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Abstract

The active manipulation of phononic bandgaps has been a topic of great interest in the recent

past. Phononic crystals, or periodic composite structures built from soft elastomers, offer the

potential for reversible manipulation of their phononic bandgaps through finite deformation of

the periodic composite. By using hard-magnetic soft materials, which undergo reversible, finite

deformations when subjected to an applied magnetic flux density, it is possible to tune the frequency

ranges of elastic wave bandgaps or generate new bandgaps through magnetic stimuli. Here, we

present a theoretical model for the analysis of large magneto-deformation and the anti-plane shear

wave bandgaps in an infinite 2D periodic two-phase hard magnetic soft composite structure subjected

to magnetic stimuli. The constitutive behavior of the phases in the hard-magnetic soft composite

is described using the incompressible Gent model. To solve the incremental anti-plane wave

equations, the finite element method and the Floquet-Bloch theorem for periodic medium are

utilized. Using the developed framework, we numerically study the dependency of the bandgap

width and their location on the direction and magnitude of applied magnetic flux density vector,

material parameter contrasts, and geometry and volume fraction of the inclusion phase. The

numerical results reveal that significant tunability of the bandgap is achieved when the applied

magnetic flux density direction is along the residual magnetic flux density direction. Also, it is

seen that the geometry of the inclusion has significant effect on the bandgap width.
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1. Introduction1

Phononic Crystals (PnCs) have received growing attention since their discovery more than a2

decade ago. PnCs are engineered composite materials or structures designed to tailor the transmission3

of elastic waves, such as sound and vibrations, by creating periodic variations in the elastic properties4

of the constituent materials (Sigalas & Economou, 1992; Kim & Yang, 2014; Xia et al., 2019;5

Zhang & Gao, 2020; Vasileiadis et al., 2021; Chen et al., 2022; Liu et al., 2023). One of the6

key features of PnCs is the existence of band gaps (Kushwaha et al., 1993), which are frequency7

ranges where elastic/acoustic waves cannot propagate. The existence of band gaps in PnCs is8

attributed to Bragg scattering (Kushwaha et al., 1994) and local resonance (Raghavan & Phani,9

2013). PnCs have a wide range of potential applications, including acoustic filters (Zhang & To,10

2013), waveguides (Khelif et al., 2004), sensors (Gharibi & Mehaney, 2021), acoustic cloaking11

(Zheng et al., 2014), noise suppressors (Badreddine Assouar et al., 2012), multiplexing devices12

(Moradi & Bahrami, 2019), superlenses (Dubus et al., 2011) and many more.13

One of the key challenges in design and development of PnCs is that the phononic bandgaps are14

typically fixed once the phononic composite/structure is manufactured. In contrast, there may be15

wide range of applications in which it is desirable to be able to actively tune the band gaps after the16

composite has been manufactured. To overcome this challenge of tunability, there have been several17

efforts in the recent past (Wang et al., 2008; Bou Matar et al., 2012; Nimmagadda & Matlack, 2019;18

Bertoldi & Boyce, 2008; Gei et al., 2011). In the context of PnCs made up of stiff/hard materials,19

tunability of band gaps has been explored using piezoelectrics (Wang et al., 2008, 2010; Vatanabe20

et al., 2014), magneo-elastics (Bou Matar et al., 2012; Hu et al., 2022), temperature variations21

Xia et al. (2016); Nimmagadda & Matlack (2019), etc, however, due to small-deformation of the22

structure tunability is limited. Recently, there has been growing interest in utilizing soft active23

materials, such as soft elastomers (Wang & Bertoldi, 2012; Bertoldi & Boyce, 2008; Rudykh &24

Boyce, 2014; Shim et al., 2015; Shmuel & Band, 2016; Chen et al., 2019), dielectric elastomers25

(Gei et al., 2011; Shmuel & deBotton, 2012; Shmuel, 2013; Getz et al., 2017; Jandron & Henann,26

2018; Alam & Sharma, 2022; Zhao et al., 2023), and magneto-active elastomers (Pierce et al., 2020;27

Karami Mohammadi et al., 2019) which undergo large deformation when subjected to external28

stimuli to achieve significant tunability of phononic band gaps, i.e., shifting of band gaps.29

2



In the present work, we consider phononic composites composed of hard-magnetic soft materials30

(HMSMs) that possess elastic wave band gaps. The size and location of these band gaps can be31

adjusted dynamically by applying an external magnetic flux density in real-time. HMSMs are a32

new family of soft magneto active materials that can undergo large, reversible deformations when33

actuated by magnetic field (Zhao et al., 2019; Moreno-Mateos et al., 2023; Rahmati et al., 2023b;34

Wang et al., 2020; Yan et al., 2023; Rahmati et al., 2023a). HMSMs differ from soft magneto-35

active elastomers in that they are manufactured by incorporating hard-magnetic particles with high-36

coercivity in the soft elastomer matrix (Lum et al., 2016; Kim et al., 2018; Wu et al., 2020a; Sano37

et al., 2022; Zhao & Zhang, 2022), while soft magneto active elastomers are manufactured by38

incorporating soft magnetic particles with low-coercivity in the elastomer matrix (Wu et al., 2020b;39

Garcia-Gonzalez et al., 2021). Further, HMSMs exhibit high remnant properties, allowing them to40

retain high residual magnetic flux density even when the external magnetic stimuli are removed.41

Owing to this property, significant efforts have gone into using HMSMs in a variety of engineering42

applications such as soft transducers (Lee et al., 2020; Nagal et al., 2022; Nandan et al., 2023),43

soft/flexible robotics (Kim et al., 2019; Wang et al., 2021), Metamaterials (Zhang et al., 2023), and44

many more. A recent review on the various applications of HMSMs may be found in Lucarini et al.45

(2022).46

Using HMSMs as a route for obtaining magnetically tunable, soft PnCs was considered firstly47

by Zhang & Rudykh (2022) who developed a theoretical model for investigating the propagation48

of transverse elastic waves in 1D two-phase hard-magnetic soft laminates. They demonstrated the49

active manipulation of the band gaps in the shear mode with varying remanent magnetizations of the50

laminate constituents and found that a remotely applied magnetic field can significantly control the51

shear wave band gaps. Further, Alam et al. (2023) reported a 1D finite element model to investigate52

the longitudinal wave band gaps in hard-magnetic soft laminates. They demonstrated that the53

application of a magnetic flux density in the opposite direction to the residual magnetic flux density54

yields positive effects on the band gap properties of hard-magnetic soft laminates. In particular,55

increasing the applied magnetic flux density results in the widening of the band gap width and a56

shift towards higher frequencies. Li et al. (2022) investigated the active tuning of the band gaps in57

programmable hard-magnetic soft PnCs with three distinct magnetic anisotropy encoding modes58

through finite element simulation under the influence of an applied magnetic field. To the best of59
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authors’ knowledge, the propagation of elastic waves and tunable band gap characteristics of 2D60

two-phase hard-magnetic soft composites (HMSCs) has not been hitherto reported. To this end,61

we develop a numerical finite element framework for analyzing the propagation of incremental62

anti-plane waves superimposed on the magnetic field induced large deformation of the infinite 2D63

periodic two-phase HMSCs. Further, the developed numerical framework is utilized to demonstrate:64

(I) the magnetic tunability, (II) the influence of material parameter contrasts and volume fraction of65

composite phases, and (III) the influence of the geometry of the inclusion phase on the anti-plane66

wave band gap characteristics of the HMSC.67

The remainder of manuscript is divided into five sections. Section 2 provides a concise overview68

of the fundamental formulation of the nonlinear field theory of HMSMs, along with its linearized69

incremental wave propagation theory. Section 3 presents a theoretical framework for analyzing70

the finite deformation behavior of a two-phase HMSC under a magnetic field in the quasi-static71

regime. In Section 4, we employ finite element method and Floquet-Bloch theorem to obtain the72

incremental anti-plane wave band gaps in an infinite 2D periodic two-phase HMSC. Section 573

presents the numerical results, which show how the applied external magnetic loading, volume74

fraction of phases, geometry of the inclusions, and material contrast parameters affect the band75

gap characteristics of an infinite 2D periodic HMSC. Finally, in Section 6, we summarize the76

conclusions drawn from the current study and also provide further outlook.77

2. Dynamics of hard-magnetic soft composites78

In this section, we provide a concise review of the governing equations pertaining to the dynamics79

of deformable HMSCs following the the nonlinear field theory of HMSMs (Zhao et al., 2019) and80

the related linearized incremental theory (Dorfmann & Ogden, 2014).81

Consider an arbitrary incompressible, soft, deformable, hard-magnetic, soft-composite body82

made up of two phases a and b. This body occupies a domain Ωa
R ∪ Ωb

R = ΩR ⊂ R3 with83

the boundary ∂ΩR in the reference configuration. When actuated by biasing magnetic fields,84

the composite body undergoes deformation and occupies a domain Ωa ∪ Ωb = Ω ⊂ R3 in the85

current configuration. The boundary of the body in the current configuration is labeled by ∂Ω. The86

deformation χ : ΩR → Ω maps material particles X in the reference configuration to the spatial87

points x in the current configuration. In the following discussion, the differential operators ’Grad’,88
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’Div’, and ’Curl’ are used to denote the gradient, divergence, and curl in the reference configuration,89

respectively, while ’grad’, ’div’, and ’curl’ are used to denote the same operators in the current90

configuration. For defining different relevant fields in the current and reference configurations, we91

introduce the deformation gradient tensor F, Jacobian J , and the left Cauchy-Green strain tensor92

b.93

F = Gradχ, J = detF > 0, b = FFT. (1)

Neglecting the mechanical body forces, the total Cauchy stress tensor σ satisfies the balance of94

linear momentum equation in the current configuration as follows:95

divσ = ρa (2)

where ρ denotes the material mass density, which remains constant as the material is incompressible96

J = 1, and a = χ,tt represents the acceleration.97

In the case of an ideal hard-magnetic soft material (with no free current) and neglecting the98

dynamic coupling between electro-magnetic fields, the Maxwell equations in the current configuration99

can be expressed as follows100

divB = 0, curlH = 0 (3)

here, H and B are the magnetic field and the magnetic flux density in the current configuration,101

respectively.102

Jump boundary conditions between interfaces separating phases a and b are:103

[[σ]] · n = 0, n · [[B]] = 0, n× [[H]] = 0 (4)

here, [[•]] = (•)a − (•)b represents the jump operator, and n denotes the unit normal vector to the104

surface element in the deformed configuration.105

The constitutive relations for an incompressible hyperelastic hard-magnetic material are obtained106

from the nominal Helmholtz free energy density function Ψ(F,B0) (per unit volume in the undeformed107

configuration) (Zhao et al., 2019) as follows:108
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P =
∂Ψ

∂F
+ γF−T, H0 =

∂Ψ

∂B0

(5)

where P = JσF−T, H0 = FTH, and B0 = JF−1B are the totol first Piola-Kirchhoff stress tensor,109

Lagrangian magnetic field and magnetic flux density vectors, respectively, and γ is an arbitrary110

scalar accounting for the incompressibility constraint.111

Following Dorfmann & Ogden (2014), we consider a time-dependent small amplitude incremental112

wave motion ẋ = χ̇(X, t), along with an incremental change Ḃ0(X, t) in magnetic flux density,113

superimposed on the quasi-static large magnetodeformation of the hard magnetic soft body Ω(χ).114

In the sequel, to distinguish the incremental quantities from their equilibrium counterparts, we use115

a dot above them.116

In the updated Lagrangian form, the governing equations for the incremental motion and magnetic117

field are written as:118

divΣ = ρẋ,tt, divB̌ = 0, curlȞ = 0 (6)

where Σ = J−1ṖFT, B̌ = J−1FḂ0, and Ȟ = F−TḢ0 are the push-forwards of increments in119

Lagrangian quantities Ṗ, Ḃ0, and Ḣ0, respectively.120

For an incompressible hard-magnetic soft material, the linearized incremental constitutive equations121

are written as122

Σ = Ch− γhT + γ̇I+ BB̌, Ȟ = BTh+ A B̌, (7)

where C , B, and A are the constitutive tensors and their components are written as123

C ijkl =
1

J
FjI

∂2Ψ

∂FiI∂FkJ

FlJ , Bijk = FjI
∂2Ψ

∂FiI∂B0J

F−1
Jk , A ij = JF−1

Ii

∂2Ψ

∂B0I∂B0J

F−1
Jj

(8)

and γ̇ is the increment in γ, and the incremental displacement gradient tensor h = gradẋ satisfies124

the material incompressibility constraint trh = divẋ = 0.125
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3. Nonlinear Magnetodeformation of two-phase hard-magnetic soft composites126

We consider a 2-D periodic two-phase composite consisting of square-shaped inclusions (incompressible127

hard-magnetic soft phase a) and embedded in a different incompressible hard-magnetic soft material128

(phase b) which is infinitely large in the (x1, x3) plane. The composite is infinitely long along x2129

direction and the different magneto-mechanical fields are assumed to be invariant with respect to x2130

direction. In the undeformed configuration, the unit cell for this 2-D periodic two-phase composite131

is assumed to be a square of length L as shown in Fig. 1(a). Hereafter, the superscript (•) p is used132

to denote the physical quantities of the composite phases (p = a, b).133

To describe the constitutive response of the HMSC, we consider that the hard-magnetic soft134

phases are modeled by the incompressible Gent model of hyperelasticity (Gent, 1996) in conjunction135

with the ideal hard-magnetic soft material model (Zhao et al., 2019). The expression for the136

Helmholtz free energy of the ideal hard-magnetic soft phase is given by137

Ψp = −GpJp
lim

2
ln

[
1− tr bp − 3

Jp
lim

]
− 1

µ0

FpBp
r0
·Bappliedp (9)

where Gp is the shear modulus, Jp
lim is the limiting stretch parameter, µ0 is the vacuum permeability,138

Bp
r0

is the residual magnetic flux density vector in the reference configuration, and Bappliedp is the139

applied magnetic flux density vector in the current configuration. Utilizing Eqs. (5) (9), the total140

Cauchy stress generated in each phase is obtained as141

                                                                                              

b 

Bapplied 

Br 

a 
 x3 

 l = λL 

 x2 

 x1 

L 

b 

a 

 X3 

 X1 

 X2 

Br 

b 

Bapplied 

a  x3 

 x2 

 x1 

l = λL 

Br 

(a) (b) (c)

Figure 1: Schematic description of a two-phase HMSC with square shape inclusion in (a) reference
configuration, (b) current configuration with residual magnetic flux density aligned with the direction of
applied magnetic flux density, and (c) current configuration with residual magnetic flux density opposing the
direction of applied magnetic flux density.
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σp =
Gp[

1− tr bp − 3

Jp
lim

]bp − 1

µ0

Bappliedp ⊗ FpBp
r0
+ γpI. (10)

For known values of residual and applied magnetic flux density vectors, respectively, the total142

Cauchy stress tensor σp is a function of the deformation gradient tensor F only. Further, if in the143

current configuration, the direction of Bappliedp is parallel to the direction of Bp
r0

, the total Cauchy144

stress becomes symmetric. However, for more general cases, the total Cauchy stress tensor is145

asymmetric Zhao et al. (2019); Zhang et al. (2023).146

We consider that the composite phases are perfectly bonded and is subjected to the magnetic147

magnetic flux density in the x2 direction (parallel to the direction of residual magnetic flux density148

vector) only, as shown in Fig. 1. The presence of perfect bonding between phases leads to149

homogeneous deformation and magnetic flux density in each phase, which can be described as150

Fp =


λ 0 0

0 λ−2 0

0 0 λ

 , Bappliedp =


0

B2

0

 (11)

where λ denotes the in-plane stretch ratio and B2 is the component of the magnetic flux density151

vector along x2 direction. Substituting Eq. (11) into Eq. (10), the expressions for the the nonzero152

components of total Cauchy stress tensor in terms B2 and λ are obtained as153

σp
11 = σp

33 =
Gpλ2[

1− 2λ2 + λ−4 − 3

Jp
lim

] + γp, σp
22 =

Gpλ−4[
1− 2λ2 + λ−4 − 3

Jp
lim

] + γp −
B2B

p
r02

µ0λ2
, (12)

where Bp
r02

is the component of residual magnetic flux density vector for pth phase.154

For fulfilling the traction free boundary conditions, the components of total Cauchy stress155

tensors must satisfy156

σp
11 = σp

33 = 0, νaσa
22 + νbσb

22 = 0 (13)

where νa and νb = 1 − νa are the volume fractions of the phases a, and b, respectively. Utilizing157
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the Eqs 13 and 12 and assuming limiting stretch parameter Ja
lim = J b

lim = Jlim, we obtain the158

nonlinear relationship between the applied magnetic flux density B2, and the in-plane stretch ratio159

λ as160

λ−2 − λ4[
1− 2λ2 + λ−4 − 3

Jlim

] =
B̄r02

B2

Ḡµ0

, (14)

where Ḡ = Gaνa +Gbνb, and B̄r02
= Ba

r02
νa +Bb

r02
νb.161

According to Eq. (14), the in-plane stretch ratio λ can be found once the material parameters162

and the applied magnetic flux density B2 are prescribed.163

4. Incremental anti-plane waves in a 2D infinite periodic two-phase hard-magnetic soft composite164

Based on the magnetically induced nonlinear finite deformation obtained in the aforementioned165

section, we now study the superimposed incremental anti-plane elastic shear waves propagating in166

the plane (x1, x2) of the HMSC. We assume that the anti-plane strain condition holds (ẋ1 = ẋ3 = 0)167

and the incremental anti-plane displacement field ẋ2 depends on coordinates (x1, x3) and time t.168

For propagation of anti-plane shear waves in HMSC, the governing incremental equation of motion169

(Eq. 6) takes the following form170

∂Σ21(x1, x3, t)

∂x1

+
∂Σ23(x1, x3, t)

∂x3

= ρ(x1, x3)
∂2ẋ2(x1, x3, t)

∂t2
. (15)

Using incompressibility constraint (h22 = 0) and incremental constitutive relation (Eq. 7), the171

components Σ21 and Σ23 are obtained as172

Σ21 = C 2121h21 + C 2123h23, Σ23 = C 2323h23 + C 2321h21 (16)

where, C 2121 = C 2323 = G(x1, x3)
λ2[

1− 2λ2 + λ−4 − 3

Jlim

] = G̃ and C 2123 = C 2321 = 0.173

Assuming incremental anti-plane displacement field to be time-harmonic as ẋ2(x1, x3, t) =174

u2 (x1, x3) exp(−iωt), and inserting the components Σ21 and Σ23 from Eq. (16) into Eq. (15), we175

obtain the incremental anti-plane wave equation in the frequency domain as176
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∂

∂x1

(
G̃
∂u2(x1, x3)

∂x1

)
+

∂

∂x3

(
G̃
∂u2(x1, x3)

∂x3

)
= −ω2ρ(x1, x3)u2(x1, x3) (17)

where u2(x1, x3) is the incremental anti-plane displacement field that is spatially dependent, and ω177

is the angular frequency associated with the anti-plane wave motion.178

Next, we employ standard displacement based finite element approach to solve Eq. (17). The179

weak form of Eq. (17) is obtained by multiplying it with test function δw, and then integrating over180

the entire computational domain (2D HMSC unit cell depicted in Fig. 2a) as181

ˆ

Ωt

G̃

(
∂u2

∂x1

∂δw

∂x1

+
∂u2

∂x3

∂δw

∂x3

)
dx1dx3 =

ˆ

Ωt

ω2ρu2δwdx1dx3. (18)

The computational domain is divided into a set of 4-noded quadrilateral element finite elements182

Ωt =
nel
∪
e=1

Ωe
t , and the incremental displacement field u2 and test function δw are interpolated183

element-wise in terms of nodal quantities using nodal shape functions as184

u2 = N IuI
2, δw = N IδwI , (19)

where N I represents the nodal shape function with I denoting the number of nodes in a finite185

 

2π/l 

 

 

x3 

x1 

a 

b 

l 

l 

 

k3 

k1 
Г X 

M 

2π/l 

(a) (b)

Figure 2: Schematic of the deformed unit cell in the plane of periodicity (x1, x3), and (b) the corresponding
first Brillouin zone.
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element, and uI
2 is the incremental anti-plane displacement values at node I . Upon substituting the186

finite approximations from Eq. (19) into Eq. (18), we obtain the eigenvalue problem as187

nel
∪
e=1

KeuJ
2 = ω2 nel

∪
e=1

MeuJ
2 (20)

where188

Ke
IJ =

ˆ

Ωe
t

G̃
∂N I

∂xj

∂NJ

∂xj

dx1dx3, Me
IJ =

ˆ

Ωe
t

ρN INJdx1dx3, (21)

are the components of elemental level stiffness Ke and mass Me matrices, respectively, and index189

j = 1, 3.190

Next, we employ Bloch-Floquet theorem (Kittel et al., 1996) for obtaining the anti-plane wave191

band structure of an infinite periodic two-phase HMSC. According to Bloch-Floquet theorem, the192

incremental anti-plane displacement field must satisfy193

u2 (xΓ2) = exp(ik1l)u2 (xΓ1) , u2 (xΓ4) = exp(ik3l)u2 (xΓ3) , (22)

in which k1 and k3 denote the components of 2D Bloch wave vector k = k1e1+k2e2, varying along194

the edges [Γ− X−M− Γ] of the deformed first irreducible Brillouin zone for the square unit cell195

(Wang et al., 2007) as depicted in Fig. 2b and Γ1, Γ2, Γ3, and Γ4 are the boundaries of the unit cell196

as shown in Fig. 2a. We implemented the Bloch-Floquet complex-valued boundary conditions (Eq.197

22) using augmented penalty method (Alam et al., 2023; Felippa, 2001). By solving the eigenvalue198

problem (Eq. 20) in conjunction with the complex-valued boundary conditions (Eq. 22), we obtain199

the band structure. The aforementioned numerical framework of extracting the anti-plane wave200

band structure is implemented through a MATLAB code developed in-house.201

5. Numerical results and discussion202

In this section, we present the numerical results to investigate the effect of applied magnetic203

loading, inclusion geometry and volume fraction (Phase b), and material parameter contrasts on the204

tunability of the elastic anti-plane shear wave bandgap structure of the two-phase HMSC.205

In the numerical simulations, we discretize the undeformed unit cell, with geometric parameter206
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Nonlinear finite mgnetodeformation response of the composite. (b-f) Band structures of the two-
phase HMSC subjected to the different levels of normalized applied magnetic flux density. The normalized
frequencies ω̃ are plotted as functions of the reduced wave vector k along Γ−X−M − Γ.
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L = 5 mm, using 4-noded quadrilateral elements with a single degree of freedom, i.e., the anti-207

plane displacement field. We examine a HMSC with Phase b possessing the following material208

properties: b: Gb = 303 kPa, ρb = 2434 kg/m3, Br02
b = 0.143 T, and extract the band structure209

for representative values of phase a material properties defined using the shear contrast parameter210

α =
Ga

Gb
, magnetic contrast parameter β =

Ba
r02

Bb
r02

, and volume fraction νa = 1 − νb at different211

values of the normalized applied magnetic flux density, denoted as B̃2 =
B2√

(νaGa + νbGb)µ0

.212

We assume that the mass density of phase a is the same as that of Phase b, i.e., ρb = 2434 kg/m3.213

We take the limiting stretch parameter to be Jlim = 10. Note that in the initial numerical results214

presented herein to investigate the influence of external magnetic loading, volume fraction of the215

inclusion, and material parameter contrasts on the bandgap characteristics, we consider an inclusion216

with a square cross-section as shown in Fig. 2a. Later, we investigate the effect of inclusions with217

three different geometries on the bandgap characteristics while keeping other material parameters218

constant.219

5.1. Quasi-static finite deformation and magnetic tunability of the phononic band gaps220

Here, we analyze the quasi-static nonlinear large magnetodeformation and tunability of the221

superimposed incremental anti-plane wave band gap characteristics of the HMSC at different levels222

of normalized applied magnetic flux density. The nonlinear algebraic equation Eq. (14) is solved223

to analyze the quasi-static nonlinear finite deformation. Figure 3(a) demonstrates the variation of224

the stretch parameter λ as a function of the normalized magnetic flux density B̃2 for a HMSC with225

α = 10, β = 10, and νa = 0.5. When the magnetic flux density is applied in the same direction as226

the residual magnetic flux density, denoted by (B̃2 > 0), the HMSC undergoes expansion along the227

Table 1: Variation of the normalized bandgap width (∆ω̃1) and the frequency range (ω̃1max − ω̃2min) of the
first anti-plane wave bandgap with normalized applied magnetic flux density (B̃2).

B̃2 → -10 -5 0 5 10

∆ω̃1 0.0848 0.0809 0.0775 0.0907 0.1119

ω̃1max − ω̃2min
0.4156 - 0.5004 0.3962 - 0.4771 0.3795 - 0.4570 0.4443 - 0.5350 0.5482 - 0.6601
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(a) (b)

Figure 4: Variation of the first and second band gap (a) widths, and (b) mean of the frequency limits as a
function of normalized applied magnetic flux density B̃2.

x2 direction (λ < 1). Conversely, when the magnetic flux density is applied in the opposite direction228

of the residual magnetic flux density, indicated by (B̃2 < 0), the composite contracts in the x2229

direction (λ > 1) due to the compressive magnetic stress. Furthermore, to explore the dependence230

of the band gap characteristics on the applied magnetic flux density, we consider five different231

cases: (I) B̃2 = 0, (II) B̃2 = −5, −10, and (III) B̃2 = 5, 10. Figures 3(b-f) display the band232

gaps along the boundaries of the irreducible first Brillouin zone for the composite when subjected233

to the aforementioned five levels of magnetic flux density (B̃2), where ω̃ =
ωL

2π

√
ρ

νaGa + νbGb
is234

the normalized frequency of the anti-plane wave. The band gap width in the band structure plots235

is depicted by blue regions. The values of the stretch parameter λ corresponding to the above-236

mentioned values of B̃2 are 1, 1.3227, 1.4934, 0.6759, and 0.6047, respectively. The width and237

corresponding normalized frequency ranges of the first bandgap for the aforementioned applied238

levels of normalized magnetic flux density B̃2 are listed in Table 1. It is observed from Fig. 3(b-f)239

and Table 1 that the band gap size increases with an increase in the magnitude of applied magnetic240

flux density in both cases, i.e., Case II: when the direction of applied magnetic flux density is along241

the direction of residual magnetic flux density, and Case III: when the direction of applied magnetic242

flux density is opposite to the direction of residual magnetic flux density. It is also observed that243

the location of the band gap shifts towards a higher frequency range in both cases. Figure 4 (a)244
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illustrates the variation of the width of the first and second bandgaps as a function of the normalized245

magnetic flux density B̃2, while Fig. 4 (b) illustrates the variation of the mean of the normalized246

band gap frequency limits ω̃m. From Fig. 4, it is clearly seen that the rate of increase in the247

width and mean of the frequency limits of band gaps is higher in the case of applied magnetic flux248

density along the direction of residual magnetic flux density (B̃2 > 0). By magnetically actuating249

the HMSC, the width of the first bandgap is increased by 44.38% when the applied magnetic flux250

density is B̃2 = 10 and by 9.42% when the applied magnetic flux density is B̃2 = −10. This251

observation shows that applying magnetic loading in the direction of the residual magnetic flux252

density has a positive influence on the tunability of band gaps.253

5.2. Parametric study of material parameter contrasts and volume fraction of phases254

Firstly, we will investigate how the variation in the shear contrast parameter α affects the255

bandgap characteristics of a two-phase HMSC. The shear contrast significantly affects the width256

and location of the bandgaps. Figure 5 (a-c) displays the normalized frequency ω as a function of257

the wave vector k for a magnetically actuated two-phase HMSC with three distinct values of shear258

contrast α = 10, 20, and 30, respectively. In the numerical simulations for these three cases, we keep259

other parameters constant, such as β = 30, B̃2 = 10, and νa = 0.5. The variation of the bandgap260

widths of the first and second bandgaps with the shear contrast α is depicted in Fig. 6 (a). Figure261

6 (b) illustrates the variation of the mean of the normalized frequency limits, ω̃m, as a function of262

the shear contrast α. From Fig. 6 (a), we observe that the first bandgap opens at α = 4.5, and the263

width of the bandgap increases with shear contrast α, reaching a maximum at α = 15, and then264

decreasing. On the other hand, it is worth noting that the second bandgap opens at higher values of265

shear contrast α = 16, and the width of the second bandgap increases with an increase in α. From266

Fig. 6 (b), we can see that the location of both bandgaps shifts towards the lower frequency range.267

These inferences can be utilized in the design of wave-manipulating devices with applications in268

the lower frequency range.269

Next, we examine the impact of the magnetic contrast parameter β on the bandgap characteristics270

of the two-phase HMSC with square inclusions. Figure 7 illustrates the band structures of the271

composite for three different values of the magnetic contrast parameter: β = 10, 20, and 30. In the272

numerical simulations, we take volume fraction νa = 0.5, shear contrast α = 30, and normalized273

magnetic flux density B̃2 = 10. Figure 8(a) shows the variation of the widths of the first and second274
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(a) (b)

(c)

Figure 5: Band structures of the two-phase HMSC at different values of shear contrast parameter α, while
keeping the magnetic contrast parameter β, and the normalized magnetic flux density B̃2 as constant.

bandgaps with the magnetic contrast parameter β, while Fig. 8 (b) illustrates the variation of mean275

of the normalized frequency limits ω̃. Figures 7 and 8 reveal that the widths and the location of the276

band gaps increases with an increase in the magnetic parameter contrast. However, the effect of β277

on band gap tunability is much more modest than that of α for the contrast values considered in the278

present study.279

The tunability of bandgaps in HMSC is strongly influenced by the volume fraction of the280

inclusion νa. In order to extract the influence of volume fraction on the band gap characteristics, We281

varies the volume fraction of inclusion from from 0 to 1, while other material parameters are kept282
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(a) (b)

Figure 6: Variation of the first and second band gap (a) widths, and (b) mean of the frequency limits as a
function of shear contrast parameter α.

constants as: α = 30, β = 30, and B̃2 = 10. The volume fraction νa = 0 represents the isotropic283

homogeneous body made up of phase b only while that of 1 corresponds to body made up of phase284

a only. Figures 9(a) and 9(b) illustrate the variation of the widths and mean of the frequency limits285

of first and second bandgaps as a function of volume fraction of the inclusion phase νa, respectively.286

The first bandgap opens at about νa = 0.25, and attain a maximum value at νa = 0.81, and closes at287

νa = 0.93. The variation of second band gap width also follows the similar trend: band gap opens288

at νa = 0.36 and reaches maximum at νa = 0.56, and closes at νa = 0.64. It is evident from289

Fig. 9(a) that the width of the both the band gaps attain maximum value when the concentration of290

the harder phase a is a bit more than the softer phase b. The maximum value of the first bandgap291

width is ∆ω̃max = 0.4252, and the corresponding mean of the frequency limits is ω̃m = 0.7656.292

The maximum width of the second bandgap is ∆ω̃max = 0.0492, and the corresponding mean of293

the frequency limits is ω̃m = 0.7739. From Fig. 9(b), it can be observed that the location of the294

existing band gaps shifts towards higher frequency with an increase in the volume fraction of the295

harder phases. These trends are similar to the observations reported in the literature (Shmuel, 2013)296

regarding soft phononic composites.297
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(a) (b)

(c)

Figure 7: Band structures of the two-phase HMSC at different values of magnetic contrast parameter β, while
keeping the shear contrast parameter α, and the normalized magnetic flux density B̃2 as constant.

5.3. Effect of geometry of inclusion phase298

Finally, we investigate the dependence of the anti-plane wave band gap characteristics on299

geometry of the inclusion phase a. To do so, we consider three configurations of the unit cells300

as: (I) single central circular inclusion, (II) single central square inclusion, and (III) inclusion301

at multiple locations) as displayed in top panel of Figs. 10(a-c), respectively. For a one-to-one302

comparison of the different geometry of the inclusions, we extract the the band gaps for all three303

cases at same volume fraction νa = 0.5 and material parameters: α = 30, and β = 10. The unit304

cell with circular inclusion is discretized with 1329 four noded quadrilateral elements while the305
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(a) (b)

Figure 8: Variation of the first and second band gap (a) widths, and (b) mean of the frequency limits as a
function of magnetic contrast parameter β.

(a) (b)

Figure 9: Variation of the first and second band gap (a) widths, and (b) mean of the frequency limits as a
function of the volume fraction of inclusion phase νa.

unit cells with square and multiple inclusions are discretized with 1156 four noded quadrilateral306

elements. Middle panel of Fig. 10 displays the band structures for aforementioned three unit cells,307

respectively, when the applied normalized magnetic flux density B̃2 = 0, while that at B̃2 = 10, are308

displayed in the bottom panel, respectively. As evident from Fig. 10, for both the values of B̃2, the309

unit cell with inclusion at multiple location exhibit the widest first band gap, while the unit cell with310
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circular inclusion exhibit highest second band gap. Further, as expected, the width and the location311

of the band gaps for all the three cases is bound to be enhanced with the application of applied312

magnetic flux density. The inferences from this section demonstrate the significant dependence of313

the band gap widths and their location on the layout or micro-structure of the unit cell. Here, the314

third layout of the unit cell is obtained by randomly putting inclusions at multiple locations, while315

other two layouts are the with standard cross-sections of the inclusion. However, an optimized unit316

cell layout with optimal distribution of phases for wide and tunable band gaps can be obtained using317

(a) (b) (c)

Figure 10: The layout of the unit cells with (a) single central circular inclusion, (b) single central square
inclusion, and (c) inclusion at multiple locations, and corresponding band structures at two different levels
of applied magnetic flux density B̃2 = 0 (middle) and B̃2 = 10 (bottom).
.

20



the topology optimization schemes (Bendsoe & Sigmund, 2003; Sigmund & Søndergaard Jensen,318

2003) such as genetic algorithm (GA) (Manktelow et al., 2013; Hedayatrasa et al., 2016; Bortot319

et al., 2018), gradient based optimization schemes (Bacigalupo et al., 2017; Sharma et al., 2022b,a;320

Dalklint et al., 2022), etc. The finite element framework reported here may be used as a starting321

point for the topology optimization of HMSCs in future study.322

6. Conclusions323

In this work, we have presented a theoretical model for extracting the anti-plane wave bandgaps324

in finitely deformed two-phase 2D periodic HMSCs. Specifically, we implemented the finite325

element method and the Bloch-Floquet theorem to solve the governing incremental anti-plane wave326

equations. Through numerical computations of the band structures at various levels of applied327

magnetic flux density, we characterized the magnetic tunability of anti-plane band gaps in the328

representative hard-magnetic soft composite materials. At last, we explored the effect of material329

parameter contrasts and geometry of the inclusion phase on the band gap characteristics. The330

inferences drawn from the current study are summarized below:331

1. We found that the two-phase HMSC under consideration contracts (i.e., experiences lateral332

stretch with λ > 1) in the direction of applied normalized magnetic flux density when333

the magnetic flux is applied in the opposite direction of the residual magnetic flux density.334

Conversely, we observed expansion (i.e., lateral stretch with λ < 1) of the composite when335

residual magnetic flux density aligns with applied magnetic flux density.336

2. It has been observed that magnetic loading has a positive impact on the characteristics of the337

bandgap. When the magnitude of the applied magnetic flux density increases, the bandgap338

widens and shifts towards higher frequencies. However, the rate at which the bandgap width339

increases is greater when the applied magnetic flux density aligns with the direction of the340

residual magnetic flux density.341

3. In the context of material parameter contrasts, the shear contrast parameter α has the most342

significant effect on the band gap size. The influence of the magnetic parameter contrast β343

was found to be more moderate for the range of contrast values examined in this study. An344

increase in the shear contrast parameter α shifts the band gaps towards the lower frequency345
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range, while in contrast, an increase in the magnetic contrast parameter β shifts the band gap346

location towards a higher frequency range.347

4. Opening, closing, size and the location of the anti-plane wave band gaps exhibit a significant348

dependence on the volume fraction of the constituent phases in the HMSC. Specifically, the349

first bandgap width is maximized when the volume fraction, νa, is 0.81, while the second350

bandgap width is maximized when νa is 0.56.351

5. We have demonstrated a notable dependence of the band gap widths and their location on352

the layout or micro-structure of the unit cell. Among the three considered layouts of the unit353

cells, the unit cell with inclusions at multiple locations exhibits the highest band gap width,354

given the specified material parameters.355

The results obtained in this study could serve as robust theoretical guidance for designing and356

manufacturing of magnetically tunable hard-magnetic soft wave devices, as well as for wave-based357

characterization techniques of HMSMs. The finite element framework presented in this work358

establishes an initial foundation for future research on designing and developing wide and tunable359

band gaps in HMSCs through topology optimization. Although our current focus has been on anti-360

plane wave band gaps, exploring the tunability of in-plane wave band gaps in two-phase HMSCs361

could be an immediate area of interest for further investigation.362
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