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Abstract

A new theoretical phase field-based formulation for predicting electro-
chemo-mechanical corrosion in metals is presented. The model com-
bines electrolyte and interface electrochemical behaviour with a phase
field description of mechanically-assisted corrosion accounting for film
rupture, dissolution and repassivation. The theoretical framework is
numerically implemented in the finite element package COMSOL MUL-
TIPHYSICS and the resulting model is made freely available. Several
numerical experiments are conducted showing that the corrosion predic-
tions by the model naturally capture the influence of varying electro-
static potential and electrolyte concentrations, as well as predicting the
sensitivity to the pit geometry and the strength of the passivation film.
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1 Introduction

Corrosion is widely recognized as one of the most common yet destructive fail-
ure mechanisms of engineering components and structures, carrying a cost of



about 3.1% of the gross domestic product (GDP) in industrialized countries
[1]. Corrosion can be classified into two categories: general corrosion and local-
ized corrosion. The first one refers to uniform metal dissolution and can be
prevented by physical and electrochemical measures, e.g., through the use of
coatings and cathodic protection. However, localized corrosion, such as pitting
corrosion, is more difficult to prevent and detect in engineering practice. More-
over, by interacting with mechanical loads, localized corrosion can often lead
to catastrophic structural failures through phenomena such as mechanically-
assisted corrosion and stress corrosion cracking (SCC). Thus, there is a need for
developing physically-based models capable of predicting localized corrosion
failures.

Mechanistic predictions of localized corrosion require resolving the under-
lying physical processes, which has long been considered a remarkably complex
task [2]. Two main challenges exist. First, predicting localized corrosion
requires resolving a strongly coupled electro-chemo-mechanical problem involv-
ing, at the very least, the transport of ionic species, interface reactions, changes
in electrolyte conductivity and mechanical behaviour of the metal, as well as
their interactions. Secondly, localized corrosion is a complex interfacial prob-
lem; the electrolyte-metal interface exhibits a highly irregular morphology
and its evolution depends on the local chemistry and mechanics, which are
themselves dependent on the interface morphology [3]. Promising progress has
been achieved, independently, in the modeling of these two key challenges.
New mathematical models describing mass transport, homogeneous chemical
reactions and charge balance have been proposed to better understand the
electro-diffusive mass transport of multiple species and its effects on corrosion
evolution (see, e.g., [4-6] and Refs. therein). However, these works are limited
by the assumption of a stationary electrolyte-metal interface. On the other
hand, a number of computational schemes have been recently presented to
track the evolution of the corrosion front [7—14]. Among these, the phase field
model stands out for its thermodynamics roots and its ability to efficiently
capture corrosion morphologies of arbitrary complexity. In addition, it can
be readily integrated into existing finite element schemes. Instead of explic-
itly tracking a moving boundary (and the associated boundary conditions),
the phase field paradigm describes the evolution of the interface by means of
an auxiliary order parameter ¢ that varies smoothly between the two phases
(metal and electrolyte, in the case of corrosion) and evolves based on a suitable
governing equation [15-17]. The application of the phase field paradigm to cor-
rosion was first shown by Stahle and Hansen [18] and Abubakar et al. [19]. Mai
and co-workers extended these works to present a phase field corrosion frame-
work that accounts for the diffusion of dissolved species and reactants in the
electrolyte [8, 20]. Later, Cui et al. [12] incorporated the role of mechanics in
the corrosion process, capturing both the enhancement of corrosion rates due
to mechanical fields [21] and the process of passive film formation, rupture and
subsequent repassivation [22]. More recently, mechanics-enhanced phase field
corrosion models have been extended to include mechanical fracture [23, 24],



which could be assisted by the ingress of aggressive species such as hydrogen
[24]. However, these models do not fully resolve the electrochemistry of the
system; there is a need to develop electro-chemo-mechanical phase field formu-
lations for localized corrosion that can capture the sensitivity to the applied
potential and the concentration of species in the environment.

In this work, we present a new electro-chemo-mechanical phase field-based
formulation for predicting localized corrosion in elastic-plastic solids. The
model combines, for the first time, an electrochemical description of ionic
species transport and electrostatic potential distribution in the electrolyte
with a mechanics-dependent interface kinetics law built upon mechanochemical
theory [21] and the film rupture-dissolution-repassivation (FRDR) mech-
anism [22]. The theoretical framework is numerically implemented in the
finite element package COMSOL MULTIPHYSICS and numerical experiments
are conducted to showcase the ability of the model in capturing the main
experimental trends. Focus is also placed on the details of the COMSOL imple-
mentation, making the model freely available and providing details that enable
reproducibility and facilitate usage. The remainder of this paper is organ-
ised as follows. In Section 2 we present our theoretical framework. Then, the
COMSOL implementation is described in Section 3. The results of the numer-
ical experiments conducted are presented and discussed in Section 4. Finally,
concluding remarks end the manuscript in Section 5.

2 Theory

2.1 General considerations

The process of localized corrosion is usually initiated by the rupture of the
passivation film that protects the metal from corroding. Following the local
failure of the passive film, the metallic surface is exposed to the corrosive
environment, triggering the dissolution process and releasing cations into the
electrolyte, i.e.

M — M™% + nye” (1)
where M is the corroded metal and ny; is the charge number of metal M.
The present theory aims at encapsulating the electrochemical and mechanical
mechanisms involved in this process.

An overview of the elements of our theory is provided in Figure 1. There, it
can be seen that the evolution of the corrosion front is described by a so-called
phase field order parameter ¢, which varies from 0 (electrolyte) to 1 (intact
metal) within a diffuse region. The interplay between activation-controlled
corrosion and diffusion-controlled corrosion is captured by simulating the
transport of metal ions. To this end, a normalized concentration ¢y = clo\/[ / Csolid
is defined, where cg/[ is the metal ion concentration and cgj;q is the concentra-
tion of atoms in the metal. Accordingly, cy; = 1 inside the metal while ¢y = 0
in regions of the electrolyte that are far away from the electrolyte-electrode
interface. Following our previous work [12], we characterize the mechanical
behaviour of the metal using an elastic-plastic constitutive model and capture
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Fig. 1 Schematic illustration of the main variables involved in the electro-chemo-mechanical
phase field-based formulation presented for predicting localized corrosion as a function of
the environment, material and loading conditions. The illustration showcases a domain €2
that encompasses the metal (¢ = 1) and electrolyte (¢ = 0) phases, and the diffuse interface
in-between.

as well the interplay between mechanics and corrosion (mechanochemistry,
FRDR mechanism). Unlike our previous work [12], the current model also
resolves the electrochemistry of the electrolyte. This is achieved by solv-
ing for the concentration of multiple ionic species ¢; (where i equals, e.g.,
Na®,Cl”,HT,0H, etc.), and the electrolyte potential ¢;. Accordingly, the
primary variables of the theory are the phase field order parameter ¢, the
normalized metal ion concentration cp;, the electrostatic potential ¢, the
concentration of multiple ionic species ¢; and the metal displacement vec-
tor u. Based on these preliminaries, we shall first define the energy functions
(Section 2.2), then derive the balance equations of the primal fields (Section
2.3), introduce the main corrosion-mechanics coupling relations in the electro-
chemo-mechanical system (Section 2.4), particularize the electrochemistry of
the electrolyte (Section 2.5) and, finally, summarize the governing equations
of our theory (Section 2.6).

2.2 Free energy

Consistent with our prior research [12], we consider two distinct systems,
namely the electrochemical system and the mechanical system. These two sys-
tems possess their respective free energies, denoted by IT¥ and IIM, which will
be formulated in Sections 2.2.1 and 2.2.2, respectively. The coupling of these
two systems will be addressed in Section 2.4.



2.2.1 Electrochemical system

In this section, we introduce a general expression for the energy function in
corrosion problems. Consider first the free energy of the electrochemical sys-
tem, denoted by IIZ, which is an integral of the electrochemical energy density
¥ over the domain 2, such that

¥ = /Q PFAV = /Q (V" + ' +y)av (2)

where 1" ¢ and 1° denote the chemical, interfacial, and electrostatic free
energy densities, respectively. These are defined below.

Chemical free energy density 1)°". The chemical free energy density 1"
can be further decomposed into the energy for metal dissolution "¢ and the
energy stored in the dilute solution 1),

1/1Ch _ d)ch,d + wch,s (3)

We follow the KKS model [25] to define ¢¢"¢. Accordingly, each material
point is a mixture of both solid and liquid phases with different concentrations
but equal chemical potentials. Thus, ¥°"¢ is given by

P = h(¢) pd + 1L — h(e)] i (4)

where h (¢) = —2¢3 4 3¢? is a degradation function intrinsic to the phase field
model. Here we define h(¢p = 1) = 1 as intact metal and h(¢ = 0) = 0 as
fully corroded region to describe the phase transition due to metal dissolution.
Also, h'(¢ = 0) = W(¢ = 1) = 0 must be satisfied to ensure that the energy
converges to a finite value where the domain is locally intact/fully damaged.
wgh’d and wih’d are the chemical free energy density terms respectively asso-
ciated with the concentrations of the solid phase cg and the liquid phase cr,.
Accordingly,

g (cs) _ Ovp (cu)

805 N aCL

(5)
and,
em =h(g)es +[1—h(d)|cr (6)

ch,d

Consistent with the KKS model, 1)¢"" and wih’d are given by

¢§h’d = A(cs — cse)?  and wih’d = Aler — cre)? (7)

where ¢se = Csolid/Csolid = 1 and c¢pe = Csat/Csolid are the normalized equilib-
rium concentrations for the solid and liquid phases. Also, A is the free energy
density parameter, which is assumed to be equal for the solid and liquid phases
and can be determined by benchmarking the chemical free energies obtained
from KKS model with those obtained from thermodynamic databases [19, 23].



Combining Eqs. (4)-(7), one reaches

dJCh’d =A [CM —h(¢)(cse — crLe) — CL6]2 (8)

The second element of ¢°", the energy stored in the dilute solution, 1),
is defined as follows:

P = Zci R,T (Inc; — 1)+ ¢; (9)

i=1

where i is the associated ionic species (e.g., Nat,Cl7,HT,OH"), R, is the
gas constant, T is the temperature, and 1Y is the reference chemical potential.
Here, one should note that the chemical energy associated with the metallic
jons M™ is already accounted for through the KKS model.

Interfacial free energy density . The interfacial strain energy demnsity
1; is defined as the sum of double-well potential energy and the energy
corresponding to the phase field gradient, reading

U =g (6)w+ 5 |VeP (10)

where « is the gradient energy coefficient and w is the height of the double-well
potential g(¢), which is chosen here as g (¢) = ¢>(1 — ¢)2. As discussed and
derived in Appendix A, the height w and the gradient energy coefficient « in
Eq. (10) can be related to the interface energy per area « and its thickness ¢ as:

ow 8a
=4/ — d l(=4/— 11
T=41g A Vo (11)

Electrostatic free energy density . Finally, the electrostatic energy
density ¢° is defined as a function of the charge density as follows

n
,(/Jel = F(pl (nMCMCsolid + Z nici> (12)
i=1
where F' is Faraday’s constant, and n; is the charge number of the i** ionic

species.
2.2.2 Mechanical system

We proceed to define the mechanical strain energy II™. We consider an
elastic-plastic solid with a strain energy density ¥ that can be additively



decomposed into its elastic (¢¢) and plastic (¢)P) parts, such that

M __ M _ e V4
I f/ﬂw dvf/ﬂh(@(w L gp)av (13)

where the corrosion degradation function h (¢) captures the reduction of mate-
rial stiffness due to metal dissolution. The elastic strain energy density is given

as )

Y& = 556 :C°:e” (14)
where C* is the linear elastic stiffness matrix and &€ is the elastic strain tensor.
The plastic behaviour of the solid is characterized in this work by means of
von Mises J2 plasticity theory. Accordingly, for a plastic strain tensor P, the

plastic component of the strain energy density reads,

t
PP = / oo : ePdt (15)
0
where o is the so-called undamaged or effective Cauchy stress tensor.

2.3 Balance equations

Consistent with the free energy defined in Section 2.2, we shall now formulate
the governing equations of the electro-chemo-mechanical phase field corrosion
theory.

2.3.1 Phase field evolution

As in previous phase field corrosion models [8, 12], the phase field evolves based
on the following Allen—Cahn equation:

99 opr
= =L ( 55 " aV2¢> (16)
with
31/)E / ’
Tﬁb =24 [CM —h (¢) (CSe - CLe) - CLe] (CSe - CLe)h (¢) + wg (¢) (17)

Here, L is the interface kinetics coeflicient, which can be related to the corro-
sion current density [24, 26] or the overpotential [27]. Following Ref. [12], we
shall enrich the definition of L to incorporate the role of mechanics in enhanc-
ing corrosion rates and breaking the passivation film - see Section 2.4. For the
moment, let us assume that L is constant and denote L = L, for the case where
mechanical fields are absent. Then, as discussed in Ref. [24], L, is proportional



to the corrosion current density ¢, when corrosion is activation-controlled.
Accordingly,
e be_ Lo .
1a 10

where iy is the exchange current density and Ly is the interface kinetics
coefficient when the overpotential 7 is zero. Thus, as shown in Section 4.2,
the proportionality constant & can be determined by conducting a numerical
experiment under activation corrosion conditions (small L).

The corrosion current density i, can usually be estimated by using the
so-called Butler—Volmer equation:

o aanMFn> ( (1 aa)nMFnﬂ
g =1 |exp| —5—— ) —exp| ——FF— (19)
“ { ( R,T R,T

where a, is the anodic charge transfer coefficient. Consistent with Eqs. (18)-
(19), L, can also be estimated by a Butler—Volmer-type equation:

agnnFn (1 —ag)nmFn
oo () o m
R,T R,T

And Eq. (20) can be further simplified as a Tafel-type equation if only the
anodic reaction is relevant at the dissolution surface; i.e.,

agnmF
Lo = Loexp (“}%T”> (21)
Finally, the overpotential is expressed as:
nN=%s =¥ — Eeq (22)

where @ is the solid (applied) potential and Egq is the equilibrium potential.
In this work, we assume F.q = 0 for convenience.

2.3.2 Transport of species

The transport of ionic species is governed by mass conservation. Accordingly,
the rate of change in time of any of the species must be equal to the sum of its
concentration flux through the boundary 99 and the reactants/products due
to chemical reactions in €2, such that

/%dV:—/ J-ndS+/RdV (23)
o Ot a0 Q

where J is the concentration flux and R is the chemical reaction term. Here,
one should note that Eq. (23) is valid for both ¢%; and ¢;. Since Eq. (23) must
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hold for any arbitrary volume, recalling that CR/I = CMCsolida and using Gauss’
divergence theorem one reaches

OnCeoid | g 3y = Ry (24)
ot
and 5
Ci
- Ji =R 2
V=R (25)

The transport process is driven by the chemical potential u. For the metal
ions, puy can be further decomposed into two terms, one associated with
the KKS-based phase field formulation, w1, and another one related to the
migration process, fipr2, such that

opF

v =
OcMCsolid

=24 [CM —h (d)) (CSe - CLe) - CLe} /Csolid + Fony (26)
——

MM HM2

Where we emphasise that cg1q is a constant used for normalising the metal
ion concentration.
Accordingly, the flux Jy; can be calculated by a Fick law-type relation,

[1 — h(¢)]Dnmemcsolid

Dyt
Jv =JIv1 +JIm2 = —ﬂcgothMMl - R,T V pm2
1—nh Dhenvicsoli
= —DncsotiaV [em — h (@) (cse — cLe) — CLe] — [ ((@]3 71:4 MM i Vg
g
(27)

Note that the term [1 — h(¢)] is present in Jyz to ensure the transport of
species is only valid in the electrolyte and along the interface (¢ < 1). However,
this term is not necessary for Jy1, given that ¢y and ¢ are naturally coupled
by the KKS model. Also, note that we use the real metal ion concentration
A = CMCsolia in (27) to maintain the dimensional consistency of Jy and J;.
Now, inserting (27) into the mass conservation equation (24), the transport of

metal ions is formulated as

Jc
a—f — V- DV [em — h () (cse — cLe) — CLo]
28)
[1— h (@) Dcw Ray (
-V FnyV =
{ R,T MY Csolid
Similarly, the driving force for other species, u;, is given by,
) E
_ = R,Tnc; + 1 + Fom; (29)

i = ac:
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and the flux J; is defined as,

(1 —h(&)|Dici
R,T

(1 —h ()] Dic;

Ji= o R,T

V/,Li = —[l—h (qz&)]Dchi— Fn,»Vgpl (30)

The resulting mass transport equation can be obtained by inserting Eq. (30)
into the balance equation (25), rendering a phase field-dependent form of the
Nernst-Planck equation:

3ci
ot

[1 — h(8)]Dici
R,T

—V - {[l = h(4)]D;Ve;} — V- { FniV<pl} =R, (31)

Finally, for both Ry; and R;, we introduce a generalized form of the reaction
term, which is given by

me

Ri=> Skmp [[ & =kmr [] " (32)

m=1 Vjm >0 Vjm <0

where m; is the total number of chemical equations, v;,, is the stoichiometric
coefficient for species j in the chemical reaction m, and k,,, and k,,, respec-
tively denote the rate constant of products and reactants in reaction m. Note
that we define vj,, > 0 for products and v;,, < 0 for reactants. Also, we empha-
size that when the metal ion is involved, the actual concentration cg/[ = CMCsolid
must be adopted in Eq. (32).

2.3.3 Electrostatic potential

The distribution of electrostatic potential ; can be estimated by the following
Poisson-type equation [28, 29],

V- (kVg) = nMFCsolid% (33)
In Eq. (33), the variation of charge density due to the chemical reaction
shown in Eq. (1) is accounted for by defining an additional term on the right-
hand side, with the term cyo;a0¢/0t capturing the creation of electrons due
to the dissolution of the metal electrode. Also, k is the electric conductivity,
which is defined as
k="h(¢)ks +[L—h(d)]r (34)
where K, and k; are the conductivity in solid and liquid phases, respectively.
The magnitude of the solid conductivity is chosen to be a sufficiently large
value (ks = 1 x 107 S/m), so as to ensure a uniform distribution of ; in
the solid phase. Thus, ¢;, which is indistinctly referred to as electrolyte or
electrostratic potential, is solved for in the entire domain but its magnitude is
only relevant within the electrolyte and at the electrolyte-electrode interface.
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Then, upon the assumption of a dilute solution [30], x; is given by the following
concentration-dependent function

F2
Ky = BT (cMcSOMdDMn%\/I + z; ciDm?> (35)

2.3.4 Mechanical deformation

The governing equation of the mechanical system is derived by minimizing the
strain energy density dIIM = 0. Let us neglect for simplicity body loads and
external tractions. Accordingly, see Eqgs. (13)-(15), one reaches:

/ h(@) o : de AV = 0 (36)
Q

with € = €° + P being the total strain tensor. By application of the Gauss
divergence theorem and considering that Eq. (36) must hold for any arbitrary
variations, we obtain the following balance:

V- [h(¢)oo] = 0 (37)
where o is the undamaged or effective stress tensor, which is given by
og=CP:(e°+eP)=C°:¢° (38)

with C®P being the elastic—plastic consistent material Jacobian. It follows that
the homogenized or damaged Cauchy stress tensor is given by o = 9.9™ =
h(¢)00.

The solid is assumed to exhibit isotropic strain hardening, which is char-
acterized by means of the following power law relationship between the flow
stress ¢ and the equivalent plastic strain eP:

o =0, <1+E‘€Z)>N (39)

Oy

where F is the Young’s modulus, o, is the initial yield stress and N is the
strain hardening exponent (0 < N < 1).

2.4 Dissolution-mechanics interactions

Two important physical couplings are relevant to our theory. Firstly, the
evolution of localized corrosion will result in material damage and redistribu-
tion of mechanical fields, see Eq. (37). Secondly, the mechanical deformation
of the solid will impact metallic dissolution by enhancing corrosion rates
(mechanochemical theory [21]) and by fracturing the passivation layer (FRDR
mechanism [22]). The latter is captured by enhancing the phase field mobility
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coefficient, as proposed by Cui et al. [12]. Thus, the mechanical work required
to fracture the passivation film is characterised using the equivalent plastic
strain P, such that film rupture will occur when P reaches a critical value
e¢. After a film rupture event, passivation will result in the deposition of an
initially unstressed oxide layer on the newly exposed metallic surface. Thus,
corrosion rates are the result of a competition between the kinetics of passi-
vation and straining. Accordingly, the relevant time scale over which strains
accumulate is the time that it takes for the new passivation layer to rupture,
since its deposition. This rupture-dissolution-repassivation cycle time interval
is here denoted t; and accordingly,

t;
el =ep with sf:/ erdt (40)
0

Once film rupture occurs, the bare metal interface kinetics coefficient
L, is immediately recovered. Bare metal interface kinetics are sustained for
a certain period tg, as it takes time for the passive film to be sufficiently
stable to impact corrosion kinetics. Once the film is sufficiently stable, disso-
lution rates are gradually reduced, with the decay process being dependent
on the environment-material system, and captured here by means of a stabil-
ity parameter k. After a time t; since the decay starts, film rupture occurs
again, ¢! = ey, and a new FRDR cycle begins. Thus, the time interval for each
rupture-dissolution-repassivation cycle equals ¢; = to +t, with ¢ being deter-
mined by the mechanical fields. Accordingly, in terms of the corrosion current
density, each rupture-dissolution-repassivation cycle is given by,

i) = { o, g—’ 0<t;<to (1)
1q €XP [—k (tl — to)], if to <t; <top+ tf

In addition, and independently of the FRDR process, corrosion kinetics are
accelerated by mechanical fields [21]. Following Gutman’s mechanochemical
theory [31], we introduce an additional term k,, to describe this phenomenon.
Thus the corrosion current density reads,

i(t) = ko (P, 0n) i (1) = (Z: + 1) exp (C;’;:T) i (t:) (42)

where o}, is the hydrostatic stress and V,,, is the molar volume. The latter is
defined as Vi, = M,,/pm, such that for a stainless steel with density p,, =
7930 kg/m?® and molar mass M,, = 0.056 kg/mol, the molar volume equals
Vi = 7.1 x 107% m3 /mol.

Accordingly, building upon the connection between the mobility coefficient
L and the corrosion current density i, a generalized L can be defined that
incorporates: (i) the FRDR mechanism, via (41); (ii) the sensivity of corrosion
kinetics to mechanical fields, via (42); and (iii) the impact of the overpotential
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n on the corrosion current, via (19)-(21). Hence,

km (P, Ly(n), if0<t; <t
L= L(gp7ah777) = (¥, on) () ! - 0

{km (€P,0n) La(n) exp[—Fk (t; —to)], if to <t; <to+1ty
(43)

2.5 Species and reactions in the electrolyte

The transport of ionic species and the homogeneous chemical reactions in the
electrolyte have an impact on localized corrosion. Here, we assume that the
electrolyte is a NaCl-based solution containing the following six ionic species:
M”ﬁ, M(OH)(nM_l)Jr7 HT, OH™, Na® and Cl~. These result in the following
chemical reactions:

k
M0 o0 == M(OH)™ V" 4 1t (44)
“b1
k
H,0 % H* + OH™ (45)
b2

Thus, the reaction term for each ionic species in Eq. (32) can be re-written as:

Ry = —kf1 emCsolia + kp1 cacMon

Ryromy = kg1 cMcsolia — kb1 cHCMOH (46)
Ry = kf1 cmcsolia — k1 caemon + kp2 — Ky cacon

Ron = k2 — ky2 cucon

where k; and ky respectively denote the rate constants for the forward and
backward reactions, with the subscripts 1 and 2 being employed to distinguish
between the reactions (44) and (45), respectively. Chemical reactions typically
occur over much shorter times scales than mass transport and, as a result, the
reactions are typically assumed to be in equilibrium. Under equilibrium condi-
tions, the concentrations involved must remain proportional to each other and
consequently an equilibrium constant can be defined for each of the reactions
being considered; i.e., here one finds'

k 1 CHCMOH k 2
Ky = 1 = THMOH - g 22 chcon (47)
ky1  emMCsolid k2

Two approaches are typically followed to introduce the equilibrium assump-
tion in the Nernst-Planck equations (31) [32]. One can solve for some of the
ionic species assuming R; = 0 and then estimate the remaining concentrations
via their equilibrium relationships. For example, focusing on reaction (45), a

INote that, for dimensional consistency, some authors choose to define a unit activity concen-
tration c,p, such that Ko = CHCOH/Ciov with ca0 usually taken to be 1 mol/L. Here, we choose
to drop this term for simplicity.
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numerical solution for ¢y can be obtained by solving Eq. (31) with Ry = 0,
and then Eq. (47b) can be used to estimate cop, as the magnitude of K is
known. Alternatively, the magnitude of R;, the source term in Eq. (31), can be
adequately chosen so as to ensure that the equilibrium conditions are fulfilled.
Le., for the case of reaction (45), the magnitudes of Ry and Roy are chosen
such that the numerical estimates for cy and cop always satisfy cpcon = Ks.
Here, the latter approach is adopted. Thus, following Eq. (47), the expressions
for the reaction terms (46) can be re-formulated as

Ry = k1 (=K1 evcsolid + caevon)

Ryon = ky1 (K1 cMCsolid — CHOMOH)

Ry = kp1 (K1 eMmCsolia — cucmon) + kv (K2 — cacon)
Ron = ky2 (K2 — cacon)

(48)

and by inserting (48) into (28) and (31), the governing equations for all
concerned species are obtained. Here, it is important to note that the local
equilibrium assumption for the chemical reactions implies that one does not
need to know the magnitude of the backward and forward reaction rates (ky;
and ky;), it suffices to know the value of the equilibrium constants K;. Con-
sider for example Eq. (48)d, the term kj2 acts as a penalty term as increasing
its magnitude will constraint the solution to ensure that cycog = Ko is met.
Accordingly, the choice of ky; is purely numerical, with the equilibrium condi-
tion been enforced for ky; — oco. As discussed in Section 4.1, the magnitude
of ky; is chosen to be sufficiently large to approximate equilibrium conditions
but not so large so as to induce convergence problems.

2.6 Summary of governing equations

The balance equations can be particularized upon the consideration of the
constitutive choices made in Sections 2.3, 2.4 and 2.5. A summary of the
governing equations is provided in Table 1. This overview emphasises the cou-
plings between the different elements of our theory. First, it can be observed
that mechanics plays a role in the evolution of the corrosion front, via the
term L(eP,op,7n) in the phase field evolution equation (T.1). Secondly, the
evolution of the corrosion front leads in turn to a degradation of the material
stiffness and a re-distribution of the mechanical fields, see (T.5). Thirdly, the
phase field evolution equation is impacted by the electrostatic potential via the
dependency of the mobility coefficient on the overpotential (L(eP, oy, 7)), with
the overpotential 1 being related to the electrostatic potential ¢; through Eq.
(22). Due to electromigration, the electrostatic potential also has an impact
on the transport of solid phase ions, see (T.2), and on the transport of the
electrolyte ionic species, see (T.3). These transport equations for ionic species
also contain a phase field dependent term, to ensure that transport is lim-
ited to the electrolyte. Finally, the calculation of the electrostatic potential
is influenced by both the phase field, as (T.4) accounts for the creation of
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Table 1 Summary of the governing equations of the electro-chemo-mechanical phase field
corrosion model presented.

Phase field:
E
% = L(e?,on,m) (aV20 - 27)

Transport of solid phase ions:

9M _ 7. D\ [ent — b () (€se — CLe) — cLe] — V- {%Fﬂd\lv@l} _ Ry

ot Csolid

Transport of ionic species:

G =V AL - h(9) DiVery - V- { B oo ) = Ry

Electrostatic potential distribution:
V - (kY1) = nFesotia 22

Mechanical balance:

V- [h(®) 0] = 0
with:

20 — 9Aew — h (#) (cse — cre) — crel (cse — cLo) (8) + wg' (9)

agnmEn

, if0<t; <t
RgT ) 1 i 0

Fm (7, 01) Lo ~exp(

L(€p7ah7n): a nMFU
a

kw (P, 01) LO'eXP( BT
g

2
k=nh ((z)) Ks + [1 —h (d))] % (CMCsolidDMni/[ + Zz ciDin%)

og = C°®P : (g¢ 4 €P)

electrons, and the concentration of ionic species (T.2)-(T.3), due to the influ-
ence of those on the electrolyte conductivity, as shown in (T.8). Thus, the
electro-chemo-mechanical system is fully coupled through these interactions.

3 COMSOL implementation

The electro-chemo-mechanical phase field formulation presented in Section 2
is implemented in the finite element package COMSOL MULTIPHYSICS. The
primal fields and nodal degrees-of-freedom (DOFs) are the phase field order
parameter ¢, the displacement components u, the concentration of metal ions

) - exp [—k (ti —to)], if to <t; <to +ty

(T.1)

(T.2)

(T.4)

(T.5)

(T.6)

(T.7)
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cM, the concentrations of the ionic species involved ¢;, and the electrostatic
potential ¢;. In COMSOL, as a result of its symbolic differentiation capa-
bilities, the governing equations of the model can be formulated in either
the weak or the strong form, without the need to provide explicit expres-
sions for the residuals and tangent stiffness matrices. As described below,
five COMSOL physics interfaces are used in the implementation, two
in-built ones (Solid Mechanics and Transport of Diluted Species), and
three user-defined interfaces that exploit the Mathematics module to simu-
late the evolution of the phase field, the transport of metal ions, and the
distribution of electrostatic potential. So-called State Variables are used to
capture the film rupture-dissolution-repassivation mechanism. The COMSOL
implementation is made freely available at www.empaneda.com/codes.

3.1 Module setup

Phase field (T.1). We use the Coefficient Form PDE interface to define
the evolution of the phase field order parameter ¢. When using this interface,
COMSOL provides the following generic form to define PDEs that contain
derivatives up to second order in both time and space,

L 9% 9¢
Cagry T +V (-CVo—ad+y)+B Votas=f  (49)

To mimic (T.1), the PDE coefficients are chosen as d, = 1/L, ¢ = a,
f——(%, s=a=0,anda=8=~=0.

Transport of metal ions (T.2). We use the General Form PDE inter