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Abstract

A new theoretical phase field-based formulation for predicting electro-
chemo-mechanical corrosion in metals is presented. The model com-
bines electrolyte and interface electrochemical behaviour with a phase
field description of mechanically-assisted corrosion accounting for film
rupture, dissolution and repassivation. The theoretical framework is
numerically implemented in the finite element package COMSOL MUL-
TIPHYSICS and the resulting model is made freely available. Several
numerical experiments are conducted showing that the corrosion predic-
tions by the model naturally capture the influence of varying electro-
static potential and electrolyte concentrations, as well as predicting the
sensitivity to the pit geometry and the strength of the passivation film.

Keywords: Phase field, localized corrosion, mechanically-assisted corrosion,
electro-chemo-mechanical modeling, finite element method, COMSOL

1 Introduction

Corrosion is widely recognized as one of the most common yet destructive fail-
ure mechanisms of engineering components and structures, carrying a cost of
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about 3.1% of the gross domestic product (GDP) in industrialized countries
[1]. Corrosion can be classified into two categories: general corrosion and local-
ized corrosion. The first one refers to uniform metal dissolution and can be
prevented by physical and electrochemical measures, e.g., through the use of
coatings and cathodic protection. However, localized corrosion, such as pitting
corrosion, is more difficult to prevent and detect in engineering practice. More-
over, by interacting with mechanical loads, localized corrosion can often lead
to catastrophic structural failures through phenomena such as mechanically-
assisted corrosion and stress corrosion cracking (SCC). Thus, there is a need for
developing physically-based models capable of predicting localized corrosion
failures.

Mechanistic predictions of localized corrosion require resolving the under-
lying physical processes, which has long been considered a remarkably complex
task [2]. Two main challenges exist. First, predicting localized corrosion
requires resolving a strongly coupled electro-chemo-mechanical problem involv-
ing, at the very least, the transport of ionic species, interface reactions, changes
in electrolyte conductivity and mechanical behaviour of the metal, as well as
their interactions. Secondly, localized corrosion is a complex interfacial prob-
lem; the electrolyte-metal interface exhibits a highly irregular morphology
and its evolution depends on the local chemistry and mechanics, which are
themselves dependent on the interface morphology [3]. Promising progress has
been achieved, independently, in the modeling of these two key challenges.
New mathematical models describing mass transport, homogeneous chemical
reactions and charge balance have been proposed to better understand the
electro-diffusive mass transport of multiple species and its effects on corrosion
evolution (see, e.g., [4–6] and Refs. therein). However, these works are limited
by the assumption of a stationary electrolyte-metal interface. On the other
hand, a number of computational schemes have been recently presented to
track the evolution of the corrosion front [7–14]. Among these, the phase field
model stands out for its thermodynamics roots and its ability to efficiently
capture corrosion morphologies of arbitrary complexity. In addition, it can
be readily integrated into existing finite element schemes. Instead of explic-
itly tracking a moving boundary (and the associated boundary conditions),
the phase field paradigm describes the evolution of the interface by means of
an auxiliary order parameter φ that varies smoothly between the two phases
(metal and electrolyte, in the case of corrosion) and evolves based on a suitable
governing equation [15–17]. The application of the phase field paradigm to cor-
rosion was first shown by Stahle and Hansen [18] and Abubakar et al. [19]. Mai
and co-workers extended these works to present a phase field corrosion frame-
work that accounts for the diffusion of dissolved species and reactants in the
electrolyte [8, 20]. Later, Cui et al. [12] incorporated the role of mechanics in
the corrosion process, capturing both the enhancement of corrosion rates due
to mechanical fields [21] and the process of passive film formation, rupture and
subsequent repassivation [22]. More recently, mechanics-enhanced phase field
corrosion models have been extended to include mechanical fracture [23, 24],
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which could be assisted by the ingress of aggressive species such as hydrogen
[24]. However, these models do not fully resolve the electrochemistry of the
system; there is a need to develop electro-chemo-mechanical phase field formu-
lations for localized corrosion that can capture the sensitivity to the applied
potential and the concentration of species in the environment.

In this work, we present a new electro-chemo-mechanical phase field-based
formulation for predicting localized corrosion in elastic-plastic solids. The
model combines, for the first time, an electrochemical description of ionic
species transport and electrostatic potential distribution in the electrolyte
with a mechanics-dependent interface kinetics law built upon mechanochemical
theory [21] and the film rupture–dissolution–repassivation (FRDR) mech-
anism [22]. The theoretical framework is numerically implemented in the
finite element package COMSOL MULTIPHYSICS and numerical experiments
are conducted to showcase the ability of the model in capturing the main
experimental trends. Focus is also placed on the details of the COMSOL imple-
mentation, making the model freely available and providing details that enable
reproducibility and facilitate usage. The remainder of this paper is organ-
ised as follows. In Section 2 we present our theoretical framework. Then, the
COMSOL implementation is described in Section 3. The results of the numer-
ical experiments conducted are presented and discussed in Section 4. Finally,
concluding remarks end the manuscript in Section 5.

2 Theory

2.1 General considerations

The process of localized corrosion is usually initiated by the rupture of the
passivation film that protects the metal from corroding. Following the local
failure of the passive film, the metallic surface is exposed to the corrosive
environment, triggering the dissolution process and releasing cations into the
electrolyte, i.e.

M→ Mn+
M + nMe

− (1)

where M is the corroded metal and nM is the charge number of metal M.
The present theory aims at encapsulating the electrochemical and mechanical
mechanisms involved in this process.

An overview of the elements of our theory is provided in Figure 1. There, it
can be seen that the evolution of the corrosion front is described by a so-called
phase field order parameter φ, which varies from 0 (electrolyte) to 1 (intact
metal) within a diffuse region. The interplay between activation-controlled
corrosion and diffusion-controlled corrosion is captured by simulating the
transport of metal ions. To this end, a normalized concentration cM = c0M/csolid

is defined, where c0M is the metal ion concentration and csolid is the concentra-
tion of atoms in the metal. Accordingly, cM = 1 inside the metal while cM = 0
in regions of the electrolyte that are far away from the electrolyte-electrode
interface. Following our previous work [12], we characterize the mechanical
behaviour of the metal using an elastic-plastic constitutive model and capture
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Fig. 1 Schematic illustration of the main variables involved in the electro-chemo-mechanical
phase field-based formulation presented for predicting localized corrosion as a function of
the environment, material and loading conditions. The illustration showcases a domain Ω
that encompasses the metal (φ = 1) and electrolyte (φ = 0) phases, and the diffuse interface
in-between.

as well the interplay between mechanics and corrosion (mechanochemistry,
FRDR mechanism). Unlike our previous work [12], the current model also
resolves the electrochemistry of the electrolyte. This is achieved by solv-
ing for the concentration of multiple ionic species ci (where i equals, e.g.,
Na+,Cl−,H+,OH−, etc.), and the electrolyte potential ϕl. Accordingly, the
primary variables of the theory are the phase field order parameter φ, the
normalized metal ion concentration cM, the electrostatic potential ϕl, the
concentration of multiple ionic species ci and the metal displacement vec-
tor u. Based on these preliminaries, we shall first define the energy functions
(Section 2.2), then derive the balance equations of the primal fields (Section
2.3), introduce the main corrosion-mechanics coupling relations in the electro-
chemo-mechanical system (Section 2.4), particularize the electrochemistry of
the electrolyte (Section 2.5) and, finally, summarize the governing equations
of our theory (Section 2.6).

2.2 Free energy

Consistent with our prior research [12], we consider two distinct systems,
namely the electrochemical system and the mechanical system. These two sys-
tems possess their respective free energies, denoted by ΠE and ΠM , which will
be formulated in Sections 2.2.1 and 2.2.2, respectively. The coupling of these
two systems will be addressed in Section 2.4.
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2.2.1 Electrochemical system

In this section, we introduce a general expression for the energy function in
corrosion problems. Consider first the free energy of the electrochemical sys-
tem, denoted by ΠE , which is an integral of the electrochemical energy density
ψE over the domain Ω, such that

ΠE =

∫
Ω

ψEdV =

∫
Ω

(
ψch + ψi + ψel

)
dV (2)

where ψch, ψi, and ψel denote the chemical, interfacial, and electrostatic free
energy densities, respectively. These are defined below.

Chemical free energy density ψch. The chemical free energy density ψch

can be further decomposed into the energy for metal dissolution ψch,d and the
energy stored in the dilute solution ψch,s,

ψch = ψch,d + ψch,s (3)

We follow the KKS model [25] to define ψch,d. Accordingly, each material
point is a mixture of both solid and liquid phases with different concentrations
but equal chemical potentials. Thus, ψch,d is given by

ψch,d = h (φ)ψch,dS + [1− h(φ)]ψch,dL (4)

where h (φ) = −2φ3 +3φ2 is a degradation function intrinsic to the phase field
model. Here we define h(φ = 1) = 1 as intact metal and h(φ = 0) = 0 as
fully corroded region to describe the phase transition due to metal dissolution.
Also, h′(φ = 0) = h′(φ = 1) = 0 must be satisfied to ensure that the energy
converges to a finite value where the domain is locally intact/fully damaged.

ψch,dS and ψch,dL are the chemical free energy density terms respectively asso-
ciated with the concentrations of the solid phase cS and the liquid phase cL.
Accordingly,

∂ψch,dS (cS)

∂cS
=
∂ψch,dL (cL)

∂cL
(5)

and,
cM = h (φ) cS + [1− h (φ)] cL (6)

Consistent with the KKS model, ψch,dS and ψch,dL are given by

ψch,dS = A(cS − cSe)2 and ψch,dL = A(cL − cLe)2 (7)

where cSe = csolid/csolid = 1 and cLe = csat/csolid are the normalized equilib-
rium concentrations for the solid and liquid phases. Also, A is the free energy
density parameter, which is assumed to be equal for the solid and liquid phases
and can be determined by benchmarking the chemical free energies obtained
from KKS model with those obtained from thermodynamic databases [19, 23].
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Combining Eqs. (4)-(7), one reaches

ψch,d = A [cM − h(φ)(cSe − cLe)− cLe]
2

(8)

The second element of ψch, the energy stored in the dilute solution, ψch,s,
is defined as follows:

ψch,s =

n∑
i=1

ciRgT (ln ci − 1) + ci µ
0
i (9)

where i is the associated ionic species (e.g., Na+,Cl−,H+,OH−), Rg is the
gas constant, T is the temperature, and µ0

i is the reference chemical potential.
Here, one should note that the chemical energy associated with the metallic

ions Mn+
M is already accounted for through the KKS model.

Interfacial free energy density ψi. The interfacial strain energy density
ψi is defined as the sum of double-well potential energy and the energy
corresponding to the phase field gradient, reading

ψi = g (φ)w +
α

2
|∇φ|2 (10)

where α is the gradient energy coefficient and w is the height of the double-well
potential g(φ), which is chosen here as g (φ) = φ2(1 − φ)2. As discussed and
derived in Appendix A, the height w and the gradient energy coefficient α in
Eq. (10) can be related to the interface energy per area γ and its thickness ` as:

γ =

√
αw

18
and ` =

√
8α

w
(11)

Electrostatic free energy density ψel. Finally, the electrostatic energy
density ψel is defined as a function of the charge density as follows

ψel = Fϕl

(
nMcMcsolid +

n∑
i=1

nici

)
(12)

where F is Faraday’s constant, and ni is the charge number of the ith ionic
species.

2.2.2 Mechanical system

We proceed to define the mechanical strain energy ΠM . We consider an
elastic-plastic solid with a strain energy density ψM that can be additively
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decomposed into its elastic (ψe) and plastic (ψp) parts, such that

ΠM =

∫
Ω

ψMdV =

∫
Ω

h (φ) (ψe + ψp) dV (13)

where the corrosion degradation function h (φ) captures the reduction of mate-
rial stiffness due to metal dissolution. The elastic strain energy density is given
as

ψe =
1

2
εe : Ce : εe (14)

where Ce is the linear elastic stiffness matrix and εe is the elastic strain tensor.
The plastic behaviour of the solid is characterized in this work by means of
von Mises J2 plasticity theory. Accordingly, for a plastic strain tensor εp, the
plastic component of the strain energy density reads,

ψp =

∫ t

0

σ0 : ε̇p dt (15)

where σ0 is the so-called undamaged or effective Cauchy stress tensor.

2.3 Balance equations

Consistent with the free energy defined in Section 2.2, we shall now formulate
the governing equations of the electro-chemo-mechanical phase field corrosion
theory.

2.3.1 Phase field evolution

As in previous phase field corrosion models [8, 12], the phase field evolves based
on the following Allen–Cahn equation:

∂φ

∂t
= −L

(
∂ψE

∂φ
− α∇2φ

)
(16)

with

∂ψE

∂φ
= −2A [cM − h (φ) (cSe − cLe)− cLe] (cSe − cLe)h′ (φ) + wg′ (φ) (17)

Here, L is the interface kinetics coefficient, which can be related to the corro-
sion current density [24, 26] or the overpotential [27]. Following Ref. [12], we
shall enrich the definition of L to incorporate the role of mechanics in enhanc-
ing corrosion rates and breaking the passivation film - see Section 2.4. For the
moment, let us assume that L is constant and denote L ≡ La for the case where
mechanical fields are absent. Then, as discussed in Ref. [24], La is proportional
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to the corrosion current density ia when corrosion is activation-controlled.
Accordingly,

ξ =
La
ia

=
L0

i0
(18)

where i0 is the exchange current density and L0 is the interface kinetics
coefficient when the overpotential η is zero. Thus, as shown in Section 4.2,
the proportionality constant ξ can be determined by conducting a numerical
experiment under activation corrosion conditions (small La).

The corrosion current density ia can usually be estimated by using the
so-called Butler–Volmer equation:

ia = i0

[
exp

(
aanMFη

RgT

)
− exp

(
− (1− aa)nMFη

RgT

)]
(19)

where aa is the anodic charge transfer coefficient. Consistent with Eqs. (18)-
(19), La can also be estimated by a Butler–Volmer-type equation:

La = L0

[
exp

(
aanMFη

RgT

)
− exp

(
− (1− aa)nMFη

RgT

)]
(20)

And Eq. (20) can be further simplified as a Tafel-type equation if only the
anodic reaction is relevant at the dissolution surface; i.e.,

La = L0 exp

(
aanMFη

RgT

)
(21)

Finally, the overpotential is expressed as:

η = ϕs − ϕl − Eeq (22)

where ϕs is the solid (applied) potential and Eeq is the equilibrium potential.
In this work, we assume Eeq = 0 for convenience.

2.3.2 Transport of species

The transport of ionic species is governed by mass conservation. Accordingly,
the rate of change in time of any of the species must be equal to the sum of its
concentration flux through the boundary ∂Ω and the reactants/products due
to chemical reactions in Ω, such that∫

Ω

∂c

∂t
dV = −

∫
∂Ω

J · n dS +

∫
Ω

R dV (23)

where J is the concentration flux and R is the chemical reaction term. Here,
one should note that Eq. (23) is valid for both c0M and ci. Since Eq. (23) must
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hold for any arbitrary volume, recalling that c0M = cMcsolid and using Gauss’
divergence theorem one reaches

∂cMcsolid

∂t
+∇ · JM = RM (24)

and
∂ci
∂t

+∇ · Ji = Ri (25)

The transport process is driven by the chemical potential µ. For the metal
ions, µM can be further decomposed into two terms, one associated with
the KKS-based phase field formulation, µM1, and another one related to the
migration process, µM2, such that

µM =
∂ψE

∂cMcsolid
= 2A [cM − h (φ) (cSe − cLe)− cLe] /csolid︸ ︷︷ ︸

µM1

+FϕlnM︸ ︷︷ ︸
µM2

(26)

Where we emphasise that csolid is a constant used for normalising the metal
ion concentration.

Accordingly, the flux JM can be calculated by a Fick law-type relation,

JM = JM1 + JM2 = −DM

2A
c2solid∇µM1 −

[1− h (φ)]DMcMcsolid

RgT
∇µM2

= −DMcsolid∇ [cM − h (φ) (cSe − cLe)− cLe]− [1− h (φ)]DMcMcsolid

RgT
FnM∇ϕl

(27)
Note that the term [1 − h (φ)] is present in JM2 to ensure the transport of
species is only valid in the electrolyte and along the interface (φ < 1). However,
this term is not necessary for JM1, given that cM and φ are naturally coupled
by the KKS model. Also, note that we use the real metal ion concentration
c0M = cMcsolid in (27) to maintain the dimensional consistency of JM and Ji.
Now, inserting (27) into the mass conservation equation (24), the transport of
metal ions is formulated as

∂cM
∂t
−∇ ·DM∇ [cM − h (φ) (cSe − cLe)− cLe]

−∇ ·
{

[1− h (φ)]DMcM
RgT

FnM∇ϕl
}

=
RM

csolid

(28)

Similarly, the driving force for other species, µi, is given by,

µi =
∂ψE

∂ci
= RgT lnci + µ0

i + Fϕlni (29)
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and the flux Ji is defined as,

Ji = − [1− h (φ)]Dici
RgT

∇µi = −[1−h (φ)]Di∇ci−
[1− h (φ)]Dici

RgT
Fni∇ϕl (30)

The resulting mass transport equation can be obtained by inserting Eq. (30)
into the balance equation (25), rendering a phase field-dependent form of the
Nernst-Planck equation:

∂ci
∂t
−∇ · {[1− h (φ)]Di∇ci} − ∇ ·

{
[1− h (φ)]Dici

RgT
Fni∇ϕl

}
= Ri (31)

Finally, for both RM and Ri, we introduce a generalized form of the reaction
term, which is given by

Rj =

mt∑
m=1

kmp ∏
vjm>0

c
vjm
j − kmr

∏
vjm<0

c
−vjm
j

 (32)

where mt is the total number of chemical equations, vjm is the stoichiometric
coefficient for species j in the chemical reaction m, and kmp and kmr respec-
tively denote the rate constant of products and reactants in reaction m. Note
that we define vjm > 0 for products and vjm < 0 for reactants. Also, we empha-
size that when the metal ion is involved, the actual concentration c0M = cMcsolid

must be adopted in Eq. (32).

2.3.3 Electrostatic potential

The distribution of electrostatic potential ϕl can be estimated by the following
Poisson-type equation [28, 29],

∇ · (κ∇ϕl) = nMFcsolid
∂φ

∂t
(33)

In Eq. (33), the variation of charge density due to the chemical reaction
shown in Eq. (1) is accounted for by defining an additional term on the right-
hand side, with the term csolid∂φ/∂t capturing the creation of electrons due
to the dissolution of the metal electrode. Also, κ is the electric conductivity,
which is defined as

κ = h (φ)κs + [1− h (φ)]κl (34)

where κs and κl are the conductivity in solid and liquid phases, respectively.
The magnitude of the solid conductivity is chosen to be a sufficiently large
value (κs = 1 × 107 S/m), so as to ensure a uniform distribution of ϕl in
the solid phase. Thus, ϕl, which is indistinctly referred to as electrolyte or
electrostratic potential, is solved for in the entire domain but its magnitude is
only relevant within the electrolyte and at the electrolyte-electrode interface.
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Then, upon the assumption of a dilute solution [30], κl is given by the following
concentration-dependent function

κl =
F 2

RgT

(
cMcsolidDMn

2
M +

∑
i

ciDin
2
i

)
(35)

2.3.4 Mechanical deformation

The governing equation of the mechanical system is derived by minimizing the
strain energy density δΠM = 0. Let us neglect for simplicity body loads and
external tractions. Accordingly, see Eqs. (13)-(15), one reaches:∫

Ω

h(φ)σ0 : δε dV = 0 (36)

with ε = εe + εp being the total strain tensor. By application of the Gauss
divergence theorem and considering that Eq. (36) must hold for any arbitrary
variations, we obtain the following balance:

∇ · [h(φ)σ0] = 0 (37)

where σ0 is the undamaged or effective stress tensor, which is given by

σ0 = Cep : (εe + εp) = Ce : εe (38)

with Cep being the elastic–plastic consistent material Jacobian. It follows that
the homogenized or damaged Cauchy stress tensor is given by σ = ∂εψ

M =
h(φ)σ0.

The solid is assumed to exhibit isotropic strain hardening, which is char-
acterized by means of the following power law relationship between the flow
stress σ and the equivalent plastic strain εp:

σ = σy

(
1 +

Eεp

σy

)N
(39)

where E is the Young’s modulus, σy is the initial yield stress and N is the
strain hardening exponent (0 6 N 6 1).

2.4 Dissolution-mechanics interactions

Two important physical couplings are relevant to our theory. Firstly, the
evolution of localized corrosion will result in material damage and redistribu-
tion of mechanical fields, see Eq. (37). Secondly, the mechanical deformation
of the solid will impact metallic dissolution by enhancing corrosion rates
(mechanochemical theory [21]) and by fracturing the passivation layer (FRDR
mechanism [22]). The latter is captured by enhancing the phase field mobility
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coefficient, as proposed by Cui et al. [12]. Thus, the mechanical work required
to fracture the passivation film is characterised using the equivalent plastic
strain εp, such that film rupture will occur when εp reaches a critical value
εf . After a film rupture event, passivation will result in the deposition of an
initially unstressed oxide layer on the newly exposed metallic surface. Thus,
corrosion rates are the result of a competition between the kinetics of passi-
vation and straining. Accordingly, the relevant time scale over which strains
accumulate is the time that it takes for the new passivation layer to rupture,
since its deposition. This rupture-dissolution-repassivation cycle time interval
is here denoted ti and accordingly,

εpi = εf with εpi =

∫ ti

0

ε̇p dt (40)

Once film rupture occurs, the bare metal interface kinetics coefficient
La is immediately recovered. Bare metal interface kinetics are sustained for
a certain period t0, as it takes time for the passive film to be sufficiently
stable to impact corrosion kinetics. Once the film is sufficiently stable, disso-
lution rates are gradually reduced, with the decay process being dependent
on the environment-material system, and captured here by means of a stabil-
ity parameter k. After a time tf since the decay starts, film rupture occurs
again, εpi = εf , and a new FRDR cycle begins. Thus, the time interval for each
rupture-dissolution-repassivation cycle equals ti = t0 + tf , with tf being deter-
mined by the mechanical fields. Accordingly, in terms of the corrosion current
density, each rupture-dissolution-repassivation cycle is given by,

if (ti) =

{
ia, if 0 < ti 6 t0

ia exp [−k (ti − t0)], if t0 < ti 6 t0 + tf
(41)

In addition, and independently of the FRDR process, corrosion kinetics are
accelerated by mechanical fields [21]. Following Gutman’s mechanochemical
theory [31], we introduce an additional term km to describe this phenomenon.
Thus the corrosion current density reads,

i(t) = km (εp, σh) if (ti) =

(
εp

εy
+ 1

)
exp

(
σhVm
RgT

)
if (ti) (42)

where σh is the hydrostatic stress and Vm is the molar volume. The latter is
defined as Vm = Mm/ρm, such that for a stainless steel with density ρm =
7930 kg/m3 and molar mass Mm = 0.056 kg/mol, the molar volume equals
Vm = 7.1× 10−6 m3/mol.

Accordingly, building upon the connection between the mobility coefficient
L and the corrosion current density i, a generalized L can be defined that
incorporates: (i) the FRDR mechanism, via (41); (ii) the sensivity of corrosion
kinetics to mechanical fields, via (42); and (iii) the impact of the overpotential
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η on the corrosion current, via (19)-(21). Hence,

L = L (εp, σh, η) =

{
km (εp, σh) La(η), if 0 < ti 6 t0

km (εp, σh) La(η) exp [−k (ti − t0)], if t0 < ti 6 t0 + tf
(43)

2.5 Species and reactions in the electrolyte

The transport of ionic species and the homogeneous chemical reactions in the
electrolyte have an impact on localized corrosion. Here, we assume that the
electrolyte is a NaCl-based solution containing the following six ionic species:

Mn+
M , M(OH)

(nM−1)+
, H+, OH−, Na+ and Cl−. These result in the following

chemical reactions:

Mn+
M + H2O

kf1−−⇀↽−−
kb1

M(OH)
(nM−1)+

+ H+ (44)

H2O
kf2−−⇀↽−−
kb2

H+ + OH− (45)

Thus, the reaction term for each ionic species in Eq. (32) can be re-written as:

RM = −kf1 cMcsolid + kb1 cHcMOH

RM(OH) = kf1 cMcsolid − kb1 cHcMOH

RH = kf1 cMcsolid − kb1 cHcMOH + kf2 − kb2 cHcOH

ROH = kf2 − kb2 cHcOH

(46)

where kf and kb respectively denote the rate constants for the forward and
backward reactions, with the subscripts 1 and 2 being employed to distinguish
between the reactions (44) and (45), respectively. Chemical reactions typically
occur over much shorter times scales than mass transport and, as a result, the
reactions are typically assumed to be in equilibrium. Under equilibrium condi-
tions, the concentrations involved must remain proportional to each other and
consequently an equilibrium constant can be defined for each of the reactions
being considered; i.e., here one finds1

K1 =
kf1

kb1
=
cHcMOH

cMcsolid
, K2 =

kf2

kb2
= cHcOH (47)

Two approaches are typically followed to introduce the equilibrium assump-
tion in the Nernst-Planck equations (31) [32]. One can solve for some of the
ionic species assuming Ri = 0 and then estimate the remaining concentrations
via their equilibrium relationships. For example, focusing on reaction (45), a

1Note that, for dimensional consistency, some authors choose to define a unit activity concen-
tration ca0, such that K2 = cHcOH/c

2
a0, with ca0 usually taken to be 1 mol/L. Here, we choose

to drop this term for simplicity.
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numerical solution for cH can be obtained by solving Eq. (31) with RH = 0,
and then Eq. (47b) can be used to estimate cOH, as the magnitude of K2 is
known. Alternatively, the magnitude of Ri, the source term in Eq. (31), can be
adequately chosen so as to ensure that the equilibrium conditions are fulfilled.
I.e., for the case of reaction (45), the magnitudes of RH and ROH are chosen
such that the numerical estimates for cH and cOH always satisfy cHcOH = K2.
Here, the latter approach is adopted. Thus, following Eq. (47), the expressions
for the reaction terms (46) can be re-formulated as

RM = kb1 (−K1 cMcsolid + cHcMOH)

RMOH = kb1 (K1 cMcsolid − cHcMOH)

RH = kb1 (K1 cMcsolid − cHcMOH) + kb2 (K2 − cHcOH)

ROH = kb2 (K2 − cHcOH)

(48)

and by inserting (48) into (28) and (31), the governing equations for all
concerned species are obtained. Here, it is important to note that the local
equilibrium assumption for the chemical reactions implies that one does not
need to know the magnitude of the backward and forward reaction rates (kfi
and kbi), it suffices to know the value of the equilibrium constants Ki. Con-
sider for example Eq. (48)d, the term kb2 acts as a penalty term as increasing
its magnitude will constraint the solution to ensure that cHcOH = K2 is met.
Accordingly, the choice of kbi is purely numerical, with the equilibrium condi-
tion been enforced for kbi → ∞. As discussed in Section 4.1, the magnitude
of kbi is chosen to be sufficiently large to approximate equilibrium conditions
but not so large so as to induce convergence problems.

2.6 Summary of governing equations

The balance equations can be particularized upon the consideration of the
constitutive choices made in Sections 2.3, 2.4 and 2.5. A summary of the
governing equations is provided in Table 1. This overview emphasises the cou-
plings between the different elements of our theory. First, it can be observed
that mechanics plays a role in the evolution of the corrosion front, via the
term L(εp, σh, η) in the phase field evolution equation (T.1). Secondly, the
evolution of the corrosion front leads in turn to a degradation of the material
stiffness and a re-distribution of the mechanical fields, see (T.5). Thirdly, the
phase field evolution equation is impacted by the electrostatic potential via the
dependency of the mobility coefficient on the overpotential (L(εp, σh, η)), with
the overpotential η being related to the electrostatic potential ϕl through Eq.
(22). Due to electromigration, the electrostatic potential also has an impact
on the transport of solid phase ions, see (T.2), and on the transport of the
electrolyte ionic species, see (T.3). These transport equations for ionic species
also contain a phase field dependent term, to ensure that transport is lim-
ited to the electrolyte. Finally, the calculation of the electrostatic potential
is influenced by both the phase field, as (T.4) accounts for the creation of
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Table 1 Summary of the governing equations of the electro-chemo-mechanical phase field
corrosion model presented.

Phase field:

∂φ
∂t

= L (εp, σh, η)
(
α∇2φ− ∂ψE

∂φ

)
(T.1)

Transport of solid phase ions:

∂cM
∂t
−∇ ·DM∇ [cM − h (φ) (cSe − cLe)− cLe]−∇ ·

{
[1−h(φ)]DMcM

RgT
FnM∇ϕl

}
= RM

csolid
(T.2)

Transport of ionic species:

∂ci
∂t
−∇ · {[1− h (φ)]Di∇ci} − ∇ ·

{
[1−h(φ)]Dici

RgT
Fni∇ϕl

}
= Ri (T.3)

Electrostatic potential distribution:

∇ · (κ∇ϕl) = nMFcsolid
∂φ
∂t

(T.4)

Mechanical balance:

∇ · [h (φ)σ0] = 0 (T.5)

with:

∂ψE

∂φ
= −2A [cM − h (φ) (cSe − cLe)− cLe] (cSe − cLe)h′ (φ) + wg′ (φ) (T.6)

L (εp, σh, η) =


km (εp, σh) L0 · exp

(
aanMFη

RgT

)
, if 0 < ti 6 t0

km (εp, σh) L0 · exp

(
aanMFη

RgT

)
· exp [−k (ti − t0)], if t0 < ti 6 t0 + tf

(T.7)

κ = h (φ)κs + [1− h (φ)] F2

RgT

(
cMcsolidDMn

2
M +

∑
i ciDin

2
i

)
(T.8)

σ0 = Cep : (εe + εp) (T.9)

electrons, and the concentration of ionic species (T.2)-(T.3), due to the influ-
ence of those on the electrolyte conductivity, as shown in (T.8). Thus, the
electro-chemo-mechanical system is fully coupled through these interactions.

3 COMSOL implementation

The electro-chemo-mechanical phase field formulation presented in Section 2
is implemented in the finite element package COMSOL MULTIPHYSICS. The
primal fields and nodal degrees-of-freedom (DOFs) are the phase field order
parameter φ, the displacement components u, the concentration of metal ions
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cM, the concentrations of the ionic species involved ci, and the electrostatic
potential ϕl. In COMSOL, as a result of its symbolic differentiation capa-
bilities, the governing equations of the model can be formulated in either
the weak or the strong form, without the need to provide explicit expres-
sions for the residuals and tangent stiffness matrices. As described below,
five COMSOL physics interfaces are used in the implementation, two
in-built ones (Solid Mechanics and Transport of Diluted Species), and
three user-defined interfaces that exploit the Mathematics module to simu-
late the evolution of the phase field, the transport of metal ions, and the
distribution of electrostatic potential. So-called State Variables are used to
capture the film rupture-dissolution-repassivation mechanism. The COMSOL
implementation is made freely available at www.empaneda.com/codes.

3.1 Module setup

Phase field (T.1). We use the Coefficient Form PDE interface to define
the evolution of the phase field order parameter φ. When using this interface,
COMSOL provides the following generic form to define PDEs that contain
derivatives up to second order in both time and space,

ea
∂2φ

∂t2
+ da

∂φ

∂t
+∇ · (−c∇φ−αφ+ γ) + β · ∇φ+ aφ = f (49)

To mimic (T.1), the PDE coefficients are chosen as da = 1/L, c = α,

f = −∂ψ
E

∂φ , ea = a = 0, and α = β = γ = 0.

Transport of metal ions (T.2). We use the General Form PDE interface
to define the transport of solid phase ions. This interface enables defining
differential equations of the following form:

ea
∂2cM
∂t2

+ da
∂cM
∂t

+∇ · Γ = f (50)

Accordingly, Eq. (50) can be particularised to (T.2) upon the following
choices: da = 1, ea = 0, f = RM/csolid and

Γxi = −DM
∂cM
∂x

+DM(cSe − cLe)
∂h(φ)

∂x
− [1− h (φ)]DMcM

RgT
FnM

∂ϕl
∂x

(51)

The source term of Eq. (50) contains the reaction variable RM, whose
evolution is described by the algebraic equation (48), which is defined as a
COMSOL Variable.

Transport of ionic species (T.3). The Nernst-Planck equations are
implemented using the Transport of Diluted Species interface, which is
part of the Chemical Species Transport module. Diffusion and migration

www.empaneda.com/codes
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in electric field are considered to be the main transport mechanisms (i.e.,
neglecting convection) and we particularise the implementation to five species
(Dependent Variables) with concentrations cH, cCl, cOH, cMOH, and cNa.
As per Eqs. (48)b-d, three associated reactions are defined: RH, ROH, and
RM(OH). The coupling term [1−h(φ)] is incorporated via the definition of the
diffusion coefficients and the electric potential is defined to be the electrolyte
potential ϕl.

Electrostratic potential distribution (T.4). We use the Poisson’s

Equation interface to define the distribution of electrostratic potential ϕl.
The Poisson’s equation is written as: ∇·(−c∇ϕl) = f . Thus, we define c = −κ
and f = nMFcsolid∂φ/∂t to mimic (T.4).

Mechanical balance (T.5). The Solid Mechanics interface is used to
implement the governing equation of the mechanical problem (T.5). The
degradation of the material stiffness associated with the evolution of the
corrosion front (φ) is captured at the weak form level by editing the Weak

expression. If the body is assumed to be linear elastic, then one can attain
the same effect by degrading only the Young’s modulus. However, in the case
of an elastic-plastic material, such a strategy would imply that the degree of
plastic flow is estimated using the homogenized (degraded) stress, whereas
it is more common to use the effective (undegraded) stress [33, 34], as it
corresponds to the actual stress acting on the undegraded area.

Finally, two State Variables are used to implement the FRDR mech-
anism, (T.7). To this end, two history-dependent variables are defined that
respectively store the last values of equivalent plastic strain and time at which
the last film rupture event took place:

εc =

{
εp, if (εp − εc) > εf

εc, otherwise
(52)

and

tc =

{
t, if (εp − εc) > εf

tc, otherwise
(53)

Hence, εp − εc is a measure of the accumulated equivalent plastic strain since
the last film rupture occurrence, and the time ti in (T.7) equals to t − tc in
this definition. Note that tc is updated at the end of each FRDR cycle, such
that ti becomes zero at the beginning time each FRDR cycle. Also, at the
beginning of the calculation, we define εc(t = 0) = tc(t = 0) = 0. Thus, storing
εc enables determining when the film rupture event occurs (εp− εc = εf ) and,
using tc, this information is used to identify what stage of the FRDR cycle
corresponds to the current time t. Accordingly, the interface mobility is defined
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in COMSOL as

L (εp, σh, η) = km (εp, σh) L0 · exp

(
aanFη

RgT

)
·min {1, exp [−k (t− tc − t0)]}

(54)
such that L corresponds to the mobility coefficient of the bare metal if the
time since the last rupture event (t− tc) is smaller than the time that it takes
for the film to stabilise (t0), and is degraded otherwise.

3.2 Solution strategies

The time-dependent solution step is used. COMSOL provides both monolithic
and staggered solution algorithms, respectively termed Fully Coupled and
Segregated. While monolithic approaches are appealing due to their uncon-
ditional stability, they generally lead to a poor performance convergence-wise,
unless quasi-Newton methods such as BFGS are used [35–37], which are cur-
rently not available in COMSOL. Thus, a staggered approach is adopted here.
First, the charge balance problem (T.4) is solved to obtain the distribution of
electrostatic potential ϕl. Then, the Nernst-Planck equations (T.3) are evalu-

ated and the concentrations of M(OH)
(nM−1)+

, H+, OH−, Na+, and Cl− are
obtained. Then, the deformation of the solid is estimated by solving the balance
of linear momentum, (T.5). Finally, solutions are obtained for the phase field
evolution equation (T.1) and the transport of solid phase ions (T.2). Converge
is assessed for all fields in what is usually referred to as a Jacobi-type multi-
pass solution approach. This is defined by specifying a number of iterations in
the Segregated node settings.

4 Results

4.1 Pencil electrode test with electrochemistry

We shall first employ the proposed electro-chemo-mechanical phase field formu-
lation to simulate the so-called pencil electrode test, a paradigmatic benchmark
in corrosion science. As shown in Figure 2, a stainless steel wire with a height of
Hs = 150 µm and a diameter of d = 25 µm, is mounted into an epoxy coating,
leaving only the top edge of the sample exposed to the corrosive solution. This
boundary value problem has been investigated using multiple computational
techniques, including phase field [8, 12, 27, 38], but without incorporating the
electrochemical behaviour of the electrolyte. Here, we explore the impact of
the electrochemical process on the pencil electrode test by considering the
electrochemical parameters listed in Table 2 (unless otherwise stated).

In previous phase field corrosion analyses of this benchmark test (see, e.g.,
Refs. [12, 38, 39]), only the stainless steel wire was modeled, with the Dirichlet
boundary conditions φ = cM = 0 being applied at the top edge. This scenario
corresponds to assuming that the environment near the corrosion front is com-
pletely isolated [40]. It is unclear whether this simplification is sensible, even
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Fig. 2 Schematic description of the pencil electrode test, including the boundary conditions
adopted at the top edge.

Table 2 Electrochemical parameters for the pencil electrode test, values taken from Refs.
[4, 12, 28].

Parameter Value Unit

Interface energy γ 10 J/m2

Interface thickness ` 0.005 mm
Temperature T 293.15 K
Diffusion coefficient DM, Di 8.5× 10−4 mm2/s
Average charge number nM 2.1 —
Molar volume Vm 7.12× 10−6 m3/mol
Free energy density curvature A 53.5 N/mm2

Average concentration of metal csolid 143 mol/L
Average saturation concentration csat 5.1 mol/L
Anodic charge transfer coefficient aa 0.5 —
Chemical equilibrium constant K1 1.625× 10−4 mol/m3

Chemical equilibrium constant K2 1.0× 10−8 mol2/m6

Initial electrolyte pH 7.0 —
Initial NaCl concentration 1.0 mol/m3

Applied potential ϕs 0.2 V

for the case of occluded environments such as cracks. A less restrictive and
more realistic approach is to simulate the electrolyte and enforce the boundary
conditions φ = cM = 0 at the edge of the electrolyte. We shall explore the out-
puts from both approaches here and in the context of a corrosion pit (Section
4.2). In this case study, we take advantage of our electro-chemo-mechanical
model and simulate the electrochemical behaviour of the electrolyte, applying
the Dirichlet boundary conditions φ = cM = 0 at the top edge of the elec-
trolyte domain and varying its height Hl to assess its influence. Regarding
the initial conditions, we set φ(t = 0) = cM(t = 0) = 1 for the metal and
φ(t = 0) = cM(t = 0) = 0 for the electrolyte, such that the dissolution will
naturally initiate from the interface. In the absence of electrolyte (the case
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Hl = 0) the Dirichlet boundary conditions φ = cM = 0 are prescribed at the
top edge, and the initial conditions are defined as φ(t = 0) = cM(t = 0) = 1
for the entire domain. Following Ref. [12], the interface mobility coefficient is
chosen to be L0 = 2× 106 mm2/(N · s), and one should note that neither film
rupture nor mechanical effects are relevant in this case study. The element
length in the expected corroded region is made to be at least 3 times smaller
the interface thickness `, to ensure mesh objective results.
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Fig. 3 Pencil electrode test with electrochemistry: predictions of pit depth versus time t as
a function of the electrolyte height Hl (for a fixed metal height Hs = 150 µm).

First, we investigate the interplay between the transport of solid phase
ions and corrosion by neglecting the role of the electrolyte potential and the
transport of the remaining ionic species (ϕl = ci = 0∀x). The results obtained
are shown in Figure 3, in terms of the pith depth (in µm) versus time (in s).
The pit depth is defined as the distance between the initial metal/electrolyte
interface to the current corrosion interface. It can be observed that corrosion
rates decrease when the initial electrolyte height Hl increases. In the limit case,
Hl = 0, corrosion is clearly in the diffusion-controlled regime, and thus the rate-
limiting step is the transport of metal ions away from the pit boundary. These
results can be rationalized based on the impact of Hl on the gradient of the
normalized concentration of metal ions cM . Decreasing Hl leads to a reduction
in the magnitude of ∇cM, as well as in the corrosion rates. This is shown in
Figure 4, where the distribution of the normalized concentration of metal ions
cM is given along the vertical axis for two Hl choices. The concentration of
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metal ions equals the concentration of atoms in the metal csolid for low y/Hs

values, until the interface is reached (φ ≈ 0.5), where the concentration of
metal ions drops until reaching the interface saturation value csat. Then, cM
progressively diminishes until becoming zero at the far end of the electrolyte.
Hence, the larger the electrolyte, the smaller the gradient of cM. This is readily
seen in the figure, with the slope of the last stage being more pronounced
for the case of Hl = 0, relative to the Hl = 200 µm result. This leads to a
reduction of the corrosion rates through Eqs. (T.2), (16) and (17). This can
also be readily seen in the figure, as the corrosion front is closer to the bottom
edge of the metal (y = 0) for the case of Hl = 0.
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0.0
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1 2
0.00

0.02

0.04

Fig. 4 Pencil electrode test with electrochemistry: normalized metal concentration cM dis-
tribution along the vertical direction (y/Hs). Results are obtained for a time of t = 100 s
for two selected values of the electrolyte height (Hl = 0 and Hl = 200 µm).

We shall now turn our attention to the role of the applied potential and
the concentration of ionic species in governing corrosion kinetics. As shown in
Table 2, we consider a solution with pH=7 and molarity 0.001 M NaCl; i.e., a
bulk NaCl concentration of 0.001 mol/L (1 mol/m3). Thus, the initial values
of ci at t = 0 can be determined as follows. First, the concentrations cM and
cMOH are chosen to be zero, given that no dissolution occurs at t = 0. Secondly,
the concentration cH is determined from the initial pH using the standard rela-
tion pH= −log10 cH. From cH, one can readily estimate the initial value of cOH

using the equilibrium condition (47)b. Finally, cCl and cNa are same as the
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initial NaCl concentration (i.e., 1 mol/m3 in this case). These choices automat-
ically satisfy the electroneutrality condition: nMcMcsolid +

∑
i nici = 0. These

initial values of ci are also prescribed at the top edge of the electrolyte domain
through Dirichlet boundary conditions. In what follows, the results are com-
puted using a reference interface kinetics coefficient of L0 = 0.001 mm2/(N · s)
and an electrolyte height of Hl = 200 µm. As discussed in Section 2.5, the
equilibrium conditions (44)-(45) can be automatically satisfied when kb1 and
kb2 are large enough. However, one shall note that high values of kb1 and kb2
can also worsen numerical convergence. After a sensitivity study, we find that
kb1 = 5× 102 m3/(mol · s) and kb2 = 5× 103 m3/(mol · s) are sufficiently large
to effectively satisfy the equilibrium conditions without hindering convergence.
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Fig. 5 Pencil electrode test with electrochemistry: predictions of pit depth versus time t as
a function of applied potential ϕs.

The results obtained for a varying applied potential ϕs are shown in Figure
5, where ϕs spans the range 0.1 to 0.3 V. In agreement with expectations,
corrosion occurs faster with increasing ϕs, as a result of the enhancement of the
overpotential η, see Eqs. (21) and (22). For all cases, corrosion is activation-
controlled with a linear relation between pit depth and time, revealing that
the electrostatic potential ϕl does not change significantly in time. Figure 6
further compares the distributions of ϕl with two typical applied potentials,
0.1 V and 0.3 V. Results show that the electrostatic potential ϕl remains
constant in the solid phase and then drops as we move away from the interface



23

0.02

0

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.004

0

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.036

Interface

Interface

Fig. 6 Pencil electrode test with electrochemistry: contours of electrostatic potential ϕl
after t = 200 s for two selected values of the applied potential ϕs.

in the electrolyte region. We emphasize that all electrolyte-related variables
are solved for in the entire domain, with the phase field being used to track
the location of the electrode-electrolyte interface. Thus, the distribution of
ϕl in the solid phase (φ = 1) has no practical interest. Another interesting
observation from Figure 6 is the increase in magnitude of ϕl with increasing
ϕs, as readily observed when comparing legends. This can be understood by
considering the dual role that the applied potential plays. On the one hand,
corrosion kinetics are accelerated for larger values of the applied potential,
as shown in Figure 5 and discussed above. On the other hand, see (T.4),
the increased dissolution rate (dφ/dt) resulting from higher applied potentials
translates into a higher gradient of ϕl and, given that φl = 0 at the top edge,
in a higher value of the electrolyte potential.

We conclude this benchmark test by assessing the influence of initial NaCl
concentration. As evident from (T.4) and (T.8), changing the initial concen-
tration of solvent species would affect the distribution of electrostatic potential
ϕl by changing the electrolyte conductivity, and this has an impact on the
overpotential, via Eq. (22), and on the interface mobility coefficient (T.7). To
examine the role of solute concentration, we fix the applied potential to be
ϕs = 0.2 V and consider four selected values of the NaCl content: 0.001 M, 0.05
M, 0.1 M, and 0.5 M. The results obtained are shown in Figure 7, in terms of
pit depth versus time. In agreement with experimental observations [41], sim-
ulations predict an increase in corrosion rate with bulk NaCl concentration.
The results shown in Figs. 5 and 7 demonstrate that the present electro-chemo-
mechanical phase field formulation can capture the sensitivity of corrosion
rates to the applied potential and the solute concentration, respectively.
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Fig. 7 Pencil electrode test with electrochemistry: predictions of pit depth versus time t as
a function of the initial NaCl concentration.

4.2 Mechanically-assisted corrosion from a semi-circular
pit: electro-chemo-mechanical analysis

We now turn our attention to the interplay between electrochemistry and
mechanics. A rectangular plate of width W = 0.3 mm and height Hs = 0.15
mm is considered. Plane strain conditions are assumed. The plate contains
a circular pit of radius 10 µm and is exposed to a NaCl-based electrolyte
solution that extends over a domain with height Hl = 0.3 mm. The geometry
of the metal-electrolyte system is shown in Figure 8, together with the initial
and boundary conditions. As shown in Figure 8, we assume that the pit has
nucleated as a result of the localised rupture of the passive film, and therefore
consider the presence of a passive film along all regions of the metal-electrolyte
interface outside the pit region. Within the void region (R = 10 µm), we
assume the passive film is less stable, allowing the FRDR process described by
(T.7) to be applicable. Conversely, the passive film outside of the void region is
assumed to be stable enough to preclude corrosion and the transport of ionic
species. This is implemented by separating the electrolyte and the metal over
those protected regions with an impenetrable and non-corroding 1 µm layer,
as indicated by the bold line in Figure 8.

For simplicity, the same electrochemical parameters used in the pencil elec-
trode test case study are adopted (Table 2), unless otherwise stated. The
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Fig. 8 Mechanically-assisted corrosion from a semi-circular pit: geometric setup, initial and
boundary conditions.

applied potential is chosen to be ϕs = 0.4 V. The Dirichlet boundary con-
ditions φ = cM = 0 and ϕl = 0 are prescribed at the top edge. The initial
values of ci and the associated Dirichlet boundary conditions at the top edge
of the electrolyte are same as those in the pencil electrode test. As in Ref. [24],
the constitutive behaviour of the stainless steel is characterized by a Young’s
modulus of E = 190 GPa, a Poisson’s ratio of ν = 0.3, a yield stress of
σy = 400 MPa, and a strain hardening exponent of N = 0.1. Film rupture,
dissolution and repassivation is assumed to take place along the pit surface,
and is characterized by the following FRDR parameters k = 0.0001, t0 = 50
s, and εf = 0.003 [24]. A constant mechanical load is applied by constrain-
ing the left side of the metallic sample and prescribing a constant horizontal
displacement of u∞ = 0.8 µm in its right edge. The entire metal-electrolyte
system is discretized by means of approximately 20,000 triangular linear finite
elements, with the mesh being particularly refined in the expected corrosion
region, where the characteristic element length is at least three times smaller
than the interface thickness `.

Let us now estimate the reference mobility coefficient L0 by exploiting
Eq. (18) to establish a connection with the experimentally-measured value of
exchange current density i0. To this end, we conduct a simulation considering
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only phase field corrosion (T.1) and the transport of metal ions (T.2), such that
L is a constant independent of the mechanical fields and the overpotential. By
choosing a sufficiently small value of L we make sure to be under activation-
controlled corrosion conditions and proceed to measure the velocity at which
the corrosion front evolves, vn. For the choice of L = 1 × 10−3 mm2/(N · s),
the finite element model predicts a corrosion velocity of vn = 0.0032 µm/s.
The corresponding corrosion current density i can then be estimated using
Faraday’s second law:

vn = v · n =
i

nMFcsolid
(55)

and this leads to a proportionality constant of ξ = 1.08× 10−11 in (18). Using
the experimentally measured exchange current density i0 = 1.422 mA/cm2

reported in Ref. [42], the reference interface mobility parameter is found to be
L0 = 1.5× 10−10 mm2/(N · s).
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Fig. 9 Mechanically-assisted corrosion from a semi-circular pit: phase field contours illus-
trating the pit evolution over three selected time stages: (a) t = 1800 s, (b) t = 3600 s and
(c) t = 5400 s.

The results obtained are shown in Figure 9, in terms of the phase field
contours, which illustrate the evolution of the corrosion front. A more quan-
titative description of the corrosion pit is shown in Figure 10, where the pit
growth along the depth and width directions is shown. Here, pit depth refers to
the growth along the vertical direction (or θ = 90◦ for a polar coordinate sys-
tem centred at the pit mouth), while pit width refers to the growth along the
horizontal direction (θ = 0◦). The results show that pitting is not symmetric,
with corrosion rates being faster along the depth direction due to the role of
mechanical fields in enhancing corrosion kinetics - see Eqs. (42) and (43). Dif-
ferences are notable, with the pit extending along the vertical direction more
than twice the pit width after 5400 s.

Moreover, results reveal that corrosion rates reduce with time, deviating
from the linear behaviour reported in the results obtained for the pencil elec-
trode test (Figures 5 and 7). This is despite L0 being much smaller in the
present case study; L = 1.5× 10−10 mm2/(N · s) vs L = 0.001 mm2/(N · s) for
Figures 5 and 7. It is of interest to investigate the source of this drop in cor-
rosion rates, which can be potentially caused by three factors: (i) the role of
film passivation, (ii) a shift from activation-controlled corrosion to diffusion-
controlled corrosion, and (iii) a raise in electrolyte potential ϕl. Inspection of
the cM distribution shows that the concentration of metal ions at the inter-
face is below the saturation concentration csat; hence, we proceed to disregard
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Fig. 10 Mechanically-assisted corrosion from a semi-circular pit: predictions of pit exten-
sion along the depth (vertical) and width (horizontal) directions. For a polar coordinate
system (r, θ) centred at the pit mouth, the depth direction corresponds to r, θ = 90◦ while
the width direction corresponds to r, θ = 0◦.
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Fig. 11 Mechanically-assisted corrosion from a semi-circular pit: contours of electrostatic
potential ϕl at times: (a) 1800 s, (b) 3600 s, and (c) 5400 s.

(ii). Then, the role of the electrostatic potential is investigated by plotting the
contours of ϕl for relevant time intervals. The results are shown in Figure 11
for times t = 1800 s, t = 3600 s, and t = 5400 s, with the solid domain (φ = 1)
marked with a grey colour. It can be seen that, while ϕl evolves with time, the
change in magnitude is very small, of roughly 0.001 V from 1800 s to 5400 s.
Moreover, the electrolyte potential decreases with time, which should lead to
a higher dissolution rate, as per (T.7) and (22).

It remains to assess the role of film repassivation. To this end, we vary
the magnitude of the stability parameter k, considering three selected values:
k = 0.0001, k = 0.0002 and k = 0.0003. The results obtained are shown in
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Figure 12 in terms of pit depth (i.e., growth along the vertical direction) versus
time. In agreement with expectations, the more stable the film (larger k), the
smaller the corrosion rates. Results reveal significant sensitivity to changes in
k, suggesting that film repassivation is the largest contributor to the observed
reduction in corrosion kinetics with time.
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Fig. 12 Mechanically-assisted corrosion from a semi-circular pit: pit depth versus time t
predictions as a function of the film stability parameter k.

Next, we examine the distribution of the ionic species in the electrolyte.
Figure 13 shows the contours of cMcsolid, pH, and cCl for a time of t = 5400 s.
The contours show how metal ions accumulate close the corrosion front, how
the pH remains relatively constant but changes significantly when approach-
ing the electrolyte edge, and how the concentration of chloride ions decreases
progressively from the pitting interface to the bulk solution. It is also worth
noting that the concentration of metal ions cM · csolid remains well below the
saturation concentration (csat, see Table 2), indicative of activation-controlled
corrosion conditions. Overall, it is clear that the concentrations of ionic species
near the pit mouth are significantly different from those at the top edge of
the electrolyte (the bulk solution). A more quantitative insight into the dis-
tribution of the various ionic species is shown in Figure 14, where the natural
logarithm of the concentration of relevant ionic species is shown as a function
of their position along the vertical axis, going from the bottom of the pit to the
top edge of the electrolyte. The results show how the concentration of metal
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ions is highest near the corrosion front, due to metal dissolution, and then
decreases as we move deep into the electrolyte. The accumulation of metal ions
results in lower pH values (increasing cH) inside the pit due to the hydrolysis
reaction (44). Consequently, as per reaction (45), the magnitude of cOH inside
the pit becomes relatively small and increases as we approach the edge of the
electrolyte. In addition, changes in cCl are shown to be of secondary nature,
but a higher Cl− concentration is attained near the corrosion front to main-
tain the solution charge balance. It is important to note that the accumulation
of H+ at the pit surface may favour hydrogen uptake into the metal and thus
hydrogen embrittlement damage mechanisms [43, 44].
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Fig. 13 Mechanically-assisted corrosion from a semi-circular pit: Contours of (a) cM ·csolid,
(b) pH, and (c) cCl. The results are shown for a time t = 5400 s.

Finally, we investigate the differences between the present modeling strat-
egy, where the electrolyte domain is resolved, and the simpler, commonly used
approach of neglecting the electrolyte and prescribing on the pit mouth the
concentrations of ionic species in the bulk solution (see, e.g., [12, 20]). The dif-
ferences between the predicted values of ci and ϕl at the pit surface and the top
of the electrolyte (see Figures 11 and 13) suggest that results will be sensitive
to this choice of modeling approach. Figure 15 shows the extension of pit depth
along the vertical direction predicted both by accounting for the electrolyte
domain (“electrolyte simulation” curve) and by replacing the electrolyte by
Dirichlet boundary conditions for the concentrations and electrolyte potential
at the pit mouth (“Pit mouth Dirichlet BCs” curve). The results show that
accounting for the role of the electrolyte domain is important not only to rig-
orously predict the pit chemistry but also to accurately estimate the resulting
pitting. In particular, the simplistic approach of prescribing electrochemical
boundary conditions at the pit mouth results in a sharper pit morphology that
translates into an earlier pit-to-crack transition at the pit base. The slower
corrosion rates predicted for the model resolving the electrolyte are likely asso-
ciated with the drop in ionic concentration (as transport is enhanced), which
results in a reduction in conductivity κ through (T.8) and, accordingly, to a
slower corrosion rate.
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Fig. 14 Mechanically-assisted corrosion from a semi-circular pit: predictions of ionic con-
centrations along the y-axis, starting from the pit base and going all the way until the top
edge of the electrolyte (as characterized by the distance to the bottom edge of the metal
domain). The results are shown for a time t = 5400 s.

5 Conclusions

We have presented an electro-chemo-mechanical phase field framework for pre-
dicting localized corrosion. Its main ingredients are: (i) a phase field description
of the evolution of the corrosion front, (ii) the modeling of mechanics phenom-
ena such as the enhancement of corrosion kinetics with mechanical fields and
the film rupture-dissolution-repassivation (FRDR) process, and (iii) the char-
acterization of electrochemical electrolyte behaviour, including the transport
of multiple ionic species and the distribution of electrostatic potential. These
three components are fully coupled and impact corrosion kinetics by means
of a mechanics- and electrochemistry-dependent interface mobility parameter
L (εp, σh, η). The model is implemented in COMSOL MULTIPHYSICS, with
the numerical implementation being described and made freely available to the
reader at www.empaneda.com/codes. Numerical experiments were conducted
on two case studies of particular interest to investigate the interplay between
electrolyte behaviour and localized corrosion; key findings include:

� The size of the electrolyte domain plays an important role on the corrosion
process. If the electrolyte domain is chosen to be very small, then the
transport of metal ions is hindered and, as a result, corrosion shifts from

www.empaneda.com/codes
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Fig. 15 Mechanically-assisted corrosion from a semi-circular pit: Comparison of pit growth
along the vertical direction considering two modelling strategies: (i) resolving the electrolyte
domain (“electrolyte simulation” curve), and (ii) neglecting the electrolyte and prescribing
the concentrations of the bulk solution on the pit mouth (“Pit mouth Dirichlet BCs” curve).

activation-controlled to diffusion-controlled.

� Increasing the applied potential and the initial bulk solution concentration
leads to a rise in dissolution rates. On the other hand, faster corrosion
kinetics can potentially increase the electrolyte potential, reducing the
overpotential and the magnitude of the mobility coefficient.

� There are significant differences between the bulk and local pit electrochem-
ical behaviours. Among other, due to the hydrolysis reaction, an increase
in the concentration of hydrogen ions is observed inside the pit, which can
enhance hydrogen ingress into the metal and embrittlement.

� The simplistic yet widely used modeling approach of replacing the simula-
tion of the electrolyte by prescribing the bulk concentration and electrolyte
potential at the pit mouth overpredicts corrosion rates and underpredicts
the time required for the pit-to-crack transition to occur.
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Appendix A. Interface energy and thickness in
phase field corrosion

Here, we follow a similar approach to that of Ref. [45] to derive the interface
energy per area γ and the interface thickness `. In the absence of mechanical
and chemical contributions, γ can be defined as:

γ =
Πinterface

Ainterface
=

∫ +∞

−∞

[
wg (φ) +

1

2
α

(
dφ

dy

)2
]
dy (56)

where Πinterface and Ainterface are the total energy and the area of the interface,
respectively. Note that we use y as the direction normal to the interface to be
consistent with Sections 4.1 and 4.2.

In equilibrium we have δγ = 0, such that

I −
(
dφ

dy

)[
∂I

∂(dφ/dy)

]
= const (57)

where I is the integrand of (56). Combining (56)-(57), one reaches

wφ2(1− φ)2 − 1

2
α

(
dφ

dy

)2

= const (58)

Assuming that φ = 0 when y → −∞ and that φ = 1 when y → +∞, from
(58) we obtain

dφ

dy
=

√
2w

α
φ(1− φ) (59)

Defining the location of the interface at φ = 0.5 (y = y0), the solution for
φ reads

φ =
1

exp
[
−
√

2w
α (y − y0)

]
+ 1

(60)

such that the interface thickness ` is derived as,

` =
1

dφ/dy

∣∣∣∣
y=y0

=

√
8α

w
(61)

Finally, by combining (56) and (59), the interface energy γ can be written
as

γ =

∫ +∞

−∞

[
wg (φ) +

1

2
α

(
dφ

dy

)2
]
dy = 2w

∫ 1

0

φ2 (1− φ)
2

√
α

2w

1

φ (1− φ)
dφ =

√
αw
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(62)
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51878493). E. Mart́ınez-Pañeda acknowledges financial support from UKRI’s
Future Leaders Fellowship programme [grant MR/V024124/1]. C. Cui addi-
tionally acknowledges financial support from the China Scholarship Council
(grant 202006260917).

Notes on contributor(s)

C. Cui: Conceptualization, Investigation, Methodology, Software, Writing –
original draft, Writing – review & editing.
R. Ma: Funding acquisition, Supervision.
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[3] E. Mart́ınez-Pañeda, Progress and opportunities in modelling environ-
mentally assisted cracking. RILEM Technical Letters 6, 70–77 (2021)

[4] S.M. Sharland, P.W. Tasker, A mathematical model of crevice and pit-
ting corrosion—I. The physical model. Corrosion Science 28(6), 603–620
(1988)

[5] S. Sarkar, W. Aquino, Electroneutrality and ionic interactions in the mod-
eling of mass transport in dilute electrochemical systems. Electrochimica
Acta 56(24), 8969–8978 (2011)

[6] X. Sun, J. Srinivasan, R.G. Kelly, R. Duddu, Numerical investigation of
critical electrochemical factors for pitting corrosion using a multi-species
reactive transport model. Corrosion Science 179(October 2020), 109,130
(2021)



34

[7] R. Duddu, Numerical modeling of corrosion pit propagation using the
combined extended finite element and level set method. Computational
Mechanics 54(3), 613–627 (2014)

[8] W. Mai, S. Soghrati, R.G. Buchheit, A phase field model for simulating
the pitting corrosion. Corrosion Science 110, 157–166 (2016)

[9] R. Duddu, N. Kota, S.M. Qidwai, An Extended Finite Element Method
Based Approach for Modeling Crevice and Pitting Corrosion. Journal of
Applied Mechanics 83(8), 1–10 (2016)

[10] R. Dekker, F.P. van der Meer, J. Maljaars, L.J. Sluys, A level set model
for stress-dependent corrosion pit propagation. International Journal for
Numerical Methods in Engineering 122(8), 2057–2074 (2021)

[11] T.Q. Ansari, H. Huang, S.Q. Shi, Phase field modeling for the mor-
phological and microstructural evolution of metallic materials under
environmental attack. npj Computational Materials 7, 143 (2021)

[12] C. Cui, R. Ma, E. Mart́ınez-Pañeda, A phase field formulation for
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