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Buffet is a self-sustaining oscillation that can endanger an aircraft in transonic flight. Early
automatic detection of the onset of buffet from simulation data is a necessary step in optimization
algorithms used to design new aircraft geometries. We use the Dynamic Mode Decomposition
(DMD) eigenvalues to detect the onset of buffet from transient simulations of the OAT15A
airfoil across a range of angles of attack. As during transients different eigenvalues may be
expressed at different times, we process shorter segments of the data (sliding windows) in order
to obtain robust, time-varying estimates of frequency of oscillation and decay/growth rates. We
demonstrate that the onset of oscillation can be identified by analyzing DMD eigenvalues, and
that physically different mechanisms of oscillation can additionally be identified from spatial
profiles associated with DMD modes. The dominant buffeting modes can be detected through
DMD before they become apparent in the physically-relevant quantities, such as the coefficient
of lift. We expect that such early detection of the onset of buffet could reduce the computational
burden of aircraft design and expand the feasible design space.
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Nomenclature and acronyms
All quantities are non-dimensional unless indicated otherwise.

𝛼 = angle of attack [◦]
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𝐿 = chord length
𝜌 = fluid density
𝛾 = specific heat ratio
Ma = Mach number
Re = Reynolds number
f = frequency of oscillation
St = Strouhal number St = 𝑓 𝐿/𝑎
a = speed of sound
𝐶𝐿 = lift coefficient
𝑇𝑤 = size of the data window
FFT = Fast Fourier Transform
DMD = Dynamic Mode Decomposition
PSD = Power Spectral Density
STFT = Short-time Fourier transform
𝐶𝑝 = pressure coefficient
Δ𝑡 = time step
𝑇 = duration of the simulation

I. Introduction
Transonic shock buffet is a self-sustained oscillation experienced by some airfoil or wing configurations at transonic

Mach numbers and moderate angles of attack (𝛼). The appearance of buffeting limits the aircraft performance envelope
due to reduced flight handling qualities and impacts on structural integrity. For these reasons, sustained buffet can be
dangerous for commercial and military aircraft, and both are designed to avoid it during normal operations. Determining
the buffet limits of an aircraft is a challenging task that often requires computationally intensive non-linear transient
simulations. The goal of this work is to see if the dynamic mode decomposition can reduce this computational effort.
As an initial exploration, here we examine the onset of buffet on 2D airfoils recognizing that the buffet mechanism on
3D wings is considerably more complex [1–4].

Transonic flow around an airfoil features several structures that interact during a buffet: a supersonic region near the
leading edge terminating in a pronounced discontinuity/shock, a separation point downstream of the shock around the
mid-chord point, and a backflow in the trailing edge area, as indicated in Figure 1. With increasing 𝛼, the supersonic
region grows and its trailing shock collides with the separation point, causing a decrease in lift. This collision shrinks
the supersonic region, separating the shock and the separation point, restoring the lift, and setting up the next cycle.
This periodic increase and decrease in lift is called transonic buffet and manifests as a vibration felt by the wing and the
rest of the aircraft.

(a) 𝛼 = 2.00◦ (b) 𝛼 = 4.50◦ (c) 𝛼 = 7.00◦

Fig. 1 Local speed around the ONERA OAT15A airfoil during a transonic flight simulation (𝑡 = 100 in all cases).
The three panels correspond, respectively, to an 𝛼 below the buffet regime, on the verge of buffet , and above the
buffet regime. The shock, which oscillates during the buffet, is the sharp vertical line between supersonic (bright)
and subsonic speeds.

Despite the critical importance of buffet in aircraft design, there is no single, universally-accepted definition of
buffet onset [1–6]. Some examples of empirical detection criteria used are a decrease in lift coefficient 𝐶𝐿 with respect
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to the Mach number in the transonic regime, the slope of the normal force coefficient 𝑑𝐶𝑁/𝑑𝐶𝐿 with respect to the
angle of attack 𝛼, and the divergence of the trailing edge pressure. For a historical overview of criteria see [7].

Sartor [8] and Crouch [5, 6] point out that the mathematical mechanism behind buffet onset in airfoils is the Hopf
bifurcation, where a linearly-stable steady solution (equilibrium) becomes unstable at a critical parameter value, leading
to a birth of a stable limit cycle that becomes the new attractor for the dynamics.

Various airfoil shapes may experience buffet at different combinations of parameters, although the phenomenon
itself is the same. We therefore focus on a single configuration, the ONERA OAT15A airfoil flying at a steady speed of
Ma = 0.73, with the buffet induced by an increase in 𝛼. Related configurations has been studied experimentally in
wind tunnels [1, 8, 9] with the buffet onset occurring between 3.25◦ < 𝛼 < 3.50◦, with oscillations at frequencies of
0.06 < St < 0.09 [1, 8] where St is the Strouhal number defined as the frequency of oscillation normalized by the flow
velocity and chord length. The same range of frequencies is identified by additional analysis of simulations and by
linear stability analysis in [1, 8]. For a slightly different Re and Ma configuration, [6] finds the critical 𝛼 of 3.03◦.

Instead of the model-based analysis (linearization), data-driven techniques can be used on both simulated and
experimental fields; in particular, proper orthogonal decomposition (POD) [10] and dynamic mode decomposition
(DMD) [11, 12] have been investigated in the literature. Both algorithms apply a numerical separation of variables to a
snapshot matrix containing the time evolution of data, producing pairs of modes (spatial profiles) and coefficients (time
evolution) that act as elements in the linear decomposition of the original data. In the case of POD, elements in the
decomposition are mutually orthogonal, resulting in the highest-possible rate of capture of the ℓ2-norm when only a
subset of modes is retained. By contrast, DMD modes are computed so that their time evolution is specified by a single
(complex-valued) frequency, simplifying the interpretation of the time evolution; on the other hand, the orthogonality of
the modes is lost. Both POD and DMD have been given additional theoretical justification which connects them to
various aspects of the underlying dynamical models; see [13] for connections between POD and coherent structures in
flows, and [14–17] for connections between DMD and Koopman operators of dynamical systems.

Liu et al. [18] investigate transonic shock buffet instability of unsteady flow simulations for the OAT15A and
NASA(SC)-0714 airfoils using DMD. The variation of the growth rate of the dominant DMD mode vs. 𝛼 graph has
been used to predict the onset of shock buffet. While this method correctly identified the onset of buffet, it gave an
additional false-positive result bringing into question its predictive power.

Poplingher’s [2] DMD analysis showed that the first pair of dominant modes is associated with the buffeting
frequency, and their mode profiles represent shock wave/boundary-layer interaction. Other associated DMD modes
exhibited more structures in the shock wave traveling region. Using DMD, Poplingher [2] constructed three possible
reduced-order models (ROM) for transonic flows.

In other studies, researchers have used the POD to construct reduced-order models (ROM) and identify persistent
structures for transonic flows. For example, in Szubert’s analysis [19] of the OAT15A airfoil at Ma = 0.73 and 𝛼 =
3.5 deg, the interaction between upstream and downstream von Kármán eddies of the OAT15A airfoil was tracked by
wavelet analysis, autoregressive (AR) modeling, and POD. Ohmichi et al. [20] performed numerical simulations of
three-dimensional buffet phenomena on a swept wing using incremental POD and incremental DMD based on the
Hemati et al. [21] algorithm to consume low memory. This analysis found that spanwise periodic structures arise
on the wing’s topside and correlate to previously discovered buffet cells. Kou and Zang [22] applied DMD to build
reduced-order models and demonstrated their technique on a transonic NACA0012 airfoil, including the buffeting and
wake-oscillation regimes. While they do not primarily detect the onset of the oscillations, they do demonstrate that
DMD remains a viable ROM technique across the range of flow behaviors analogous to those studied in our work.

The early DMD algorithms were theoretically well-supported only when applied to long segments of statistically
steady data, where the frequency content did not change in time. When applying DMD to segments of trajectories,
especially when those trajectories are transient, for example connecting unstable and stable solutions, Page and
Kerswell [23] show that a careless choice of trajectory segment may lead to a disorganized and non-reproducible DMD
spectrum that does not represent either the dynamics around the “departure” or around the “approach” of the trajectory.
While theoretical backing for the Koopman analysis of such time-varying data is in active development [24–26], practical
modifications of the DMD involve working with the sliding data window [23, 27]. This is the approach we adopt here.

In this paper, we demonstrate how a sliding window DMD can be coupled with parametric analysis to correctly
identify the onset of buffet, calculate the frequency of oscillations, and disambiguate mechanisms leading to oscillations
based on their spatial DMD modes. We demonstrate this on a OAT15A airfoil simulated using an unsteady Reynolds-
averaged Navier-Stokes (RANS) code [28]. To this end, Section II describes the flow configuration, and uses a Fourier
analysis as a baseline calculation of the buffet frequency. Section III describes the DMD algorithm along with the
modifications used, and shows how its outputs reflect the transient nature of the flow at a single 𝛼 value. Section IV
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shows how the outputs change when the 𝛼 is varied, and how the onset of buffet is reflected in them. We conclude in
Section V by discussing other flow features reflected in the analysis, as well as prospects for using the outputs in an
optimization code.

II. Preliminary analysis of transonic buffet

A. Qualitative behavior of the simulated flow
We study the ONERA OAT15A airfoil at a steady speed, with the onset of buffet controlled by an increase in the

angle of attack 𝛼. The flow is simulated using the NSU2D numerical code, developed and made available by D. Mavriplis
[28–31], which solves the unsteady RANS equations with the Spalart-Allmaras turbulence model and compressibility
correction on an unstructured 2D grid, using a nonlinear multigrid solution scheme with matrix dissipation. The results
are made nondimensional using the free-stream density and speed of sound and the chord length. The triangular mesh
used has a total of 34 521 nodes. The numerical timestep was held constant at 0.01, although in our analysis we used
solutions downsampled to the effective timestep of Δ𝑡 = 1.00, except where explicitly noted otherwise; all simulations
have the total duration of 𝑇 = 100.

The airfoil and flow parameters were set to the following values:
• chord length 𝐿 = 1,
• fluid density 𝜌 = 1,
• specific heat ratio 𝛾 = 1.4,
• freestream speed 𝑉 = Ma = 0.73,
• Reynolds number Re = 𝑉𝐿/𝜈 = 3 × 106.

where 𝜈 is the kinematic vicscosity. The Prandtl number of the gas was assumed to be that of air. Any oscillation
frequency 𝑓 is reported through its Strouhal number computed as St = 𝑓 𝐿/𝑎, where 𝑎 is the speed of sound.

The change in 𝛼 was effected by the change in the direction of the background flow, without any changes to the
geometry of the boundaries at the airflow surface or the associated change in the computational mesh. The initial
velocity profile of each simulation was set to the free stream profile. The boundary conditions on the airfoil surface
were no slip and no heat transfer (adiabatic assumption).

The output of the code is a time-resolved set of fields associated with the flow. Our analysis uses the horizontal and
vertical components of the velocity, and pressure; eddy viscosity and internal energy are also computed by the code, but
they were not used in our analysis.

The onset of transonic buffet has been linked to the Hopf bifurcation mechanism [5, 6, 8], schematically shown
in Figure 2. In the pre-buffet (low 𝛼) regime, the flow is a stable fixed point of the governing differential equation, with
its Jacobian featuring a pair of complex eigenvalues that capture the decay rate and frequency of the oscillatory transient.
Even though the dynamics evolves in a high-dimensional (computationally) or infinite-dimensional (theoretically)
space, the destabilization is associated with the two-dimensional subspace spanned by eigenvectors associated with the
mentioned conjugate eigenvalue pair. Components of the flow in this subspace change from stable to unstable when 𝛼 is
increased through the critical value, indicating an oscillatory transient that changes from decaying to growing behavior.
At the critical 𝛼 value, a stable limit cycle detaches from the fixed point and attracts the trajectories. As 𝛼 further
increases, the diameter of the limit cycle grows, resulting in a larger amplitude periodic oscillation; importantly, through
the onset, the frequency of oscillation remains constant.

In experimental or closed-box computational studies, analytic bifurcation analysis is not feasible. To benchmark our
proposed method, introduced in Section III.A, we estimate the onset of the buffet in two additional ways: peak-to-peak
analysis of the oscillations in lift and speed, and Fourier analysis of the lift coefficient time-trace.

B. Analysis of the lift coefficient time series
An airfoil’s lift coefficient is a dimensionless coefficient representing the lift force on an airfoil 𝐶𝐿 = 𝐹𝐿/(𝜌𝑉2𝐿/2)

where 𝐹𝐿 is the lift force created per unit depth of the airfoil. To determine 𝐶𝐿’s period of oscillation at a specific 𝛼, the
peak-to-peak distance between the last two consecutive peaks in the time-trace was measured, and reported for eleven 𝛼

values in Figure 3. Similarly, the magnitude of peaks was compared to estimate whether the oscillations grow, decay, or
stabilize.

We report only a subset of analyzed angles in Figure 3, but enough to notice three general regimes: (i) the pre-buffet
regime, where the oscillations decay, (ii) the buffet regime, where the oscillations stabilize in the band 0.06 < St < 0.09,
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(a) (b) (c)

Fig. 2 Sketch of the phase portraits as the flow undergoes a Hopf bifurcation that manifests as the buffet. (a)
Below the critical 𝛼, the trajectory moves from the initial state to a stable fixed point (steady flow). (b) At the
critical 𝛼, the limit cycle is born. (c) Above the critical 𝛼, the trajectory moves from the initial state to the stable
limit cycle (buffet).

𝛼 Frequency (St) Stability
1.00 N/O N/O
2.00 N/O N/O
2.50 N/O N/O
3.00 0.063 decay
3.25 0.066 steady
3.50 0.067 steady
4.00 0.069 steady
5.00 0.073 steady
6.00 0.081 steady
6.50 0.114 decay
7.00 0.135 decay

(a) Frequency and growth/decay of oscil-
lation measured by peak-to-peak analy-
sis (b) Time series of lift oscillation

Fig. 3 The lift coefficient 𝐶𝐿 for 𝛼 between 𝛼 = 1.00◦ and 𝛼 = 7.00◦. N/O indicates a non-oscillatory time trace.
The observed buffet frequency is in the band 0.06 < St < 0.09 which is consistent with similar airfoils described
in [8].

and (iii) the post-buffet regime, where the dominant frequency sharply increases and the oscillations again decay. Notice
that around the transition, with 3.00◦ < 𝛼 < 3.25◦, the oscillation frequency remains constant, which is consistent with
the underlying Hopf mechanism.

Oscillations in the lift are closely mirrored by the oscillations in local speed. Figure 4 shows the local speed along
an elliptic loop surrounding the wing, where the shock is clearly present as a near-discontinuity in the local speed.
Comparing the lift coefficient trace and the trace of the shock location demonstrates that the oscillations in speed mirror
the oscillations in the lift coefficient, justifying the use of velocity as the input in our later analysis.

As an alternative to peak-to-peak analysis, we compute the Power Spectral Density (PSD) using a discrete Fourier
transform (via Fast Fourier Transform, FFT) of the data. While such analysis is standard and reliable for data in which
the transient component is negligible or dominates during only a small portion of the total data set, our data is highly
transient. Computing the PSD of the entire timetrace results in the transient severely affecting the “expected” result.
For example, at 𝛼 = 3.25◦, the PSD, shown in Figure 5, does not show a prominent peak around St = 0.066 that was
estimated using peak-to-peak analysis.

To remedy this, we use Short-Time Fourier Transform (STFT), where the analysis is computed for a shorter data
window, in our case lasting 𝑇𝑤 = 30. The start of the window is moved along the full input (by one step at a time,
producing (𝑇 − 𝑇𝑤)/Δ𝑡 = 70 PSD traces. When STFT is applied as the primary analysis tool, it is typical to further
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(a) (b) (c)

Fig. 4 Speed profiles during transient to the buffet at 𝛼 = 3.25◦. (a) A time-snapshot of the velocity magnitude
contours (b) Four snapshots of the velocity magnitude profiles evaluated along the blue ellipse in (a) measured
anti-clockwise starting from the trailing edge. (c) Comparison of the time trace of the lift 𝐶𝐿 (red curve) and the
velocity magnitude profiles (heatmap) along the blue ellipse in (a).

modify it to minimize artifacts caused by using relatively-short processing windows. For simplicity, we do not pursue
those modifications here.

In order to compare the Strouhal number spectrum at each angle, Figure 6 was made by computing STFT for 35
values of 𝛼, 𝛼 ∈ [1.00◦, 7.00◦], and splicing them horizontally. Thus, the large scale features from left to right indicate
the change in PSD with respect to 𝛼, while variation inside each of the smaller vertical bands indicates the change in the
PSD corresponding to the movement of the data window inside that specific 𝛼 simulation.

The overall distribution of PSD indicates that for buffeting 𝛼, roughly 𝛼 ∈ [3.20◦, 6.30◦], the power is concentrated
around St ≈ 0.1, which is broadly consistent with peak-to-peak analysis and the experimentally reported data. The
shortened window means that these peaks are known only up to the resolution of 0.04 in the St domain.

The stability of oscillation can be estimated by looking inside the vertical bands; around 𝛼 ≈ 3.00◦ the high values
of PSD appear at the start of each simulation, while later, e.g. 𝛼 ≈ 6.25◦, the high values appear toward the end of
each simulation. This is again consistent with the direct peak-to-peak analysis. However, neither Fourier analysis nor
peak-to-peak analysis give a reliable way of estimating the growth or decay rates quantitatively.
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(a) (b)

Fig. 5 Power Spectrum Density (PSD) of the lift coefficient 𝐶𝐿 mean-removed time series for 𝛼 of 3.25◦: (a)
applied to the full time series of duration 100, (b) applied to three segments of duration 30, indicated in the time
trace. Notice that the PSD of the full data and of the initial window overlapping the transient do not have a peak
at the dominant frequency of oscillation.

Fig. 6 Heat map of the Power Spectral Density (PSD) of the lift coefficient 𝐶𝐿 for various 𝛼 and for various
locations of the data window (duration 30 units). Each vertical strip corresponds to the moving of the data
window within the simulation for the indicated 𝛼. The red dots indicate the peak of each PSD. Due to the low
number of data points within each window, the FFT has a low resolution in the frequency axis, resulting in a
pixelated appearance.
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III. Sliding-window Dynamic Mode Decomposition (DMD) of transient data

A. Overview of the DMD algorithm
The input into DMD is a spatiotemporal matrix X whose columns X[𝑛] represent simulation snapshots, that is

evaluations of state variables on a fixed grid containing 34 521 nodes. The variables used are arranged as follows

X =


𝑢/
√

2
𝑣/
√

2
𝑠/
√

2
𝑐𝑠


, (1)

where the symbols represent the velocity components (𝑢, 𝑣), the speed 𝑠 =
√
𝑢2 + 𝑣2, and the local speed of sound

𝑐𝑠 =
√︁
𝛾𝑝/𝜌 computed from the local pressure 𝑝 and density 𝜌. The speed 𝑠 is used explicitly to allow for a direct

interpretation of spatial profiles arising from DMD modes, without additional nonlinear transformations in the post
processing. Using [𝑢, 𝑣.𝑝]⊤ as the columns of the data matrix would lead to the dimensional incompatibility of the
euclidean norm of the columns and the physical energy of the system. For this reason, we use 𝑐𝑠 instead of the pressure
𝑝 and include the scaling factors

√
2. Since the regression below is performed with respect to the euclidean ℓ2 norm, the

scaling of numerical tolerances and errors is more closely connected to the physical energy of the structures that are
(numerically) discarded when forming reduced order models of data.

Consequently, the size of each column is 138 084 = 34 521×4 and there are 𝑁 = 101 columns X[𝑛], 𝑛 = 0, 1, ..., 𝑁−1
representing time instances between 0 to 100, sampled at timestep Δ𝑡 = 1.

DMD is the regression of columns X[𝑛] onto the formula

X[𝑛] =
𝐾∑︁
𝑘=1

𝝓𝑘𝜆
𝑛
𝑘𝑏𝑘 , (2)

where 𝝓𝑘 are (complex-valued) spatial profiles called DMD modes, 𝜆𝑘 are DMD frequencies, and 𝑏𝑘 are coefficients
used to combine DMD mode evolution into the data. Complex-valued modes and frequencies always appear as conjugate
pairs, as the inputs are all real-valued. In this way, every DMD mode evolves according a single (complex) frequency,
which is often written in its “continuous-time” form

𝜆𝑛𝑘 = exp{(𝜎𝑘 + 𝑖𝜔𝑘)𝑛Δ𝑡}, (3)

so that coefficients 𝜎𝑘 + 𝑖𝜔𝑘 ∈ C can be interpreted in the same way as eigenvalues or characteristic values for linear
differential equations: 𝜎𝑘 < 0 indicate modes whose magnitude decays in time, while 𝜔𝑘 ≠ 0 indicates oscillating
modes, where the period of oscillation is 2𝜋/|𝜔𝑘 |. This DMD algorithm was first introduced to analyze constituent flow
patterns in complex flows and to design control and detection strategies [11, 12].

Justification for the DMD regression comes from the representation of dynamics as the evolution of the initial
vector by the linear, time-invariant Koopman operator. The DMD frequencies 𝜆𝑘 approximate a subset of eigenvalues
of the Koopman operator [15, 32], while modes 𝝓𝑘 are projections of simulated variables onto the eigenfunctions of
the Koopman operator. Since the interpretation of DMD as regression into (2) suffices for our purposes, we point the
interested reader to the recent review [17] for more details on the Koopman operator framework.

While the family of DMD algorithms grows every day, the early exact DMD algorithm and its modifications will
suffice for the proof-of-principle of the proposed buffet analysis.

X[𝑛] is organized into two matrices, past X1 = (X[𝑛])𝑁−2
𝑛=0 and future X2 = (X[𝑛])𝑁−1

𝑛=1 whose relationship is
modeled as

X2 = KX1 + R. (4)

The DMD matrix K is a representation of the Koopman operator that maps each snapshot X[𝑛] into the subsequent one
X[𝑛 + 1] or, equivalently, each column of the past matrix X1 [𝑛] into the corresponding column of the future matrix
X2 [𝑛]. Matrix R represents an error term or a residual that is expected to be small.

In principle, K is computed via a regression, by optimizing the Frobenius norm

min
K,ΔX1 ,ΔX2







[
ΔX1

ΔX2

]





𝐹

, subject to X2 + ΔX2 = K(X1 + ΔX1); (5)
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in this case the residual is R = KΔX1 − ΔX2. Such setup corresponds to the total-least-squares (TLSQ) regression,
reflecting that X1 and X2 are equally susceptible to errors. DMD using TLSQ was formulated and studied by Hemati et
al. [21].

The matrix K is not directly of interest, but rather only its eigenvalues and (right) eigenvectors, the DMD eigenvalues
and modes. The DMD algorithms approximate this data by performing a regression on a low-dimensional subspace of
the full state space. For the total-least-squares DMD [21] the procedure is as follows. First, define

Z B

[
X1

X2

]
∈ R2𝑚×(𝑁−1) , (6)

and then perform the following steps:
1) Compute Singular Value Decomposition Z = U𝚺V∗, such that the truncation Z𝑘 B U𝑟𝚺𝑟V∗𝑟 is the best rank-𝑟

approximation of Z,
2) Project inputs onto the range of Z∗

𝑘
: X̄2 = X2PZ∗

𝑘
, X̄1 = X1PZ∗

𝑘
, where PZ∗

𝑘
= V𝑟V∗𝑟 ,

3) Compute SVD X̄1 = Ū𝚺̄V̄∗,
4) Evaluate ℓ2-regression in the low-dimensional subspace K̃ B Ū∗X2V̄𝚺̄−1 ∈ R𝑟×𝑟 ,
5) Compute all eigenvalues/-vectors: K̃𝝓𝑘 = 𝜆𝑘𝝓𝑘 , and set 𝜎𝑘 + 𝑖𝜔𝑘 B ln𝜆𝑘/Δ𝑡,
6) Compute DMD modes: 𝝓 = X̄2V̄𝚺−1𝝓𝑘 and normalize to unit norm 𝝓𝑘 ← 𝝓𝑘/∥𝝓𝑘 ∥2.
The DMD model reduction process is to choose the value of the parameter r in the first step of the DMD algorithm.

However, in this research endeavor, X̄1 and X̄2 were made using all the right singular vectors.
To fit the library of DMD modes to the data, in order to obtain the decomposition in (2), the combination coefficients

𝑏𝑘 are computed by a second regression:

𝒃 = arg min
𝜷∈C𝑟

𝑁−1∑︁
𝑛=0



X[𝑛] −∑𝑟𝑘=1 𝝓𝑘𝜆
𝑛
𝑘
𝛽𝑘



2
2 (7)

Elements of the vector 𝒃 can be interpreted as (complex) contributions of DMD modes to the initial condition.
Aassigning “importance” to each mode based on the value of |𝑏𝑘 | therefore biases decaying modes (that start “large”)
over unstable modes. Instead, we sort the modes according to their time-averaged ℓ2 norm

𝑏̃2
𝑘 B

1
𝑇

∫ 𝑇

0
∥𝑏𝑘𝑒𝜎𝑘 𝑡+𝑖𝜔𝑘 𝑡𝝓𝑘 ∥22𝑑𝑡 =

exp(2𝜎𝑘𝑇) − 1
2𝜎𝑘𝑇

|𝑏𝑘 |2 (8)

≈
[
1 + 𝜎𝑘𝑇 + O(𝜎2

𝑘𝑇
2)
]
|𝑏𝑘 |2, (9)

which reduces to 𝑏̃𝑘 = |𝑏𝑘 | for periodic (𝜎𝑘 = 0) modes.

B. Stabilization of the DMD spectrum using sliding window
Even though the lift coefficient develops a clear oscillation at 𝛼 ≥ 3.15, applying the DMD to the full transient data

set fails to resolve the associated frequency St ≈ 0.07 as one of the dominant DMD modes. This artifact was explained
by Page and Kerswell [23] to be the consequence of fitting a single time-invariant linear model to data produced by a
transient (near-heteroclinic in [23]) trajectory of the underlying dynamics, as illustrated in Figure 7, where the trajectory
in gray transits from an unstable fixed point to a stable limit cycle.

Since different modes are dominant along different segments of the trajectory, we apply DMD only to a subinterval
of time (data window) and then slide this subinterval from the beginning to the end of each simulation. If DMD was
then applied to three different data windows, shown in Figure 7 in red, blue, and purple, three qualitatively different
spectra emerge.

The red interval results in the right half-plane dominant eigenvalues, as the dynamics expands away from the
unstable equilibrium. The blue interval results in the left half-plane dominant eigenvalues, as the dynamics contracts to
the stable limit cycle. The purple interval, that straddles both the repelled (red) and attracted (blue) sections does not
yield a numerically-stable calculation of the spectrum.

In simple analytic examples, as demonstrated in [23], the location of the transient point separating the repelling and
attracting segments can be computed analytically, but we do not to attempt to do so here. However, by reducing the size
of the data window and positioning it at different places along the trajectory, it is possible to capture the dynamics in
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Fig. 7 Sketch of a trajectory (gray) departing the unstable fixed point (steady flow) and approaching the stable
limit cycle (buffet). Dominant DMD eigenvalues computed based on the red segment have positive real part,
while DMD eigenvalues computed based on the blue part have negative real parts. DMD eigenvalues computed
based on the purple segment, which straddles the separation point, are not computed reliably.

each section trajectory by computing a numerically-reproducible eigenvalue spectrum. More precisely, the size of the
data window should not be too narrow, in order to correctly resolve the complex frequency of oscillation and should
not be too long, so as not to straddle the transient point of the trajectory. In all subsequent results, we use the data
window size of 𝑇𝑊 = 30; we verified that all the results are robust for windows between 20 < 𝑇𝑊 < 50, but we omit this
comparison in the interest of space.

In analyzed simulations, all initial conditions were taken to be the free-stream fields, which are typically not in the
vicinity of the steady solution (equilibrium). Therefore, we do not expect to capture the modes that govern the departure
of solutions from the unstable steady flow in the case of transonic buffet, but only those modes that govern the collapse
of the solutions onto the attractor (limit cycle) and those that govern the neutrally-stable behavior along the attractor.

The simulation at 𝛼 = 3.25◦ was used to demonstrate how the window’s placement affected the DMD eigenvalue
spectrum. The data window was placed in locations between 0 − 30, 30 − 60, and 70 − 100 and analyzed the DMD
continuous-time eigenvalue spectrum of each location to comprehend the behavior of the dynamics, as shown in Figure 8.

Fig. 8 Eigenvalue spectrum of three different points in the timeline for 𝛼 = 3.25◦. The dominant mode eigenvalue
(red cross) moves closer to the imaginary axis as the time window moves away from the transient region. This
indicates that the flow is transitioning from an unstable fixed point to a stable limit cycle.

When the data window is moved from left to right, as shown in Figure 8, the real component of the first dominant
mode shifts from negative to positive, as indicated by the red cross, and the Strouhal number remains close to 0.06 after
the first window, which is after transition time. This demonstrates that the NSU2D code’s solutions for the high 𝛼 of
3.25◦ go to a limit cycle from a stable free stream velocity.

The dominant DMD eigenvalue in the spectrum, shown in Figure 9, tracks the dominant buffet frequency closely,
with the other eigenvalues harmonically related to it. Notice that in the early stages of the transient, the eigenvalue has a
negative sign, corresponding to the contraction onto the attractor from the initial free-stream profile.
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Fig. 9 The change of oscillation frequency of the ten most-dominant DMD eigenvalues with respect to the
location of the data window of constant duration 𝑇𝑊 = 30. Red resp. blue color corresponds to the positive, resp.
negative, sign of the real part of eigenvalues; color intensity corresponds to the mean-ℓ2 norm of the DMD modes.
The dominant line around St = 0.06 corresponds to the dominant buffet frequency; sub-dominant frequencies
are harmonically related to it.

C. The effect of window location on DMD mode profiles
The location of the data window along the transient trajectory potentially affects not only the DMD eigenvalues but

also the shape of DMD modes.
Most generally, the mode vector 𝝓 is a complex-valued vector. The moduli of its elements |𝝓𝑖 | can be interpreted as

the degree to which the associated (complex) frequency is responsible for the variation in 𝑖th measurement variable
(observable) in the data. To compare modes 𝝓𝜏 and 𝝓𝜏′ computed for data windows starting, respectively, at 𝜏 and
𝜏′, we compute the Pearson correlation coefficient corr( |𝝓𝜏 |, |𝝓𝜏′ |). Pearson coefficient of two vectors is the cosine
of the angle between their variations around their respective means, computed by the dot-product after centering and
normalizing,

corr(𝒗, 𝒘) B 𝒗 − 𝒗̄
∥𝒗 − 𝒗̄∥ ·

𝒘 − 𝒘̄

∥𝒘 − 𝒘̄∥ . (10)

In what follows, for each data window associated with a simulation at a single angle 𝛼 we compare the dominant
non-trivial (highest 𝑏̃ excluding the trivial 𝜆 ≠ 1 mode). The correlation between all pairs of dominant modes chosen in
that way can be visualized as a symmetric heatmap plot where the values ≈ 1 indicate profiles of high similarity, and
those ≈ 0 indicate profiles that are different from each other, as shown in Figure 10. Groups of consecutive modes
similar to each other appear as dark squares.

Figure 10 shows the correlation of spatial profiles of dominant DMD eigenvectors for 𝛼 below the buffeting regime,
in the pre-buffet regime, inside the buffet regime, and the post-buffet regime. For all angle, the initial transient period
where there is no correlation between dominant modes is clearly visible; in all cases, after the transient, the dominant
mode is computed robustly with respect to the choice of the data window.
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(a) 𝛼 = 1.50 deg (b) 𝛼 = 3.00 deg (c) 𝛼 = 6.00 deg (d) 𝛼 = 6.50 deg

Fig. 10 Pearson correlation (10) between speed portion of the modulus of dominant DMD modes for all data
windows in simulations with four values of 𝛼. Axes correspond to start times for the two windows compared.
High values (dark) indicate closely-aligned modes, low values (light) indicate almost-orthogonal modes. All
panels demonstrate that after the initial transient, the dominant modes remain robust with respect to the choice
of the data window; regular vertical lines in 𝛼 = 6.50◦ panel are outliers, associated with non-buffeting profiles
concentrated in the wake, which appear due to insufficiently high simulation step (aliasing).

IV. Parametric analysis of the buffet using DMD
We now move from tracking the change in DMD spectrum and modes within a single 𝛼 simulation to tracking them

between variations in 𝛼. In Section II.A we mentioned that the onset of buffet in airfoils can be explained by a Hopf
bifurcation mechanism. If we were analyzing the spectrum and eigenvectors of the flow linearized around the steady
profile (Jacobian) instead of the DMD matrix, we would expect to see a pair of oscillating eigenvalues whose stability
changes from decaying to growing, and whose eigenvectors span the plane of oscillation of the trajectory. In this section
we show the effect of the onset on the spectrum and eigenvalues of the DMD, as well as artifacts that arise from applying
DMD to a realistic simulation dataset.

A. The change in spectrum across parameter variation
We analyze a dataset containing simulations for 35 different 𝛼 in the interval 1.00◦ ≤ 𝛼 ≤ 7.00◦. Other parameters

remain the same as before: all simulations were initialized to the free-stream profile, the time step is always Δ𝑡 = 1.00,
data window size is 𝑇𝑊 = 30, and modes were sorted in importance according to the mean ℓ2 norm (8).

First, we visualize the change in oscillation frequency of DMD modes. To simultaneously show the effect of the
location of the data window within each simulation, and the effect of changing 𝛼 between simulation, we extend the
Figure 9 by horizontally stacking visualizations of the imaginary parts all dominant eigenvalues for the computed angle,
resulting in Figure 11. For comparison, we overlay the eigenvalues over the corresponding power spectral density
plots of the lift coefficient 𝐶𝐿 computed using the STFT, and the range of frequency at which the buffet oscillates, as
determined by Sartor [8].

The most prominent feature in Figure 9 is the near-continuous line of eigenvalues appearing roughly for 𝛼

2.75◦ ≤ 𝛼 ≤ 6.3134◦. The stability of eigenvalues changes from decaying (negative real part, in blue) to growing
(positive real part, in red) around 𝛼 = 3.10◦ along this line of eigenvalues, indicating that the buffet mechanism
appears as a decaying mode first, before switching the stability to growing. We interpret the change in stability of
DMD eigenvalues with the corresponding change in the stability of the tangent plane around the steady solution (Hopf
bifurcation).

This is consistent with the behavior that the 𝐶𝐿 time series exhibit in time traces such as Figure 3. Since the PSD
reliably detects only steady-state oscillations, the PSD of 𝐶𝐿 does not show a peak in the Sartor band until the DMD
eigenvalues become (significantly) close to the neutral stability region. Additionally, the PSD by itself does not indicate
the stability of the detected oscillations.

In Figure 12 the distribution of the real parts of DMD eigenvalues, i.e., rates of exponential growth and decay, is
visualized by showing the location of dominant DMD eigenvalues (left panel) and by showing the distribution of mean
ℓ2 norm across the DMD eigenvalues (right panel).

To visualize the distribution of the mean ℓ2 norm, we perform a kernel density estimate (KDE) of the eigenvalues
weighted by the mean ℓ2 norm squared. The resulting distribution is given by

𝑝ℎ (𝑠) ∝
∑︁
𝑘

𝑏̃2
𝑘 exp

−|𝑠 − 𝜎𝑘 |2
ℎ2 , (11)
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Fig. 11 Oscillation frequency (imaginary part) of the first dominant non-trivial (non-constant) DMD mode, for
35 simulations with varying 𝛼, and all data windows within each of those simulations. The color indicates the
stability (sign of the real part), that is growing (positive sign) or decaying (negative sign). For comparison, the
horizontal lines indicate the buffeting frequency band 0.05 < St < 0.10, as determined by Sartor [8], and the
heatmap is the value of PSD of the lift coefficient 𝐶𝐿 calculated using the STFT. The Dominant mode oscillates at
a frequency in Sartor’s band starting at 𝛼 ≈ 2.75◦. The dominant mode decays for 2.75◦ ≤ 𝛼 ≤ 3.05◦, which we
refer to as the pre-buffet regime. The dominant mode grows (weakly) for 3.10◦ ≤ 𝛼 ≤ 6.3134◦, which we refer to
as the buffet regime. For 𝛼 > 6.3134◦ the dominant mode again decays.

where 𝑏̃𝑘 are mean ℓ2 norms (8) of eigenvalues, 𝜎𝑘 are real parts of eigenvalues, ℎ is the width of the gaussian kernel,
the sum ranges across all the non-trivial DMD eigenvalues, and ∝ indicates that the distribution is scaled to an integral
equal to 1. The kernel width ℎ is a tuneable hyperparameter that produces a more-or-less smooth distribution; we used
ℎ = 6 × 10−3.

The visualization shows that within the buffet region (3.10◦ ≤ 𝛼 ≤ 6.3134◦) the eigenvalues concentrate around
the neutrally-stable zero-axis, which is consistent with the sustained oscillation. The stability in the pre-buffet region
(2.75◦ ≤ 𝛼 ≤ 3.05◦), where the imaginary parts of DMD eigenvalues already start assembling into a line that is
continued through the buffet, is not significantly different from the stability in the region where no oscillations are
present (𝛼 ≤ 2.5◦).

B. Tracking of modes across parameter variation
We now examine the change in the spatial fields associated with DMD modes as 𝛼 is changed. In all visualizations

we use heatmaps to visualize the real and imaginary parts of the speed segment of the DMD eigenvector associated with
a particular mode; modes in the pre-buffet and buffet are shown in Figure 13, and post-buffet in Figure 14.

The signature of the buffet mechanism is clearly visible in the dominant modes in Figure 13 as the band perpendicular
to the top of the airfoil, growing wider as 𝛼 is increased. The band indicates the oscillation of the shock that separates
the super- and subsonic flow; the shock line in this case stays perpendicular to the airfoil and its amplitude of oscillation
grows as the angle is increased. At the same time, region of separated flow broadens. The separated flow region above
the airfoil shows little change during the cycle of oscillations (both real and imaginary parts take the same “color”) in
that region, while the wake around half a chordal length behind the wing starts oscillating as 𝛼 increases further into the
zone of buffet.

After the disappearance of the buffet (𝛼 > 6.31 in Figure 14), the structure of the dominant mode significantly
changes, as the dynamics in the wake becomes dominant. The supersonic bubble at the top of the airfoil shrinks
(see also Figure 1 for a snapshot), so that the shock at its end moves closer to the leading edge. The separated flow
above the airfoil develops a longitudinal oscillation which eventually gets overshadowed by the dynamics in the wake,
clearly visible at 𝛼 = 7.00◦. Sartor et al. [8] attribute the dynamics in the wake to the roll-up of the shear layer
(Kelvin–Helmholtz instability) which should have a broadband frequency spectrum. We leave for future work the
analysis of this phenomenon, including the manner in which the DMD eigenvalues distribute in presence of irregular,

13



(a) (b)

Fig. 12 Growth/decay rate (real part) of the first dominant non-trivial (non-constant) DMD mode, for 35
simulations with varying 𝛼, and all data windows of length 𝑇𝑊 = 30 within each of those simulations. Panel (a)
shows the real part of the dominant 10 DMD eigenvalues, excluding the trivial invariant mode, with stability
indicated in color. Panel (b) shows the heatmap of the kernel density estimate (11) of the distribution of real
parts of all computed non-trivial DMD eigenvalues, weighted by the mean ℓ2 norm (8). Additionally, the mean
of the KDE distribution and the first dominant DMD eigenvalue are shown for the last data window for each
𝛼. Both panels show that within the buffet region 3.10◦ ≤ 𝛼 ≤ 6.3134◦ the eigenvalues concentrate around the
neutrally-stable region (weakly decaying or weakly growing).

e.g., chaotic, dynamics.
The similarity between dominant DMD modes can again be quantified using the Pearson correlation (10), displayed

as the similarity matrix in Figure 15. Although the 𝛼 was incremented nonuniformly (to give more resolution around
the onset and end of buffet), the correlation matrix demonstrates clirly that the dominant mode changes very slowly, if at
all, for angles associated with the buffet, and especially 4.00◦ ≤ 𝛼 ≤ 6.31◦.

The appearance of a dark square after 𝛼 > 6.30◦ indicates that the structure of the mechanism post-buffet changes
discontinuously after the buffet ends. On the other hand, at the onset of the buffet (𝛼 ≈ 3.10◦)

The dark square for 2.40◦ ≤ 𝛼 ≤ 3.25◦ indicates that the dominant mode whose eigenvalue changes the stability
around 𝛼 = 3.15◦, also changes minimally through the critical 𝛼, especially for 3.00◦ ≤ 𝛼 ≤ 3.25◦ This is analogous to
the structure of the Jacobian of the fixed point associated with the Hopf bifurcation.

A closer inspection of the square 2.40◦ ≤ 𝛼 ≤ 3.25◦ shows that the similarity decreases along lines parallel to the
diagonal, indicating that the mode change does exist through this region, but that it is continuous, i.e., modes closer in
𝛼 are more similar. In contrast, changing 𝛼 between 𝛼 = 3.25◦ and 𝛼 = 3.50◦ results in a significant change in the
structure of the dominant DMD mode, associated with the appearance of the structure in the wake of the airfoil.

Finally, we show the relationship between dominant vectors by a principal component analysis (PCA)/multidimensional
scaling (MDS) by computing the first three singular vectors of the Pearson correlation matrix for the non-trivial dominant
modes in the last data window of the simulation for each 𝛼. Visualizing simulations by using these vectors as three
spatial coordinates leads to the Figure 16. As it is clear, certain simulations tend to be mapped close to each other,
forming clusters; we applied agglomerative hierarchical tree clustering (clusterdata in MATLAB 2022b) to all 35
PCA vectors to assign colors to each of the clusters, and distinguish structures not immediately visible from the first
three vectors. Visualization using the first two PCA vectors show that there are two distinct spatial clusters associated
with the dominant mode: one for approximately 1.75◦ ≤ 𝛼 ≤ 3.5◦, where the transition to buffet occurs, and one for
approximately 4.00◦ ≤ 𝛼 ≤ 6.3◦, characterizing the well-developed buffet. Visualization using the second and third
PCA vectors additionally shows that the internal structure of each of these clusters is ordered with respect to the change
in 𝛼.

C. Harmonics, secondary mechanisms, and aliasing
Sub-dominant DMD modes at times can be associated with harmonics of the dominant oscillations, and at other

times reflect additional mechanisms contributing to the phenomenon.
The Figure 17 shows the frequencies of the five most-dominant DMD modes with the integer-multiples of the

most dominant mode indicated in green. This visualization shows that the sub-dominant DMD eigenvalues are exactly
harmonics (integer-multiples) of the dominant mode frequency for angles between, approximately, 3.50◦ ≤ 𝛼 ≤ 6.30◦.
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(a) ReΦ2, 𝛼 = 3.00 (b) ReΦ2, 𝛼 = 4.00 (c) ReΦ2, 𝛼 = 6.00

(d) ImΦ2, 𝛼 = 3.00 (e) ImΦ2, 𝛼 = 4.00 (f) ImΦ2, 𝛼 = 6.00

Fig. 13 The dominant DMD eigenvector for 𝛼 = 3.00 (pre-buffet), 4.00 (buffet), 6.00 (buffet), respectively in
each column. The color corresponds to the speed components of the complex eigenvectors; top row is the real,
and bottom the imaginary part. The widening band on the top side of the airfoil (white shape) corresponds to the
path of the oscillation of the shock line separating the supersonic and subsonic flow. The widening band in the
wake corresponds to the separated flow.

The structure of the speed profiles associated with the harmonic DMD modes is shown in Figure 18. The increasing
number of bands perpendicular to the airfoil are consistent with the translation of the shock line during each cycle of the
buffet. The structure of modes in the zone of separated flow is more complicated, starting with a longitudinal oscillation,
but not indicating a pattern that can be associated with a simple rotating or translating wave.

Outside of this strong buffet region, the harmonics are either faint, or are not listed among the most dominant
modes. For 𝛼 ≤ 6.50◦, additional structured line of eigenvalues at St ≈ 0.15 and St ≈ 0.3 are visible in Figure 17.
Since there are no known competing oscillation mechanisms in the given frequency range, this line of eigenvalues was
suspected of being an alias of higher-frequency behavior visible around St ≈ 0.2 as a consequence of relatively-low time
resolution. Given the sampling rate of 𝑓𝑠 = 1/Δ𝑡, the behavior that is oscillating at frequency 𝑓 larger than the Nyquist
frequency 𝑓𝑁 = 𝑓𝑠/2 will appear to be oscillating at a reduced frequency 𝑓𝑠 − 𝑓 . Reducing the time step, from Δ𝑡 = 1
to Δ𝑡 = 0.5 and Δ𝑡 = 0.25, as shown in Figure 19, shows that the corresponding eigenvalue lines stabilize in the range
0.8 < St < 1.2, indicating that this is the physical range of oscillations in the wake.

To confirm that no other properties of DMD modes are affected, we compared the spatial profiles and mean ℓ2

norms of the associated modes computed at two different time steps. As Figure 20 shows, the computed spatial profiles
are largely unaffected by the change of the timestep. While this behavior is not directly related to the buffet, it offers
an opportunity to conclude that even in the case of undersampled data, the DMD profiles may accurately reflect the
distribution of activity in the flow even if the time signature of that activity is calculated inaccurately.
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(a) ReΦ2, 𝛼 = 6.50 (b) ReΦ2, 𝛼 = 6.75 (c) ReΦ2, 𝛼 = 7.00

(d) ImΦ2, 𝛼 = 6.50 (e) ImΦ2, 𝛼 = 6.75 (f) ImΦ2, 𝛼 = 7.00

Fig. 14 The dominant DMD eigenvector for 𝛼 in the region after the buffet disappears. The color corresponds
to the speed components of the complex eigenvectors; top row is the real, and bottom the imaginary part. The
structure in the wake corresponds to the shear layer roll-up (Kelvin–Helmholtz instability [8]).

Fig. 15 Pearson correlation (10) between speed portion of the modulus of dominant DMD modes for the last data
window in each simulation across the range of 𝛼. 𝛼 resolution was changed non-uniformly, showing more detail
at the onset and end of the buffet. High values (dark) indicate closely-aligned modes, low values (light) indicate
almost-orthogonal modes. The dashed horizontal and vertical guidelines indicate the onset and disappearance of
buffet, based on the DMD eigenvalue frequency analysis.
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(a) (b)

Fig. 16 Embedding of simulations for 35 values of 𝛼 into the first three principal component (PCA) vectors,
computed using the singular value decomposition of the Pearson correlation matrix between speed component of
the dominant DMD modes for the last data window in each simulation. Labels next to points are values of 𝛼; the
lines connect points that have consecutive 𝛼s. Panel (a) is the projection onto the first and second PCA vectors,
panel (b) onto the second and third PCA vectors. Colors correspond to clusters computed using hierarchical
agglomerative clustering based on the geometric embedding into the all 35 PCA vectors.

Fig. 17 Imaginary component (St number) of DMD eigenvalues for 35 simulations with varying 𝛼, and all
data windows within each of those simulations. The buffet occurs approximately between 3.10◦ ≤ 𝛼 ≤ 6.3134◦.
Top five dominant eigenvalues ranked by mean ℓ2 norm (8), excluding the trivial mode at the origin, are shown
for each data window (vertical slice); color indicates the sign of the real part, indicating growth (red, positive)
or decay (blue, negative). The green dots are the first dominant eigenvalue along with its integer multiples,
demonstrating that, during the buffet, the dominant eigenvalues are harmonically-related.
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(a) ReΦ2, fund. (b) ReΦ2, 2nd harm. (c) ReΦ2, 3rd harm. (d) ReΦ2, 4th harm.

(e) ImΦ2, fund. (f) ImΦ2, 2nd harm. (g) ImΦ2, 3rd harm. (h) ImΦ2, 4th harm.

Fig. 18 The modes for the dominant DMD eigenvalue and its three harmonically-related eigenvalues for
𝛼 = 6.00◦. The increase in striation as the harmonic number is increased on the top of the airfoil is consistent
with the shock line traveling perpendicularly to the airfoil.

(a) Δ𝑡 = 0.8 (b) Δ𝑡 = 0.5 (c) Δ𝑡 = 0.25

Fig. 19 Imaginary component (St number) of DMD eigenvalues for 𝛼 = 1.00◦ – 7.00◦, and all data windows
within each of those simulations. Notice that the lower buffeting harmonics are identified appropriately regardless
of the sampling frequency. The frequencies of wake modes (which are dominant in 𝛼 > 6.50◦) change depending
on the sampling rate, indicating that the DMD analysis for low sampling rates detects their alias mirrored across
the Nyquist frequency.
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(a) Δ𝑡 = 1.00, St = 0.163 ≈ 2St𝑁 − 0.995 (b) Δ𝑡 = 0.50, St = 0.995

(c) Δ𝑡 = 1.00, St = 0.298 ≈ 2St𝑁 − 0.859 (d) Δ𝑡 = 0.50, St = 0.859

Fig. 20 Spatial profiles of DMD modes associated with the wake oscillations for 𝛼 = 7.00◦ at time steps Δ𝑡 = 1.00
and Δ𝑡 = 0.50, corresponding to the pair of eigenvalue lines in the upper right corner of Figure 19(b). The pair of
modes has an artificially low frequency of oscillations for Δ𝑡 = 1.00 due to mirroring across the Nyquist frequency
St𝑁 = 0.579 (aliasing).
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V. Discussion and conclusions
The goal of this paper was to clarify all the steps involved in a parametric analysis of the unsteady transonic flow

using the Dynamic Mode Decomposition (DMD) algorithm. We focused on the variation of angle-of-attack (𝛼) that
leads to the development of buffet oscillations. For most 𝛼 values, the dominant complex-conjugate pair of DMD modes
was sufficient to identify the physical frequency of oscillations of the buffet, consistent with the published analysis of the
same airfoil configuration, and demonstrate that the spatial profiles correspond to locations of the shock and separation
point whose dynamical interaction leads to the buffet.

The primary lesson of the paper is that, when dealing with strongly-transient data, the windowing of the DMD is
essential to obtaining the clear spectral characterization. Of course, this is not a priori surprising as suggested by [23].
Our results demonstrate the effect of the position of the windowed data on the DMD eigenvalues and modes, and clarify
how to choose the window location within the data set. In particular, for the analyzed problem it appears that the “steady
state” window can be detected by monitoring the variation in the dominant DMD eigenvector, as suggested by Figure 10.

Analyzing the variation in DMD spectrum across the data windows and across parameter variation, as described
in Section IV.A, suggests several indicators for detecting a sustained oscillation in the flow: (a) the appearance of the
DMD mode oscillating at the corresponding frequency, (b) the near-neutral stability of the mode, (c) the concentration
of the remaining DMD eigenvalues around the neutral-stability line, (d) the appearance of the harmonically-related
eigenvalues.

The dominant DMD eigenvectors can be additionally used to spatially identify mechanisms involved in the oscillation.
In particular, we were able to distinguish between the two types of oscillations present in our simulated flows, the buffet
and the wake oscillations, by means of the Pearson correlation (essentially, angle) between the associated spatial profiles
as shown in Figure 15 and Figure 16. In particular, such quantitative comparison (as opposed to visually comparing the
plots) can be used to detect finer variation between the spatial profiles as the parameter is changed and further identify
sub-regimes of the phenomenon by means of clustering or geometric embedding such as multidimensional scaling or
principal component analysis.

Our results additionally show that while the DMD is affected by aliasing when the snapshots are undersampled
in time, the spatial profiles of the dominant oscillating DMD modes remain unchanged, even though the associated
eigenvalues are mirrored across the Nyquist frequency. This is an additional argument for supplementing the DMD
eigenvalue analysis with the analysis of spatial profiles of DMD modes in detecting and tracking parameter regimes.

We initially interpreted the buffet onset as a Hopf bifurcation of the steady equilibrium. At the coarse level, this
connection was confirmed: DMD eigenvalues do show similar behavior to eigenvalues of the Jacobian in that their
imaginary parts (frequency of oscillation) do not change through the onset, and the subspace of oscillation (dominant
DMD modes) vary continuously, and not by a large amount. The more direct connections were harder to establish:
the DMD is computed based on a finite segment of a non-equilibrium trajectory, and while guidance of what can be
expected was given in [23], the conclusive prediction of the change in DMD eigenvalues with respect to the change in
data window and the parameter is still out of reach.

Comparison of the “short-time” DMD used here with the naive short-time Fourier analysis shows that DMD
computes the frequency of oscillations with higher precision than the FFT with the same number of samples, in addition
to also providing the information about the stability of the oscillations. The precision of the short-time Fourier analysis
could be improved using weighted windows, as is common in signal processing, but we did not pursue the effects of
such weighting on DMD here.

Based on these results, we expect that DMD analysis could be used inside aircraft design optimization loops. In
particular, since the spatial profile associated with the dominant DMD mode remains relatively unchanged through
the onset of the buffet as the parameter is varied, it could be used as a target for design procedures. For example, a
design procedure may modify the airfoil in a way that pushes the dominant DMD profile away from the profile present
at the onset time, corresponding to moving the design “up” on the right branch of the spatial profile space shown
in Figure 16(b). In other contexts where the buffet needs to be avoided, detecting that the design is close to the buffet
region may be done by detecting decaying DMD eigenvalues of the correct frequency, i.e., the initial blue segment of
the eigenvalue line in Figure 11, without ever simulating designs with parameters in the buffet region.
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