An alternative taxonomy is proposed in 5. In our recent

review of application-related research, we have identified that
the evaluation technique is not the sole focus of interest but
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Fig. 4. Proposed taxonomy based the methodologies of the explainability evaluation

rather the explanation method itself. We found that in many
cases, explanation evaluation was only qualitatively assessed,
and the quality of the explanation was taken for granted
without using any specific evaluation technique. However,
several terminologies were reintroduced, such as local expla-
nation, attribute, post-hoc explanation, sensitivity, trustwor-
thiness, causal interpretation, traceability, and auditing. We
discovered that sensitivity measurement was used frequently in
the literature. This method is closely related to the taxonomy
in 5. The sensitivity measurement evaluates the impact of
input features on the model’s output, which helps to identify
the most critical features. It allows us to understand the
contribution of each input feature to the model’s prediction
and to evaluate the explanation’s quality. However, other
terminologies, such as trustworthiness, causal interpretation,
traceability, and auditing, can provide additional insights into
the explanation’s reliability and usability.

In Table III on the previous page, we found that local
explanation is necessary for plenty of applications. A local
explanation can be defined as an explanation that we get
individual basis based on each decision the model makes. They
can be post-hoc and generated after deploying a machine-

XAI [2]

Interpretablity [13]

Transparency [21]

Auditing [35]

Traceability [23]

User satisfaction [61]

Sensitivity [45]

Local Explanation [62]

Attribution [17]

Causal interpretation [63]

Dependent feature [63]

Saliency [64]

Fig. 5. Proposed taxonomy based on the XAI applications



learning model. Evaluation of local explanation can be done
in three ways. After removing the relevant feature from the
dataset based on the explanation, they retrained a proxy model
after evaluating the new model’s performance on untouched
test data. Suppose the test accuracy of the newly created
model is lower than the original model's accuracy. In that
case, training on data with missing features creates an entirely
different model than the original model. It signifies that the
futures removed from training data contribute to the original
model's decision. This method has high computational demand
due to the retraining process.

The second approach is ground-truth-based evaluation, and
the explanation is compared with the ground-truth explanation
data. Different distance metrics are used to identify how far the
explanation is from the ground truth. Ground truth can also be
user feedback on a model’s local explanation [57, 65]. Some
researchers used weakly supervised localization techniques to
see how a saliency-based explanation can be meaningful to
localize an object in an image [56, 60]. They proposed some
metrics called SSR, Point Game, Average drop, Increase confi-
dence, and Win. Kapishnikov et al. [54], Rguibi et al. [66] used
Accuracy Information Curves (AICs), Softmax Information
Curves (SICs), and Performance Information Curves PICs XAI
evaluation. [67, 68, 69] has used the area under perturbation
curve (AOPC) for understanding the decisions of CNN using
MoRF curve and evaluates the explainability of their proposed
model. Recently, Veldhuis et al. [70] leveraged explainable
AI methods for DNA analysis. Xi et al. [23], Apicella et al.
[71, 72], Schinle et al. [73] reported their experiment results
with MoRF curve or its variations as reliable evaluation
metrics.

There has been tremendous interest in unsupervised tech-
niques for evaluating explanations in the last decade. Most of
these methods work based on removing or adding information
from the input data and measuring the changes in the output of
the mode. SIC and AIC scores [54] Non-sensitivity [55] scores
are measured based on the output of the model. When data
is fed to an input, the output scores represent the influence
of essential and nonimportant features in the model output.
Similarly, removing features from input data also influences
the model. Sensitivity-N can measure the influence [74], and
Faithfulness Correlation [52]. The feature removal from the
input is a tricky process, and the feature removal should have
the property of missingness [75]. Such algorithms are also
proposed by [46, 67].

A. Sensitivity analysis

Explanation sensitivity refers to how much a machine
learning model’s output is affected by different types of
explanations or interpretability methods applied to it. In other
words, it measures how much the output of a model changes
when different explanations are provided for it. Sensitivity
analysis is a key part of explainable AI and helps researchers
and practitioners understand how reliable and robust the ex-
planations of machine learning models are. Table II on the
following page represents the sensitivity analysis methods used

for the evaluation of the XAI methods. The definition of classic
explanation sensitivity [45] can be expressed as follows: For
any j ∈ {1, ..., d},

[∇xϕ(f(x))]j = lim
ϵ→0

ϕ(f(x+ ϵej))− ϕ(f(x))

ϵ
(1)

where ej ∈ Rd is the jth coordinate basis vector, with
jth entry one and all others zero. and all others zero. It
quantifies how the explanation changes as the input is varied
infinitesimally Where f is the model, ϕ is the explainer and
ej is the changes in the input features.

Table II on the next page includes various research articles
that employ Explainable Artificial Intelligence (XAI) methods
in different applications. Sensitivity Analysis is one of the XAI
methods used to analyze the impact of input features on the
model's output. Some of the applications include Covid-19
diagnosis, self-driving cars, brain-computer interface systems,
seismic facies classification, predicting the functional impact
of gene variants, discovering bias in structured pattern clas-
sification datasets, smart agriculture, compression, feature se-
lection, volcano detection, optical water types, feature impor-
tance analysis, threat detection, survival analysis, and COVID-
19 screening using chest X-ray images. The XAI methods
employed in these applications include LIME, SHAP, Multi-
Objective Sensitivity Pruning, Graph embedding, Grad-CAM,
Gaussian processes, Hierarchical Interpretable models, Attack
trees, Bayesian networks, and Grad-CAM++. They employed
an explanation evaluation technique for evaluating the output
of the explanation methods. For example, Kim and Joe [77]
used sensitivity analysis for evaluating explanations in self-
driving cars' decision-making process. In anomaly detection
explanation, sensitivity can be used to evaluate the model's
decision [93].

B. Faithfulness Correlation and Faithfulness Estimate metrics

Faithfulness correlation measures the linear relationship be-
tween the model predictions and the training data. It quantifies
how well the model can capture the patterns and relationships
in the training data. A high faithfulness correlation indicates
that the model faithfully detects patterns and information in
the training data. In contrast, a low faithfulness correlation
indicates that the model may be over-fitting or under-fitting
the data. Faithfulness Correlation [52] iteratively replaces a
random subset of given attributions with a baseline value.
Then it measures the correlation between the attribution subset
and the difference in function output. On the other hand,
Faithfulness Estimate [53] computes the correlation between
probability drops and attribution scores on various points.
Table III on page 9 summarizes XAI studies, including the
Faithfulness Correlation and Faithfulness Estimate metrics.
According to [52], the faithfulness of an explanation function
g to a predictor f at a point x with a subset size of |S| is
defined as follows:

µF (f, g;x) = corr
S∈( [d]

|S|)

Å∑
i∈S

(
g(f, x)i, f(x)− f(x[xs=x̂s]

)ã
(2)



TABLE II
SENSITIVITY ANALYSIS FOR XAI METHODS

Reference Year Source title XAI method Application

Sharma and Mishra [76] 2022 Pattern Recognition Covid-MANet Sensitivity analysis;
Lesion localisation

Kim and Joe [77] 2022 PLoS ONE An XAI method
for convolutional
neural networks

Self driving car;
CNN;
Sensitivity of features

Ieracitano et al. [78] 2022 Neural Computing
and Applications

A novel explainable machine
learning approach for EEG-based
brain-computer interface systems

Brain–computer interface;
Explainable
machine learning

Lubo-Robles et al. [79] 2022 Interpretation Quantifying the sensitivity
of seismic
facies classification
to seismic attribute selection

Sensitivity of
seismic attributes;
Seismic geomorphology

Phul et al. [80] 2022 PLoS Computational Biology Predicting the functional impact of
KCNQ1 variants with artificial
neural networks

Protein structure

Nápoles and Koutsoviti Koumeri [81] 2022 Pattern Recognition Letters Discover bias in features of structured
pattern classification datasets

Understanding bias;
Fairness

Cartolano et al. [82] 2022 IEEE 8th International
Conference on Multimedia
Big Data

Explainable AI at Work!
What Can It Do for
Smart Agriculture?

Explainability in
Agriculture data

Sabih et al. [83] 2022 IEEE International
Green and Sustainable
Computing

MOSP: Pruning of
Deep Neural Networks

Neural network
compression

Taskin [84] 2022 IEEE Geoscience
and
Remote Sensing Letters

A Feature Selection Method
via Graph Embedding and
Global Sensitivity Analysis

Feature engineering

Beker et al. [85] 2022 International Geoscience
and Remote Sensing
Symposium

Explainability Analysis
of CNN in Detection
of Volcanic Deformation Signal

Volcanic
Deformation analysis

Blix et al. [86] 2022 IEEE Geoscience
and
Remote Sensing Letters

Learning Relevant Features
of Optical Water Types

Understanding See water

Chen et al. [87] 2021 IEEE Sensors Journal Deep belief network framework
and its application for feature
importance analysis

Feature engineering

Apicella et al. [72] 2021 CEUR Workshop Proceedings Explanations in terms
of Hierarchically organised
Middle Level Features

Feature understanding

Wu et al. [88] 2021 USENIX Security Symposium Adversarial policy
training against deep
reinforcement learning

Preventing
adversarial attacks

Hoyt and Owen [89] 2021 SIAM-ASA Journal on
Uncertainty Quantification

Efficient Estimation of the
ANOVA Mean Dimension,
with an Application to
Neural Net Classification

Dimensionality reduction

Pappaterra and Flammini [90] 2021 Studies in Computational
Intelligence

Bayesian Networks for
Online Cybersecurity
Threat Detection

Threat detection and
analysis

Kovalev and Utkin [91] 2020 Neural Networks A robust algorithm for explaining
unreliable machine learning
survival models

Reducing data demand

Lee et al. [92] 2020 Journal of Personalized
Medicine

Evaluation of scalability
and degree of fine-tuning

Medical imaging;
Low training data

Kauffmann et al. [93] 2020 Pattern Recognition A deep Taylor decomposition
of one-class models

Outlier detection;
Unsupervised learning

Molnar et al. [63] 2020 Communications in Computer
and Information Science

Interpretable Machine Learning
A Brief History

Dependent features;
Causal interpretation

Mathews [94] 2019 Advances in Intelligent
Systems and Computing

XAI Applications in NLP; Biomedical
Classification

Drawback
of blackbox model



d is the dimension of x.
Table III on the next page lists various studies and research

papers that showcase the application of faithfulness metrics
in explainable AI (XAI). Faithfulness is one of the essential
metrics used to evaluate the performance of XAI methods.
It measures how well an AI model’s explanations align with
its underlying decision-making processes. For instance, in the
medical image analysis study by Jin et al. [14], the authors
proposed guidelines to evaluate the faithfulness of clinical
XAI models. Similarly, the G-LIME method introduced by
Li et al. [42] aims to provide interpretable deep learning by
ensuring the faithfulness of local interpretations of deep neural
networks using global priors. Other studies in the table that uti-
lize faithfulness metrics include those in autonomous driving
and natural language processing. These studies illustrate the
significance of faithfulness in XAI and its application across
different domains.

C. Monotonicity Metric

Monotonicity Metric introduced by Luss et al. [49] gener-
ates contrastive explanations with monotonic attribute func-
tions. Arya et al. [48] further elaborates on these metrics.
It starts from a reference baseline to incrementally place
each feature on the baseline surface from a sorted attribution
vector, measuring the effect on model performance. Recently
Monotonicity Metric has been employed by several studies
[112, 113, 114, 115].

D. Pixel Flipping

Pixel Flipping [51] captures the impact of perturbing pixels
in descending order according to the attributed value on the
classification score. Wullenweber et al. [116], Pitroda et al.
[117] used Pixel Flipping metric for evaluating explanations
for the predictions of COVID-19 cough classifiers and lung
disease classification.

dk(p) =

∑
N∈digits(k) N(p)∑M

i=0

∑
N∈digits(i) N(p)

(3)

dk(p) is the effect of pixel p on model corresponds to class
k. N(p) is the models output probability.

E. Region Perturbation

Region Perturbation introduced by Aopc Samek et al. [50]
is an extension of Pixel-Flipping to flip an area rather than
a single pixel. It has been used in several XAI experiments.
Table 3 summarises XAI studies, including Region Perturba-
tion. Region perturbation metric gives Area Under Perturbation
which defines by the following equation.

AOPC =
1

L+ 1

≠ L∑
k=0

f
(
x
(0)
MoRF

)
− f

(
x
(k)
MoRF

)∑
p(x)

(4)

Where f is tthe model, L is the number of samples, ⟨.⟩p(x
denotes the average over all samples and x

(k)
MoRF is the cumu-

lative removal of up to kth Most Relevant Feature (MoRF).
Singla et al. [118] propose a counterfactual approach to

explain black-box models used for chest X-ray diagnosis. Jin

et al. [14] discuss generating post-hoc explanations from deep
neural networks for multi-modal medical image analysis tasks.
Šimić et al. [119] introduce a perturbation effect metric to
counter misleading validation of feature attribution methods in
deep learning for time-series data. Huang et al. [121] focus on
understanding spatiotemporal prediction models, while Narteni
et al. [122] study the sensitivity of logic learning machines in
safety-critical systems. [123] propose an integrated gradient-
optimized saliency method for explainable AI in medical
imaging. In contrast, [124] provide a general overview of
explainable AI for process mining with a focus on a novel
local explanation approach. Mishra et al. [125] discuss reliable
local explanations for machine listening, and Lenis et al. [126]
introduce domain-aware medical image classifier interpretation
by counterfactual impact analysis. Finally, Fong and Vedaldi
[127] explain deep neural network predictions for computer
vision tasks without giving detain on the evaluation of ex-
planation. Most of the papers used pixel flipping or variants
of it to evaluate the local explanations. Table IV on page 10
presents the list of papers that have mentioned pixel flipping
technique in their papers.

F. Selectivity

Selectivity [128] in a metrics for evaluation used in several
recent XAI models, which measures how quickly a prediction
function starts to drop when removing features with the highest
attributed values. Goswami et al. [129], Vangala et al. [130],
Kim and Park [131], Feldmann and Bajorath [132], Wang et al.
[133]. It can be calculated using the AOPC curve or pixel
flipping curve.

G. Sensitivity-N

Sensitivity-N [47] computes the correlation between the
sum of the attributions and the variation in the target output
while varying the fraction of the total number of features
and averages it over several test samples. This metric had
been recently used by [134, 135]. For a number of features
n in data, selectivity-n defines the sum of the attributions∑N

i=1 R
c
i (x)and variation in the target output correlates on

a particular task for different explanation algorithms.

H. IROF

IROF introduced by Rieger and Hansen [46] computes the
area over the curve per class for sorted mean importance of
feature segments (superpixels) as they are iteratively removed
(and prediction scores are collected), averaged over several test
samples. Fel et al. [136] elaborate on the model explainability
using IROF. They investigate how good the explanation is by
evaluating algorithmic stability measures.

IROF (ej) =
1

N

N∑
n=1

AOC

Å
F (X l

n)y
F (X l

0)y

ãL
l=0

(5)

I. Infidelity

Infidelity is an evaluation metric introduced by [45]. It
represents the expected mean square error between 1) a dot



TABLE III
FAITHFULNESS CORRELATION AND FAITHFULNESS ESTIMATE METRICS IN XAI

References Year Source title XAI method Application

Jin et al. [95] 2023 Medical Image Analysis Guidelines and evaluation of clinical
explainable AI in medical image analysis

Guidelines for
explanation evaluation;
Clinical data

Li et al. [42] 2023 Artificial Intelligence Statistical learning for local
interpretations of deep
neural networks using
global priors

Explanation refinement;
LIME

Zablocki et al. [96] 2022 International Journal
of Computer Vision

Explainability of Deep
Vision-Based Autonomous
Driving Systems

Autonomous driving

Neely et al. [97] 2022 Frontiers in Artificial
Intelligence and Applications

Evaluating the Evaluation
of Explainable Artificial
Intelligence in Natural
Language Processing

Human catered AI;
Natural language
understaing

Omeiza et al. [98] 2022 IEEE Transactions
on Intelligent Transportation
Systems

Explanations in
Autonomous Driving

Autonomous driving

Schuff et al. [99] 2022 ACM International
Conference Proceeding
Series

Human Interpretation
of Saliency-based
Explanation Over Text

Human interaction;
Explainability in
natural language
understanding

Akulich et al. [100] 2022 Chemometrics and
Intelligent Laboratory Systems

Explainable predictive
modelling for limited
spectral data

Robustness of
ML models

Zhang et al. [101] 2022 Conference on Human
Factors in Computing
Systems - Proceedings

Debiased-CAM to mitigate
image perturbations with
faithful visual explanations
of machine learning

Robustness of prediction;
Faithfulness of model

Holzinger et al. [102] 2022 Information Fusion Information fusion as an integrative
cross-cutting enabler to achieve robust,
explainable, and rustworthy medical
artificial intelligence

Legal and ethical
aspect of ML;
Clinical decision making

Namatēvs et al. [103] 2022 Computer Assisted
Methods in Engineering
and Science

Interpretability versus
Explainability

Framework for
interpretability
and explainability

Iqbal et al. [104] 2022 IEEE Access Visual Interpretation of CNN Prediction
Through Layerwise Sequential Selection
of Discernible Neurons

Understanding
visual explantion

Lv et al. [105] 2022 Lecture Notes
in Computer Science

On Glocal Explainability
of Graph Neural Networks

Explainability;
Graph neural network

Tutek and Snajder [106] 2022 IEEE Access Toward Practical Usage
of the Attention Mechanism
as a Tool for Interpretability

Attention as explanation

Ras et al. [107] 2022 Journal of Artificial
Intelligence Research

Explainable Deep Learning:
A Field Guide
for the Uninitiated

Deep Learning
mode Understanding

Jin et al. [108] 2022 WIREs Mechanisms
of Disease

Explainable deep
learning in healthcare

Imterpretable deep
learning in healthcare

Vowels et al. [109] 2022 Journal of Sex
Research

Explainable Machine
Learning to Identify
the Most Important
Predictors of Infidelity

Personal relationship

Lisboa et al. [110] 2020 Communications in
Computer and
Information Science

Efficient Estimation of
General Additive
Neural Networks

Medical decision
support system

Rosenfeld and Richardson [111] 2019 Autonomous Agents
and Multi-Agent Systems

Explainability in
human–agent systems

General explainabiliy



TABLE IV
PIXEL FLIPPING

Authors Year Source title Title Application

Singla et al. [118] 2023 Medical Image Analysis Explaining the
black-box smoothly

Counterfactual reasoning; Medical
image understanding

Jin et al. [95] 2023 MethodsX Generating post-hoc
explanation from deep neural
networks for multi-modal tasks

Multi-modal medical
image;
Post-hoc explanation

Šimić et al. [119] 2022 International Conference
on Information and
Knowledge Management,
Proceedings

Perturbation Effect General explainability;
Time series data

Żygierewicz et al. [120] 2022 Journal of Neural
Engineering

Decoding working memory-related
information from repeated
psychophysiological EEG

Nuro-signal
understanding;

Huang et al. [121] 2022 IEEE Transactions on
Circuits and Systems
for Video Technology

On Understanding of Spatiotemporal
Prediction Model

Spatiotemporal
dynamics

Narteni et al. [122] 2022 IEEE Intelligent
Systems

Sensitivity of Logic Learning Machine
for Reliability in Safety-Critical Systems

Autonomous driving;
Feature importance

Khorram et al. [123] 2021 ACM Conference on Health,
Inference, and Learning

IGOS++: Integrated gradient optimized
saliency by bilateral perturbations

General explainability

Mehdiyev and Fettke [124] 2021 Studies in
Computational
Intelligence

Application of a Novel Local Explanation
Approach for Predictive Process
Monitoring

Predictive process
monitoring;
Process mining

Mishra et al. [125] 2020 Proceedings of the
International Joint
Conference on
Neural Networks

Reliable Local Explanations for
Machine Listening

Sound analysis

Lenis et al. [126] 2020 Lecture Notes
in Computer Science

Domain aware medical image classifier
interpretation by counterfactual
impact analysis

Medical image
analysis

Fong and Vedaldi [127] 2019 Lecture Notes
in Computer Science

Explanations for Attributing Deep
Neural Network Predictions

General XAI

product of an attribution and input perturbation and 2) a dif-
ference in model output after significant perturbation. Lv et al.
[105], Mercier et al. [137], Chatterjee et al. [138], Sahatova
and Balabaeva [139], Meister et al. [140] leverage this metric
in their experiments and comparisons.

INFD(ϕ, f, x) = E
I∼µI

[(
ITϕ(f, x)− (f(x)− f(x− I))

)2]
(6)

ϕ is the explainer, f is the model x is the input I = x− x0is
the difference between input and baseline.

J. ROAD

ROAD (RemOve And Debias) introduced by Rong et al.
[44] measures the accuracy of the model on the test set in an
iterative process of removing k most important pixels, at each
step k most relevant pixels (MoRF order) are replaced with
noisy linear imputations. ROAD follows a similar approach to
AOPC; however, the feature removal is performed using noisy
approximation neighbors. To remove a pixel from an image,
ROAD uses the following equation.

xi,j = wd(xi,j+1 + xi,j−1 + xi+1,j + xi−1,j)+

wi(xi+1,j+1 + xi−1,j−1 + xi+1,j−1 + xi−1,j+1)
(7)

wi and wd are two different weight factor for nearest and
distant neighbour pixels. In the experiment they use larger
weight for nearest neighbour than the distant neighbour.

K. Sufficiency
Sufficiency [141] measures the extent to which similar

explanations have the same prediction label. To explain a
prediction, it is necessary that if a certain property (π) is
used to justify the prediction of an instance (x). Any other
instance (x

′
) with the same property (π) should also be

classified in the same way. In other words, consistency is
required in classifying instances with the same property used
for prediction justification. According to [141] to Explanations
E are intelligible if for any instance x ∈ X and property, π ∈ E
it is possible to assess whether π applies to x. If so, they define
this as a relation A(x

′
, π).

Cx =
{
x

′
∈ X : A(x

′
, e(x))

}
(8)

Cxis the set of instance that share same property as x’s
explanation and e is the explainer.

IV. DISCUSSION

Applied research has significantly increased, focusing on de-
veloping and evaluating explanation evaluation metrics. While



some studies use established metrics to measure the perfor-
mance of their explanation methods, many researchers have
proposed their metrics. This trend has made benchmarking and
comparing different explanation methods challenging because
they are evaluated using different metrics. Additionally, some
terminology related to explanation evaluation still needs to be
defined, further complicating the process.

However, despite these challenges, there is a significant po-
tential for developing effective explanation evaluation metrics,
particularly in domains such as healthcare and security. As
these domains involve sensitive and critical decision-making
processes, having robust and reliable explanation methods is
crucial [142, 143]. Therefore, there is a need to establish
standard evaluation metrics that can be used to assess the
effectiveness and accuracy of explanation methods. Standard
evaluation metrics will help compare different methods and
help develop more effective and trustworthy explanation meth-
ods for these domains.

V. CONCLUSIONS

This study presented a comprehensive literature review on
evaluation metrics for explainability. Two taxonomy has been
proposed to bring insight into applications and evaluation
of XAI. Evaluating the explainability of the models consists
of an interactive approach that relays on an understanding
of the psychological construct of explainability. Our review
explored explainability, and terms like interpretability and
understandability were explored to bring insight into XAI
evaluation and metrics. Explainability has been discussed in
many different areas and should be further explored to create
a definition that can be used in various contexts.

To address the challenges in evaluating the quality of expla-
nations generated by XAI methods, we propose a theoretically
robust metric that can be generalized to any explanation
algorithm. Our review of existing methods reveals that relying
on human users to evaluate the quality of explanations can be
error-prone due to the risk of confirmation bias. Therefore, we
suggest defining a formal explanation evaluation metric that
can be experimentally validated based on established methods.
By doing so, we can ensure that the quality of explanations is
objectively assessed and compared across different models and
algorithms. A formal definition explanation evaluation metric
will help advance the field of explainable AI and promote the
development of trustworthy and transparent machine learning
systems.
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