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ABSTRACT It is increasingly common for satellites to lose connection with the ground stations on Earth
with which they communicate, due to signal interruptions from the Earth’s ionosphere and magnetosphere.
Given the important roles that satellites play in national defense, public safety, and worldwide communi-
cations, finding ways to determine satellite trajectories in such situations is a crucially important task. In
this paper, we demonstrate the efficacy of a novel computer-vision-based approach, which relies on earth
imagery taken by the satellite itself, to determine the orbit of a satellite that has lost contact with its ground
stations. We empirically observe significant improvements, by more than an order of magnitude, over the
present state-of-the-art approach, namely, the Gibbs method for an initial orbit estimate with the Kalman
filter for differential error correction. We further investigate the performance of the approach by comparing
various neural networks, namely, ResNet-50, ResNet-101, VGG-19, VGG-16, AlexNet, and CoAtNet-4.

INDEX TERMS kalman filter, neural network, orbit determination, satellites.

I. INTRODUCTION

A. TRENDS WITH SATELLITES

The number of satellites in space is increasing, most notably
owing to SpaceX’s Starlink constellation [}, 2], which aims
to provide high-speed Internet services to greater parts of the
world, particularly in underdeveloped or rural regions. As
more satellites are being launched, the probability of colli-
sions between them also increases. Such collisions lead to an
increase in space debris, causing difficulties for ground-based
astronomical observations. Moreover, space debris contribute
to pollution on Earth [3]]. Thus, it is important to effectively
track satellite trajectories.

B. WHAT IS ORBIT DETERMINATION?

Satellite orbit determination is the computational process
of determining the state of a satellite (state vector, state,
ephemeris) as a function of time using sets of measurements
collected on board the satellite or by ground-based tracking
stations [4} [3]]. Current ground-based tracking systems make
use of active radar calibrators (ARCs), which are placed
at accurately known locations on Earth and provide range
and range-rate measurements [6]. These measurements are
converted into the state vector of the satellite through the use
of statistical estimation and orbit propagation techniques [3].

For satellites in orbit, however, disturbances such as those
due to solar radiation, atmospheric phase screening, and
azimuth phase noise interfere with communications between
satellites and ground stations and can even result in a loss of
connection [[7]]. One notable instance of this occurred with
the European Space Agency’s trio of satellites known as
Swarm, which were launched in 2013 with the aim of better
understanding the Earth’s magnetic field. Swarm itself lost
connection 166 times within its first two years of operation.
It was eventually found that in certain regions of the satellite
orbits, Earth’s ionosphere and magnetosphere had interrupted
the signals between the satellites and ground stations, and it
was impossible to locate the satellites for a few hours [8]).
Therefore, it is necessary to have techniques available that
are able to locate satellites when such situations arise.

C. A BRIEF HISTORY OF ORBIT DETERMINATION

The field of orbit determination has evolved substantially
over the past fifty years. In general terms, orbit determination
refers to the estimation of the orbits of objects in space.
In the context of this paper, these objects are specifically
satellites. Orbit determination algorithms rely on ground-
based or onboard observations of a satellite as input and have
been continually refined over the years. Following the launch
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of Sputnik in 1957, orbit determination began to capture the
attention of many astronomers worldwide. During the 1960s,
the primary methods for orbit determination involved the use
of camera tracking and radio Doppler tracking systems [9],
both of which relied on data stemming from observations
taken on Earth, with Baker, Nunn, Schmidt, and Hewitt cam-
eras [5]. These methods had an accuracy of around 0.5 km,
which can be considered to be quite low [9]. However, in the
1970s, with the introduction of laser-ranging technology, the
accuracy of observations improved to roughly 5-10 m [3].
The methods used today are the results of many refinements
and improvements in radio tracking techniques, force model-
ing, and laser technology.

D. THE STATE OF THE ART IN ORBIT DETERMINATION
The current state-of-the-art technique for obtaining orbital
data relies on systems of well-connected ARCs that provide
range and range-rate measurements. From these measure-
ments, the position and velocity of a satellite are calculated
[5, 6], and the initial state is refined by means of differen-
tial correction techniques such as least squares or Kalman
filtering techniques. ARCs are used with synthetic aperture
radar (SAR), where the primary objective is to obtain high-
resolution images. ARCs send pulses regularly from antennas
and store the resulting echoes in a two-dimensional (2D)
matrix, which is referred to as the raw data. Then, through
the use of an SAR processor, a focused image is obtained
after two compressions have been performed on the received
raw data [6l [10]. The first compression is performed along
the range direction, using a matched filter, and the second
is performed along the azimuth direction, with the signal
being compressed by an SAR algorithm. The primary issue
with the use of SAR, and ARC, however, is that the lateral
resolution degrades with increasing operating distance [6],
and other factors such as frequency shift can exacerbate the
inaccuracies even further [[11].

After the data provided by the ARC has been obtained,
the next step in determining the orbit of a satellite is to
apply initial orbit determination (IOD) techniques. The two
most common techniques for IOD are trilateration and the
Gibbs method. Trilateration accepts the range and range-rate
measurements, taken at the same time, provided by three
connected ground bases, as well as each of their coordinates:
geodetic latitude, geodetic longitude, and altitude [6, [12].
Through the application of geometric principles, trilateration
is able to produce a satellite state vector. In the scenario
where only range measurements can be provided, trilatera-
tion can be implemented sequentially, although it then be-
comes quite complicated. Thus, the far simpler Gibbs method
is employed in such situations [6]. This method takes as input
three geocentric position vectors taken at three different times
(for which the position vectors are provided by trilateration)
and then calculates the state vector at the second timestamp
[13]. It should be noted, however, that the Gibbs method
requires all input position vectors to be coplanar [13].

This preliminary orbit can then be refined through the use
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of differential correction techniques, the two most common
being least squares and Kalman filtering. The primary differ-
ence between these is that the least squares approach involves
using systems of linear equations to estimate parameters [[14],
whereas the Kalman filtering approach uses measurements in
tandem with an equation describing the motion of the system
[L5]].

The methodology described in this paper represents a
paradigm shift in orbit determination: our approach uses pat-
terns and machine learning instead of a linear-check relation,
and it takes into account the external factors influencing the
motion of satellites orbiting the Earth.

It is increasingly common to attach cameras to satellites for
remote sensing purposes. These satellites use these cameras
to provide important information: the military uses such
information for defense and intelligence purposes, commer-
cial companies use it for communication and entertainment
services, and GPS uses it for mapping.

E. A HIGH-LEVEL OVERVIEW: OUR APPROACH

We take a distinctive approach to performing orbit determina-
tion, through the provision of an on-premise computer vision
solution to the problem. As previously mentioned, satellites
carry cameras, and these can be used for an additional task,
namely, to take images of the Earth. We make use of these
images to locate the satellite with a level of accuracy higher
than that achievable with the current state of the art approach
when a satellite loses contact with its ground-based operating
systems.

Il. METHODS

We begin by collecting various images of the Earth taken
by satellites in conjunction with the corresponding positions
of the satellites and the times at which the images were
acquired. We then construct a dataset consisting of images
mapped to flattened position vectors, and we train our model
on this dataset. We record the resulting root mean square
error (RMSE) across various models and report the test set
accuracy as well as the graphs of the training and test set
errors. We compare this novel method with the current state
of the art. We do so by implementing the Gibbs method
and Kalman filtering, and simulating their ability to predict
the future state vectors given the initial vectors. We then
determine the RMSE between the predictions and actual
positions.

A. DATASET AND PREPROCESSING

Our dataset consists of a training image dataset containing
8,000 images of the Earth, a validation set of 1,300 images,
and a test set of 700 images, all of which were taken from
Landsat 7 and Landsat 8 and made publicly available by
Google Research. The Landsat program, which is part of
the U.S. Geological Survey’s National Land Imaging (NLI)
Program, involved sending eight satellites into low-Earth
orbit (LEO) periodically, with Landsat 1 being launched in
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1972 and Landsat 8 in 2013, to collect data and image the
planet [16].

In particular, we collect images as well as the corre-
sponding metadata from Landsat 7 and Landsat 8 on Bands
3 and 4, respectively. The different bands correspond to
various ranges of frequencies in the electromagnetic spec-
trum, and were designed such that the sensors aboard the
satellites produce images with an emphasis on a particular
aspect of the Earth. Specifically, the wavelength range of
Band 3 (0.64-0.67 um) on Landsat 7, and that of Band
4 (0.64-0.67 um) on Landsat 8 discriminate vegetation-
covered slopes from other terrain. Furthermore, the image
dataset that we use is diverse, containing images of every
continent and major landmass on Earth.

For every image in the dataset, we downsize the original
image to 256 x 256 x 3 to save space. We then extract the cor-
responding ephemeris Earth-centered, Earth-fixed (ECEF)
coordinate data, or the position vector of a satellite in the
ECEF reference frame for each image from the metadata. We
ensure consistency in the dataset by converting all vectors to
tensors with fixed data type and normalize by dividing every
value by 10%. To be precise, for all images 4 in our dataset,
we have a corresponding position vector v € R16°%1 We
then train our model to associate the images with the position
vectors, from which the orbit can be exactly determined by
simply adding the time-stamp.

B. MODEL ARCHITECTURES AND IMPLEMENTATION

We have tested various neural nets and have observed con-
sistent phenomena. We compare the performance of these
neural networks with the Gibbs method and Kalman filtering.
We discuss each of the model architectures and our imple-
mentation.

1) ResNet-101 and ResNet-50

ResNet-50 is a type of residual convolutional neural network
(CNN) with 50 layers. ResNet-101 is a type of residual
CNN developed by He et al. [17]]. Its architecture is identical
to that of ResNet-50 except for the addition of three more
layer blocks, leading to a total of 101 layers. Central to
the architecture of the ResNet model is the notion of skip
connections and identity mapping. In essence, given input
x and desired underlying mapping H (x), He et al. [17] let
F(z) := H(x)—2 and recast the initial mapping to F'(z)+z.
They argued that it is easier to optimize the residual mapping
than the original un-referenced mapping. This formulation
F(z) + z is realized through skip connections, which skip
one or more layers.

We implement ResNet-50 using the ImageNet weights
simply by importing both the model and the weights. We feed
the output of ResNet-50 through an additional GlobalAver-
agePooling2D layer, two dense layers with ReL.U activations,
and a final dense layer with linear activation. The loss func-
tion we seek to minimize is the RMSE, and the optimizer we
use is stochastic gradient descent. We train the model for a
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total of 200 epochs and evaluate its performance on the test
set. We do the same for ResNet-101.

2) VGG-19 and VGG-16

VGG-16 is a convolutional neural network with 16 weight
layers, in which the image is passed through a stack of
convolutional layers that have a small receptive field, and
these are followed by max-pooling layers and several fully
connected layers [18]. The hidden layers use the ReLU
activation function. VGG-19 has a similar architecture to
VGG-16, with the notable difference of having 19 weight
layers [18].

We implement VGG-19 and VGG-16 using the ImageNet
weights simply by importing both the model and the weights.
We feed the output of the VGG-19 through an additional
GlobalAveragePooling2D layer, two dense layers with ReLU
activations, and a final dense layer with linear activation. The
loss function we seek to minimize is the RMSE, and the
optimizer we use is stochastic gradient descent. We train the
model for a total of 200 epochs and evaluate its performance
on the test set. We do the same for VGG-16.

3) AlexNet
AlexNet was devised by Krizhevsky et al. [19]]. The model
consists of eight layers with weights, namely, five convo-
lutional layers and three fully connected layers. The first
convolutional layer filters the image with a stride of four
pixels, and the result is fed to a max-pooling layer. The
second convolutional layer receives the output from the max-
pooling layer and filters it with 256 kernels, and the remain-
ing convolutional layers are connected without pooling or
normalization layers in between [19].

We implement the model as per the original paper [19],
followed by a final dense layer with linear activation.

4) CoAtNet-4

CoAtNet is a CNN that combines the strengths of convo-
lutional neural nets and self-attention. In CoAtNet, Dai et
al. [20] unified depthwise convolution and self-attention by
stacking convolution layers and attention layers in a natural
way. Their key insight came from noticing that depthwise
convolution and self-attention can be expressed as a per-
dimension weighted sum of values in a predefined receptive
field. Specifically, for input z;, output y; € R”, weights w,
position ¢, and neighborhood L (%), the depthwise convolution
can be described as

Yi = Z Wiy O Tj. (H

JEL(3)
Similarly, self-attention, for global spatial space G, can be

defined as

explafa;) -
i€g >reg exp(z] wx)

Yi =
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Dai et al. [20] combined these ideas by computing the
sum of a global static convolution kernel with an adaptive
attention matrix. Essentially, after a softmax, one can state

ypost — Z exp(z:iij
b7 2\ g oxp(a] a)

+wiej |z, (3)

with a slightly different construction in the event that one
wishes to perform prenormalization. Dai et al. used prenor-
malization relative attention and the transformer block to
produce their model.

C. KALMAN FILTERING AND THE GIBBS METHOD

1) General Kalman filter

a: Description of Kalman filtering

The basic Kalman filter takes as inputs the initial state vector,
the initial state error, the covariance of the process noise, the
covariance of the observation noise, and measurements taken
from sensors [21]. The Kalman filter is a recursive filter with
two phases: prediction and update. In the prediction phase,
the Kalman filter estimates the state at a later time, using
the state transition matrix, which is derived from the Taylor
series of the state at a certain time ¢ [21]]. In addition, a new
covariance will be produced, to approximate the uncertainty
of the said prediction. In the update phase, a measurement
of the state is taken via sensors. However, this measurement
comes with some error, and the covariance of this measure-
ment relative to that of the prediction is used to calculate the
Kalman gain [22]]. The Kalman gain represents the scaling
factor, and it determines the relative impact of the sensor’s
measurement and predicted state on the updated state.

b: Mathematical underpinnings

Mathematically, Kalman filtering is based on linear dynam-
ical systems discretized in the time domain. To use the
Kalman filter to estimate the internal state of a process given
only a sequence of noisy observations for each time step, we
specify the given time domain 7" and V¢; € T, the state transi-
tion model Fy,, the observation model H;,, the covariance of
the process noise @), , the covariance of the observation noise
R:,, and the control vector u;,. The Kalman filter supposes
that the state at time ¢; is dependent upon the state at time
t;—1 according to x = Fy, Ty, —1 + By, us, + wy,. Note that
process noise wy, ~ N(0,Qy,). At time ¢;, an observation
or measurement 2, of the true state x;, is made according to
z¢; = Hy,xy, + vy, where Hy, is the observation model and
vy, 1s the observation noise.

2) Kalman filter for orbit determination

a: Extended Kalman filtering and current techniques for orbit
determination

Current approaches to the determination of satellite orbits
generally use extended Kalman filtering, which is one of
the most widely used estimators for nonlinear problems like
orbit determination [23]]. The extended Kalman filter differs
from the standard Kalman filter is that it first linearizes the
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problem at hand and then applies the linear Kalman filter to
the resulting linear system [23]].

The extended Kalman filter constitutes a state-of-the-art
estimation algorithm for orbit determination [24]], or, more
specifically, for predicting the future state vector of a satel-
lite. In this context, continuous measurements are taken by
GPS units, and so the extended Kalman filter’s estimations
are repeatedly refined. In other words, at every time step,
the satellite position must be used to recalculate the state
matrix and state transition matrix. Note that this algorithm
is implemented in the discrete time domain. We let z; =
f(zi—1,us) + wy and zz = h(x:) + vy, where u; is the
control vector, w; ~ N(0,Q;) and v; ~ N(0,Q,) are the
process and observation noises, both of which are assumed to
be zero-mean multivariate Gaussian with covariance matrices
Q¢ and Ry, f is used to compute the predicted state from the
previous estimate, and h is used to compute the predicted
measurement from the predicted state. In practice, f and h
cannot be applied directly to the covariance, and the Jacobian
must be used instead. The algorithm is shown as Algorithm|T]

b: Extended Kalman filtering and connection problems

In this paper, we present a novel computer-vision-based
methodology for orbit determination in which images are
used to determine the ECEF vectors and thus the position
at later time steps. The need for such an approach arises
when a satellite loses contact with its ground station, which,
as already mentioned, is a frequent occurrence. Given the
nature of this problem, when contact is lost between satellite
and ground station, extended Kalman Filtering cannot work
as intended. In this scenario, one has only two choices: to
use the last received GPS position vector or not to use GPS
information in the Kalman update step at all. We attempt
both approaches and empirically demonstrate that no matter
what choice is made, the current state-of-the-art approach,
using the Gibbs method in tandem with extended Kalman
filtering, performs significantly worse than ResNet50, and
slightly worse than many CNNs. The second choice will
seem quite familiar to those well acquainted with orbital
mechanics, since this algorithm essentially solves the differ-
ential equations describing satellite motion using Cowell’s
approach through Runge—Kutta methods [25, [26].

Suppose that we make the first choice and use the last
received GPS position vector. Whenever a satellite travels in
a region with high latency or close to Earth’s magnetosphere
and loses connection with its ground station, future GPS
measurements cannot be received. The appropriate algorithm
then takes the form shown as Algorithm @ Henceforth, we
shall call this method extended Kalman filtering with fixed
GPS coordinates, or EKFFG for short.

Suppose now that we make the only other choice, namely,
we do not use the last received GPS position vector. In
this case, only the initial state, the initial state error, the
covariance of the process noise, and the covariance of the
observation noise are taken as inputs. Thus, the filter does
not have any measurements from sensors to aid its estima-
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Algorithm 1 Current algorithm for Extended Kalman filter

Ensure: for every time stept € T

Let z;); denote the estimate of state x at time ¢ using observations up to time ¢ < ¢

of
Let F;, = —
et i ox
8f Tt—1]t—1>Ut
Let H; = —
t ar Te|t—1
Prediction:

Compute predicted state estimate zy;_1 = f(24—1}¢—1, Ur)
Compute predicted state estimate xy;_1 = f(24_1j¢—1, Uz)

Compute predicted covariance estimate Py, = F} Pt_1|t_1FtT + Q¢

Update:
Compute measurement residual y; = z; — h(xy;_1)
Compute covariance residual Sy = Hy Py, H, + Ry
Compute Kalman gain K; = Pt|t_1HtTSt_1
Update state estimate ¢, = Tyr—1 + Kyt
Update covariance estimate Py = (I — KyH;) Py

Algorithm 2 EKFFG

Ensure: for every time stept € T

Let z;); denote the estimate of state x at time ¢ using observations up to time ¢ < ¢

of

Let I} = —
) ' 8(E Tt —1]t—1,Ut

of

Let H = —

et ox

Tejt—1 . .
Let 2 be fixed as the last received GPS position vector

Prediction:

Compute predicted state estimate 241 = f(T¢—1j4—1,Ur)

Compute predicted covariance estimate Py, = F} Pt_1|t_1FtT + Q¢

Update:
Compute measurement residual y; = 2z — h(zy—1)
Compute covariance residual S; = HtPt‘t,lHtT + Ry
Compute Kalman gain K; = Py, H,' S;*
Update state estimate @y = ¢s—1 + Ky
Update covariance estimate Py, = (I — KyH;) Py

tions. The appropriate algorithm is then Algorithm [3| This
is essentially Cowell’s method propagated forward in time.
Henceforth, we shall refer to this algorithm as a Cowell
propagator. The standard definition of a Cowell propagator
does not require that account be taken of drag forces [27]]. In
our implementation, we do account for drag, but, if desired,
it can be ignored, albeit at the expense of decreased accuracy.

lll. RESULTS

We have tested various neural networks and have observed
consistent phenomena. We now compare the performance of
these neural networks with the Gibbs method and Kalman
filtering. Results on the performance of each approach are
presented in Tables[T|and[2] We trained each model a total of
25 times and have reported here the best observed RMSE on
the test set across all 25 runs. For every model listed, we use
ImageNet weights.
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IV. DISCUSSION
A. PROBLEM STRUCTURE
1) Why CNNs are a natural choice

We believe that to better understand the performance of the
various models, it is essential to understand the structure of
the problem, which is that of finding a relationship between
an image of dimension 256 x 256 x 3 and a corresponding
vector of ephemeris coordinates of dimension 1 x 165. CNNs
are approximately translationally equivariant. Hence, for im-
ages in which a major landmark, continent, or body of water
is shifted relative to some example previously used for train-
ing the network, the CNN is capable of reasonably predicting
the ECEEF, since it can rely on the approximate translational
equivariance. In essence, the translational equivariance, in
tandem with the template matching capabilities provided by
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Algorithm 3 Cowell propagator

Ensure: for every time stept € T
Prediction:

Compute predicted state estimate z;; 1 = f (xt_l‘t_l, ug) via Cowell’s method

TABLE 1. CNN model performance

Model Best test-set RMSE Parameters (x 106)
ResNet-101 29.5810 44.6
ResNet-50 32.9029 25.6
VGG-19 o0 143.6
VGG-16 NaN 138.4
CoAtNet-4 NaN 203.4
AlexNet 146.7944 62.3

TABLE 2. Extended Kalman filter performance

Model Average Best observed Top 25%
RMSE RMSE RMSE

EKFFG (extended Kalman 1) 9,170.4000 426.7865 447.8721

Cowell propagator (extended Kalman 2) 413.1018 176.5121 339.9398

the feature sharing, gives the CNN the ability to predict
ECEF well. Put more simply, aspects of Earth’s geography
can be learned by local feature filters and combined in a
meaningful way. Suppose for the sake of illustration that one
has a local feature filter that detects mountains, another that
detects lakes, etc. It is then evident that CNNs are able to
exploit the geography of the surface of the Earth to make
reasonable predictions. We thus argue that aspects of the
problem structure make CNNs a natural choice.

2) Why is there high variance in RMSE across the models?

The reason for the superior performance of ResNet-101 and
ResNet-50 lies in their residual connections. Given that for
any component v; of any normalized ephemeris vector v, we
know that v; is a relatively large real number, v; ~ £a X 104,
where |a| > 1 and a € R, it can be seen that for deep neural
networks, the gradient is capable of exploding, meaning
that gradient descent becomes unstable. The traditionally
accepted solution for an exploding gradient is to use residual
connections. None of the other selected models, namely,
VGG-19, VGG-16, AlexNet, and CoAtNet-4, use residual
connections. Therefore, despite their ImageNet performance,
their results do not generalize well to this image-based prob-
lem. As mentioned earlier, for normalization, we have simply
chosen to divide each component v;, for every v, by 10%. To
ensure that we do not lose a great deal of precision when we
have to predict on the basis of new data and then inevitably
scale up, we have chosen to only divide by 10 rather than by
107 and store each value as a float64.
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B. WHY EXTENDED KALMAN FILTERING IS NOT
RELIABLE ALL THE TIME

As shown previously, when a satellite loses access to its
ground stations, using the last-received GPS coordinates is
insufficient for Kalman filtering to get an accurate estimate
of the satellite’s position. Since satellites travel at very high
speeds, of the order of magnitude of 7000 m/s, a position
estimated by GPS (even if it was taken a few seconds earlier)
is going to be quite far off the actual position.

Thus, if used during the update step, when the Kalman
filter performs the weighted average between the estimated
position from Cowell’s method and the GPS coordinates, the
updates made to the initial estimate are likely to decrease
the accuracy of the initial orbit estimate. This problem is
overcome by our implementation of the extended Kalman
filter, where the last received GPS position vector is used as
the measurement during the update phase of the filter.

V. CONCLUSION

We have explored how to tackle the increasingly common
problem of satellites losing connection to the ground sta-
tions on Earth with which they communicate. We have
demonstrated empirically that CNNs outperform extended
Kalman filtering for orbit determination in such situations.
We have further investigated the performance of the CNN-
based approach by comparing various neural networks and
have concluded that ResNets are most effective at predicting
the ephemeris ECEF of a satellite in LEO. In addition, we
have explained the variations in model performance, as well
as the reasons behind the particular efficacy of ResNet-101.
In the future, further improvements may be achieved by
exploiting the symmetries present in the problem.
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