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Abstract 

Lamb waves are a growing method for the Non-Destructive Testing and Evaluation (NDT&E) 

and Structural Health Monitoring (SHM) of aerospace vehicles. These guided waves can 

propagate over large distances and have a strong tendency to interact with damage. Whilst 

several methods exist for the modelling of Lamb wave propagation, this paper is the first to 

introduce a first principles numerical model that can efficiently and accurately predict the 

behaviour of Lamb waves. The numerical model is easier to understand and implement 

compared with analytical solutions and significantly faster than discretised numerical 

methods. The numerical model is presented in detail for an isotropic and homogenous plate, 

along with validation against the industry accepted, WaveForm Revealer 3 (WFR3) software. 

The results show a mean correlation across all assessed parameters of 90.4% and 96.6% for the 

symmetric and antisymmetric modes, respectively. Further discussion is provided on future 

developments to the model, including on the topic of high temperature effects, anisotropic 

materials, and edge reflections. 
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Introduction 

Non-Destructive Testing (NDT) has been around for over 100 years, with one of the very first 

applications being in the railroad industry [1].  The 1970s significantly changed the field of 

NDT with the emergence of the discipline of fracture mechanics [1]. This enabled the 

prediction of whether a crack of a given size would fail under a given load if the relevant 

material property or fracture toughness was known.  Laws to predict the rate of growth of 

cracks under cyclic loading were also developed.  With these laws, it became possible to use 

structures with known defects, if the sizes of the defects were known [2].  That is, design 

incorporated a new approach, and they became “damage tolerant designs” [3].  Components 

with known defects could be used as long the defects did not grow past a critical limit, which 

could result in a catastrophic failure. This presented a new challenge for NDT, ‘simple’ 

detection of flaws was no longer enough, quantitative information was needed about the size 

of flaws to enable predictions of the component’s residual life.  That is, Non-Destructive 

Evaluation (NDE) [1, 4]. 

Structural Health Monitoring (SHM) is an emerging area which brings together NDE with 

smart technologies and materials [5].  The drive for SHM in the aerospace industry lies with 

the need to improve safety, for both aerospace manufacturers and operators.  Maintenance 

activities can account for as much as 20% of the direct operating costs, and human error in 

maintenance contributes to 15% of all aircraft accidents [5].  Beyond that, reliable SHM would 

allow for less conservative design philosophies to be used, leading to significant weight 

savings on future aircraft whilst improving the safety of passengers.  The rapid advances that 

have been made in recent decades in sensor technology, smart materials, and innovative 

structural concepts are leading to the practical use of SHM. One such area is the use of 

ultrasonic guided waves [6, 7], a direct evolution of traditional ultrasonic NDT. 

Simulation of ultrasonic guided wave based NDT and NDE for SHM is onerous [6]. While the 

use of Finite Element Analysis (FEA) has become more common [8], there are limitations and 

issues with such a method. Specifically, FEA can be computationally intensive [9]. Reducing 

computational effort is essential for airframe digital twins [10, 11], especially if an intelligent 

digital twin is used onboard, in flight [12]. In this work, a simple numerical model for guided 

wave propagation in 2D plate structures is presented. These structures made specifically of 

aluminium alloys are representative of those used to skin aircraft [13, 14]. 

The Numerical Model 

The original analysis of guided waves in thin plates was published by Lamb in 1917 [15] and 

derives itself from an interrogation of the elastodynamic Navier-Cauchy equations for 

isotropic materials [16].  

𝜇𝑣𝑖,𝑗𝑗 + (𝜆 + 𝜇)𝑣𝑗,𝑗𝑖 + 𝜌𝑓
𝑖
= 𝜌𝑣𝑖̈ (1) 

The geometry is simple, the thin plate is a solid medium which is bounded on the top and 

bottom by parallel planes which are a distance 2ℎ apart, as depicted in Fig. 1 [17]. In the 

horizontal distance within the plate, the dimensions are unbounded, and it is also assumed 

that there is no medium outside the upper and lower bounds of the solid plate. In a bulk solid 

medium, mechanical waves can propagate as longitudinal (pressure) waves, or as lateral 

(shear) waves. In a plate, the close nature of bounding planes results in a mixing of these types 
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of waves, and interestingly results in the production of two unique propagation modes. These 

are the symmetric wave which is an even function of the displacement of the medium in 𝑧, 

where 𝑢(𝑧) = 𝑢(−𝑧), and the antisymmetric wave which is an odd function of the 

displacement of the medium in 𝑧, where −𝑢(𝑧) = 𝑢(−𝑧) [17]. The longitudinal component of 

the displacement 𝑢 and a transverse component 𝑤 have the form, 

𝑢 = 𝑖(𝑘𝐴 cos(𝑝𝑧) + 𝑞𝐵 cos(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡) (1.1) 

𝑤 = (−𝑝𝐴 sin(𝑝𝑧) − 𝑘𝐵 sin(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡) (1.2) 

for symmetric modes, and 

𝑢 = 𝑖(𝑘𝐶 sin(𝑝𝑧) − 𝑞𝐷 sin(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡) (2.1) 

𝑤 = (𝑝𝐶 cos(𝑝𝑧) − 𝑘𝐷 cos(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡) (2.2) 

for antisymmetric modes. While A, B, C, and D are arbitrary constants, the coefficients 𝑝 and 

𝑞 represent the dispersive wavenumbers, and are given by, 

𝑝2 =
𝜔2

𝑐𝐿
2 − 𝑘2 (3.1) 

𝑞2 =
𝜔2

𝑐𝑇
2 − 𝑘2 (3.2) 

where 𝜔 is the circular frequency of the wave, 𝑘 is the wavenumber determined by the phase 

velocity of the wave at 𝜔, 𝑐𝐿 is the longitudinal wave velocity of the bulk material, and 𝑐𝑇 is 

the transverse wave velocity of the bulk material. 

𝑐𝐿 = √
𝜆 + 2𝜇

𝜌
(4.1) 

𝑐𝑇 = √
𝜇

𝜌
(4.2) 

The variables 𝜆 and 𝜇 represent the Lamé constants as given below [18]. 

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
(5.1) 

𝜇 =
𝐸

2(1 + 𝜈)
(5.2) 

The boundary conditions are that 𝑡𝑥𝑧 = 𝑠𝑧𝑧 = 0 on 𝑧 = ±ℎ [19]. The result of imposing these 

boundary conditions is that (1.1) to (2.2) only have nontrivial solutions if, 

tan(𝑞ℎ)

tan(𝑝ℎ)
= −

4𝑘2𝑝𝑞

(𝑞2 − 𝑘2)2
(6.1) 

tan(𝑝ℎ)

tan(𝑞ℎ)
= −

4𝑘2𝑝𝑞

(𝑞2 − 𝑘2)2
(6.2) 

for the symmetric and antisymmetric modes, respectively [19].  
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Figure 1. The general setup and co-ordinate system for a guided Lamb wave. 

The important result is that Lamb waves are dispersive, given the velocity depends on the 

product of ℎ and 𝜔, or the thickness frequency product. That is, any arbitrary wave, which 

based on Fourier’s theorem can be described as the sum of many sinusoidal waves, will 

experience dispersion, as well as generating two wave modes that travel independently of 

each other. The group velocity given as 𝑐𝑔 =
𝑑𝜔

𝑑𝑘
 can be related to the phase velocity through 

the equation (7). 

𝑐𝑔 = 𝑐𝑝
2 [𝑐𝑝 − (𝑓ℎ)

𝑑𝑐𝑝

𝑑(𝑓ℎ)
]

−1

(7) 

Where 𝑓ℎ represents the frequency-thickness product of the case. The frequency-thickness 

product is often used as the independent variable as it allows for calculation of the phase 

velocity independent of the thickness of the plate. Modelling the propagation of an ultrasonic 

guided wave in a plate structure can be achieved using the previous stated fact. Any signal is 

a sum of sinusoidal waves. Each sinusoidal wave will have a velocity dictated by the 

dispersive relationship, which is a function of the material properties and the plate thickness. 

Consider a typical Gaussian modulated sinusoidal signal, 

𝑓(𝑡) = (𝐴 cos(𝜔𝑡))𝑒
𝑡2

2𝑐2⁄ (8) 

The Fourier transform of this signal will be a Gaussian distribution of frequencies about the 

central frequency, 𝜔 [20]. Rather than defining analytically what the Fourier transform of (8) 

is, a discrete numerical approximation of the function can be defined with a set sampling rate. 

The fast Fourier transform (FFT) of this discrete signal will then provide the phase and 

amplitude information for all the sinusoids that sum together to form this signal. In the 

frequency domain, the spacing of these constituent signals (𝑑𝑓) is derived from the sampling 

rate (1/𝑑𝑡) and the total number of samples (𝑛), such that, 

Δ𝑓 =
1

𝑛Δ𝑡
(9) 

Knowing each frequency, the dispersion for each can be determined. There are two options, 

root finding algorithms can be used for (6.1) and (6.2) to determine the valid wave speed at 

each frequency, or a lookup table for the given material with a given thickness can be utilised. 
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The second provides a more computationally efficient means of determining the dispersion 

but is less general purpose. For each signal, a time component can be determine based on the 

distance between the transmitter and receiver, and the wave speed at that frequency. 

Importantly, the relative phase information from the FFT is preserved and used as the initial 

phase offset of the sinusoid before adding the traveling wave component. 

For the received signal, there is no inverse problem that needs to be solved. That is, each of 

the signals at the receiver location do not have their amplitude and phase information taken 

to for the FFT of the received signal, which is the inverted (iFFT) to give the received time 

domain signal. Rather, the direct sum of the array of sinusoids is the time domain signal. 

Effectively, the computationally intensive solution to the inverse problem is solved with the 

novel application of first principles physics. The overall procedure is illustrated in Fig. 2. 

 

Figure 2. The process, 1) transmitted signal (Tx), 2) taking the fast Fourier transform (FFT(Tx)), 3) 
giving an array of amplitudes and phases applied to a sum of sinusoids, 4) each with a different 

frequency for which the wave speed can be looked up, 5) which can then be used to travel the signal 
to the receiver at a specified distance away, and 6) finally, all of the travelled signals can be summed 

up to give the received signal (Rx). 

Other Modelling Approaches 

Several numerical methods already exist for the modelling of Lamb waves in plate-like 

materials such as the Finite Element Method (FEM), Spectral Element Method (SEM), Semi-

Analytical Finite Element method (SAFE). These numerical modelling techniques are often 
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time intensive in both setup and operation, requiring extensive resources. However, the use 

of such methods permits analysis of complex structures such as composite materials, stepped 

geometries, assemblies, and damage interaction. 

Finite Element Analysis (FEA) 

The finite element approach for the computation of Lamb wave behaviour is the most versatile 

and resource intensive. Using FEA, the entire structural model is spatially discretised, and a 

series of partial differential equations are solved using adequate boundary conditions for the 

time response of the model. FEA is a powerful tool for the exploration of Lamb wave 

responses to various geometries [21], materials [22], damages [23-25] and sensor-material 

interactions [26]. Analysis of Lamb waves using FEA is also one of the most accessible 

methods due to the availability of commercial software. However, the high resource demand 

has led to the development of various other numerical methods.  

Spectral Element Analysis (SEA) 

An alternative method to FEA is that of SEA developed principally for work with fluid flows 

[27]. SEA has a high degree of similarity to FEA, but offers large computational savings due 

to the use of Lagrange interpolation functions [28]. The SEA method has been used in similar 

applications to FEA such as material modelling [22], damage [29] and sensor-material 

interactions [30]. Ultimately, SEA offers significant benefits over FEA but is otherwise less 

accessible due to the lack of commercial software available.  

Semi-Analytical Finite Element Analysis (SAFE) 

The semi-analytical method for the simulation of Lamb wave propagation in elastic wave 

guides has been studied intensively. The SAFE method offers computational savings over 

other, pure, finite element methods [31]. The SAFE method was first formulated by Aalami 

[32] in 1973. Using SAFE, the waveguide is discretised across the cross-section whilst an 

exponential function is used in the propagation direction [31]. The SAFE method has been 

used for the efficient calculation of the dispersive properties of a Lamb wave in anisotropic 

laminates and has been shown to have exact solutions for homogenous materials [33]. The 

SAFE method is an effective tool for calculating the propagation of Lamb waves in irregular 

and non-planar geometries [34-36]. Recent work with SAFE has involved the modelling of 

more complex materials and interactions such as viscoelastic effects in composite mediums 

[37], boundary reflection interactions [32], reflection and transmission behaviour for damage 

and discontinuities [38], pre-stressed materials [39] and leaky Lamb wave behaviour [40]. The 

SAFE method requires integration of analytical equations with typically finite element 

methods and is generally developed for individual cases.  

WaveForm Revealer 3 

As an alternative, WaveForm Revealer 3 (WFR3) developed by the University of South 

Carolina is an analytical method for the modelling of Lamb wave propagation by the 

convolution of a user input function with a structural transfer function in the frequency 

domain [41]. The structural transfer function is derived by Giurgiutiu [18, 41] and given 

below. 

𝐺(𝑢, 𝜔) = 𝑆(𝜔)𝑒𝑖𝑘𝑆𝑢 + 𝐴(𝜔)𝑒𝑖𝑘𝐴𝑢 (10) 



7 
 

Where the superscript S and A and functions 𝑆(𝜔) and 𝐴(𝜔) correspond to the symmetric and 

anti-symmetric components, respectively. These are given below. 

𝑆(𝜔) = −
𝑖
𝑎𝜏0
𝜇

sin(𝑘𝑆𝑎)𝑁𝑆(𝑘
𝑆)

𝐷𝑆
′(𝑘𝑆)

(11.1) 

𝐴(𝜔) = −
𝑖
𝑎𝜏0
𝜇

sin(𝑘𝐴𝑎)𝑁𝐴(𝑘𝐴)

𝐷𝐴
′ (𝑘𝐴)

(11.2) 

The analytical model for WFR3 is programmed in MATLAB and operated through a graphical 

user interface (GUI). WFR3 is also capable of modelling Lamb wave damage interactions such 

as transmission, reflection, and conversion behaviour. WFR3 has been validated against FEM 

and experimental testing such that it is now favoured by industry and academia [41]. 

Moreover, the analytical method offered significant computational time savings over typical 

numerical techniques. As a result of the low-resource requirement of WFR3, it has been used 

in later sections to verify the proposed first principles numerical model.  

Validation 

The first step in deploying the numerical model is to determine the dispersion relationships 

for the given material. Firstly, a range of phase velocities must be selected in which the 

solution to the Rayleigh-Lamb equation is predicted to exist. These selected phase velocities 

are used to calculate the predicted wave numbers for the inputted frequency range which are 

then used to determine the 𝑝 and 𝑞 constants as given in equations (3.1) and (3.2). To begin 

solving the Rayleigh-Lamb equation, it is better to rearrange it into a more useful form suitable 

for solving with a numerical method. The rearranged forms of equation (6.1) and (6.2) are 

given below in subscript notation. 

tan(𝑞𝑛ℎ)

tan(𝑝𝑛ℎ)
+

4𝑘𝑛
2𝑞𝑛ℎ

(𝑘𝑛
2 − 𝑞𝑛

2) 2
= 𝑓𝑛

𝑆 (12.1) 

tan(𝑞𝑛ℎ)

tan(𝑝𝑛ℎ)
+

(𝑘𝑛
2 − 𝑞𝑛

2) 2

4𝑘𝑛
2𝑞𝑛ℎ

= 𝑓𝑛
𝐴 (12.2) 

The exact solution for the wavenumber and hence, phase velocity occurs when 𝑓𝑛 = 0, 

representing a root of the rearranged Rayleigh-Lamb equation. A variety of numerical solvers 

can be applied at this point such as the bisection, secant, or Newton-Raphson method. For 

most solvers, an interval must be determined in which the root is known to lay. Hence, the 

range [n, n+1] in which a root is found is determined for the case that 𝑓𝑛+1 ⋅ 𝑓𝑛 < 0. Discovery 

of this range restricts the search field, rendering the ability to apply the desirable solver. For 

the case of higher order wave modes, it must be acknowledged that more than one root may 

exist within the search field, requiring more rigorous methods. The search resolution for the 

root can be coarse as the Rayleigh-Lamb equation has high smoothness and hence, a cubic 

spline may be fitted to the roots to improve the efficiency of the process. Once the phase 

velocities have been found for the given frequency range, the group velocities may be 

determined by applying a suitable finite difference approximation to equation (7).  
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Figure 3. Flow chart depicting the first principles numerical method. 

Following determination of the dispersive relationship, the numerical model may be applied 

as shown in Fig. 2 and Fig. 3. To validate the proposed method and evaluate it against 

common practices, a parametric study was performed for a range of variables. The numerical 

model was compared with the industry accepted and peer-reviewed software WFR3, 

developed by the University of South Carolina. The study was conducted using a Gaussian 

windowed sinusoid centred at a peak frequency of 200 kHz with a fractional bandwidth of 

30% as the input signal, shown in Fig. 4. 

Figure 4. The time domain input signal (left) and its frequency spectrum (right). 

In performing the parametric study, the symmetric and antisymmetric wave modes were 

compared separately. The choice of sensor has a dramatic impact upon the amplitude ratio 

between the two modes, most notably; fibre Bragg gratings are much more sensitive to the 

symmetric mode as they measure in-plane displacement whilst piezoelectric transducers are 

generally more sensitive to the antisymmetric mode due to their measurement of out-of-plane 

displacement [42]. Hence, the amplitude relationship between the two modes would greatly 

differ dependent upon the sensor choice. Moreover, it has been shown that piezoelectric 

transducers can be carefully selected such that they may be tuned for the detection of selected 

wave modes [43]. Ultimately, separation of the two modes allows for normalisation and for a 

sensor-independent comparison. The relationship between the two wave modes is 

commutative and hence, separation will not affect the results. 

  

User 

Input 

Signal  

FFT 

𝑢𝑛 

𝑈𝑘 

arg (𝑈𝑘) 

mod (𝑈𝑘) 

Phase Velocity 

Information 

𝑣𝑚 = ෍ 𝑨 ⋅ sin (𝒌𝐿 − 2𝜋𝑭𝑡𝑚 + 𝝓)

𝑀

𝑚=1

𝑒−𝜇𝐿 

𝒌 = 2𝜋𝑭
𝒄𝒑

⁄  

𝝓 

𝑨 
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Data from the WFR3 software is exported with a sampling rate of 10 Mega Samples per Second 

(MSPS). Hence, as a matter of consistency, the sampling frequency of the proposed model has 

been set to match this. Whilst the sampling frequency from the WFR3 software does not affect 

the overall results, the sampling frequency in the numerical model is used for the constitutive 

frequency selection. As such, varying the sampling frequency of the numerical model could 

have a minor effect on the results of the study. Nonetheless, as the sampling frequency is 

increased, it produces results that are more like the analytical solution. At a sampling 

frequency of 10 MSPS, it is expected that the numerical model results should offer a high 

degree of similarity to the analytical solution. A comparison of three sampling frequencies is 

shown below for the numerical model output in Fig. 5. 

Figure 5. A comparison of the propagated wave using the numerical model with different sampling 
frequencies. 

At a value of 1 MSPS it is evident that the wave packet is not smooth. At both sampling 

frequencies of 10 MSPS and 100 MSPS, the results are near identical, and the wave packets can 

hardly be distinguished from one another. The effect of frequency selection between 1 MSPS 

and 10/100 MSPS is evident as there is a phase delay between the signals. Ultimately, a 

sampling frequency between 10 MSPS and 100 MSPS should provide signal outputs that are 

akin to the analytical solution and any aliasing effects are negligible.  

To evaluate the similarity between WFR3 and the numerical model, two methods have been 

employed. Firstly, the cross-correlation function has been used in the time domain. The cross-

correlation function is a method of determining the lag between location of highest correlation 

of two signals. A small lag indicates that the signals are very close to their highest point of 

correlation. If the lag value across all the parametric trials is relatively constant, this is a 

possible indicator that there is a constant phase delay between the two methods but that they 

otherwise produce very similar results. The cross-correlation is a useful tool in determining 

this phase delay but is not a definite method for determining similarity. The method for 

calculating cross-correlation is given below for two, time dependent signals 𝑥1(𝑡) and 𝑥2(𝑡) 

where signal two is a copy of signal one separated by a time delay (lag) 𝜏12 and attenuation 

𝐴. Both signals are assumed to have independent, Gaussian noise components given by 𝑛1(𝑡) 

and 𝑛2(𝑡). For the parametric study both signals have no noise and hence, 𝑛1(𝑡) = 𝑛2(𝑡) = 0. 
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𝑥1 = 𝑠1(𝑡) + 𝑛1(𝑡) (13.1) 

𝑥2 = 𝐴𝑠1(𝑡 + 𝜏12) + 𝑛2(𝑡) (13.2) 

A perfect cross-correlation between two signals can only be obtained over an infinite period 

and hence, any calculation possesses a degree of truncation. The method for determining the 

cross-correlation function for a pair of discrete signals is given below where 𝑥𝑛
−  is the 

complex conjugate of 𝑥𝑛.  

𝜓𝑗 = lim
𝑁 →∞

෍ 𝑥1𝑘+𝑗
⋅ 𝑥2𝑘

−

𝑁

𝑘=−𝑁

(14) 

The cross-correlation can be more efficiently calculated in the frequency domain where the 

lag can be determined as follows where 𝑋1(𝑓) is the Fourier transform of signal one and 

𝑋2(𝑓)−  is the complex conjugate of the Fourier transform of signal two.  

𝜏12 = max iFFT(𝑋1(𝑓) ⋅ 𝑋2(𝑓)− ) (15) 

The second measure of similarity used is Pearson’s linear correlation. The correlation 

coefficient is a useful metric in determining a linear relationship between sets of data. As the 

time information, given as the independent variable, will be constant between data sets, the 

correlation coefficient may be used to compare the amplitude response of the two signals. 

However, if the signals are not properly aligned due to a possible phase delay, this metric 

would not prove useful. Hence, the cross-correlation is initially performed and then used to 

align the signals to the point of their maximum correlation before the correlation coefficient is 

calculated to determine the magnitude of correlation at this location. In this way, the 

combination of the two metrics should act as a robust way for determining similarity in both 

amplitude and phase. The Pearson’s correlation coefficient is given below for two signals 𝑥1 

and 𝑥2 with means of 𝑥1̅̅ ̅ and 𝑥2̅̅ ̅. 

𝑟 =
∑ (𝑥1𝑖

− 𝑥1̅̅ ̅)(𝑥2𝑖
− 𝑥2̅̅ ̅)𝑁

𝑖=1

√∑ (𝑥1𝑖
− 𝑥1̅̅ ̅)

2
∑ (𝑥2𝑖

− 𝑥2̅̅ ̅)
2𝑁

𝑖=1
𝑁
𝑖=1

(16)
 

A comparison of the dispersive relationships calculated from the numerical model and 

obtained from WFR3 are shown in Fig. 6. The resultant curves are for aluminium alloy 2024-

T3. 

 

Figure 6. A comparison of dispersion properties of aluminium from the numerical model and WFR3. 
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 The Pearson’s linear correlation coefficient has been used to compare the two dispersion 

relationships. As can be seen, both wave modes are perfectly correlated with a correlation 

value of one. Hence, the dispersion information from both the proposed technique in the 

numerical model as well as the WFR3 software can be considered identical.  

The remainder of the numerical model is validated against WFR3 over a range of material 

properties and variables as noted in Table 1. These properties are assessed over a range that 

is suitable for most materials. Symmetric and antisymmetric modes are compared 

independently as previously discussed. 

Table 1. The range of variables assessed in the numerical model validation. 

 Lower Limit Spacing Upper Limit 

Young’s Modulus (𝐸) 50 GPa 25 GPa 300 GPa 

Density (𝜌) 500 kg/m3 500 kg/m3 5000 kg/m3 

Plate Thickness (ℎ) 1 mm 1 mm 8 mm 

Poisson’s Ratio (𝜈) 0.05 0.05 0.45 

Distance (𝐷) 50 mm 50 mm 500 mm 

The results of the parametric study are shown below in Fig. 7 with phase error, depicted as a 

time delay on the left and amplitude error, depicted as the Pearson’s correlation coefficient 

shown on the right. Both sets of data show that the numerical model is comparatively very 

similar to the results obtained from WFR3. There are notably few outliers. WFR3 struggles to 

provide a solution as material properties approach non-physical values. Most notably, a 

Poisson’s ratio of 0.05 produced a bad result. However, the numerical model continues to 

perform well in this regime and yields qualitatively accurate results. Nonetheless, the results 

indicate that the numerical model is capable of accurately calculating the propagation of Lamb 

waves. 

  

Figure 7. Time delay comparison between the numerical model and WFR3 (left) and the Pearson’s 
correlation coefficient of the signals (right). Antisymmetric modes are shown as solid lines and 

symmetric as dashed lines. 

The following sections detail several proposed improvements to the basic version of the 

numerical model, including how higher levels of fidelity may be incorporated. 
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Modelling Extensions 

High Temperature Effects 

Whilst numerous advancements have been made in the fields of NDE and SHM, there remains 

several challenges, including operation in extreme environments. High temperature sensors 

that can withstand such conditions are difficult and expensive to produce. Modelling of high 

temperature Lamb waves allows for the optimisation of sensing systems to overcome some of 

these challenges. Aerospace fields that would see the biggest improvement from research in 

this area includes the health monitoring of propulsive systems and hypersonic vehicles. 

Propulsion systems have recently been shown as the most common cause of fatigue failure in 

aircraft [44]. Moreover, whilst hypersonic flight has seen deployment of experimental vehicles 

(~TRL 5), mass production has been delayed, partly owing to the low reliability of some 

systems [45]. The extreme environments in which these vehicles operate introduce large 

uncertainties and sensitivities of which the use of SHM can aid in overcoming.  

Whilst a suitable body of literature exists that explores the thermal effects on Lamb wave 

propagation, little work has been completed at temperatures of interest (> 1000°C). Within 

this higher temperature range, it is expected that additional phenomena may be encountered 

that have not been considered in previous work. Materials for use in this temperature range 

including nickel-based superalloys, titanium aluminides, and Ceramic Matrix Composites 

(CMCs) exhibit phenomena such as viscoelastic behaviour and creep that has not been 

characterized or modelled [46]. Moreover, accumulation of creep damage results in higher 

void content and cracking that can further influence acoustic behaviour and further engenders 

reflection-transmission and mode conversion [46]. 

First attempts can be made to model high temperature Lamb waves by solving a temperature 

dependent Rayleigh-Lamb equation. Here, 𝜆𝑇 and 𝜇𝑇 are the first and second temperature 

dependent Lamé’s constants, respectively. The temperature change Δ𝑇 is taken as the 

difference between the current temperature 𝑇 and that of a reference temperature 𝑇0. The half-

thickness of the plate ℎ with respect to the thickness at the reference temperature ℎ0 is then 

determined by considering the linear coefficient of thermal expansion 𝛼. 

ℎ(Δ𝑇) = ℎ0(1 + 𝛼Δ𝑇) (17) 

Likewise, the density of the material with respect to the density at the reference temperature 

can be determined. 

𝜌(Δ𝑇) =
𝜌0

(1 + 𝛼Δ𝑇)3
(18) 

The variation in Young’s modulus and Poisson’s ratio were empirically derived by Augereau, 

et al. [47] for aluminium 6061-T6 over a temperature range of 20°C to 220°C as given below. 

Material properties at high temperatures is arguably one of the biggest limitations in this area. 

𝐸 = 77.59 −
27.03 ⋅ 𝑇

103
−

13.78 ⋅ 𝑇2

106
(19.1) 

𝜈 = 0.317 +
54.79 ⋅ 𝑇

106
+

6.5 ⋅ 𝑇2

109
(19.2) 

Taking the derivative of 𝑝 and 𝑞 with respect to temperature provides the following 

relationships. 
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𝑝
𝜕𝑝

𝜕𝑇
= 𝑘

𝜕𝑘

𝜕𝑇
− 𝑘𝐿

𝜕𝑘𝐿

𝜕𝑇
(20.1) 

𝑞
𝜕𝑞

𝜕𝑇
= 𝑘

𝜕𝑘

𝜕𝑇
− 𝑘𝑇

𝜕𝑘𝑇

𝜕𝑇
(20.2) 

Where 𝑘𝐿 and 𝑘𝑇 are the longitudinal and transverse wave numbers, respectively. Finally, the 

group velocity 𝐶𝐺  may be calculated as follows from the phase velocity 𝐶𝑃. 

𝜕𝐶𝐺

𝜕𝑇
=

𝜕𝐶𝑃

𝜕𝑇
(1 −

𝑘

𝐶𝑃

𝜕𝐶𝑃

𝜕𝑘
) + 𝑘 (

𝜕2𝐶𝑃

𝜕𝑘𝜕𝑇
) (21) 

A plot of the dispersive phase velocities for aluminium 6061-T6 as well as the corresponding 

temperature sensitivities are shown in Fig. 8. It is clear that an increase in temperature results 

in a decrease in the phase velocity of both wave modes but is more pronounced for the 

symmetric mode. 

  
Figure 8. A comparison of dispersive phase velocities for aluminium (left) and the corresponding 

sensitivity (right). 

The change in the time-of-flight (TOF) of an acoustic signal as well as the corresponding 

increase in frequency is shown in Fig. 9. An example of a 200 kHz wave in a 3 mm plate that 

is transmitted over 250 mm with an increase from the reference temperature of 20°C would 

result in a change in the TOF of the symmetric mode by 0.134 µs and the antisymmetric mode 

by 0.239 µs. 

  

Figure 9. Change in the signal time-of-flight (TOF) (left) and corresponding increase in sampling 
frequency (right). 
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Anisotropic Materials 

A further extension of the numerical model may include consideration of anisotropic 

materials. Such materials are commonplace in aerospace settings, primarily in the form of 

fibre reinforced polymers (FRPs) and cold rolled aluminium [48]. Adjustments can be made 

to the original model by including these effects in the form of directionally dependent material 

properties. The model can easily incorporate this modification by calculating the dispersion 

relationships for each direction of interest. Whilst such a method would account for the 

variation in wave speed, it would not capture the complex lamb wave and shear horizontal 

wave coupling effects [49].  

To model the anisotropic material properties in FRPs, classical laminate theory (CLT) is used 

to determine the directionally dependent material properties. We begin with the reduced 

stiffness coefficients of the material along the ply axis, knowing that  
𝜈12

𝐸1
=

𝜈21

𝐸2
 [50]. 

𝑄11(0) =
𝐸1

1 − 𝜈12𝜈21

(22.1) 𝑄22(0) =
𝐸2

1 − 𝜈12𝜈21

(22.2) 

𝑄12(0) =
𝜈21𝐸1

1 − 𝜈12𝜈21

(22.3) 𝑄66(0) = 𝐺12   (22.4) 

These coefficients must then be transformed along the laminate axis, where 𝑐 = cos(𝜃) , 𝑠 =

sin (𝜃). 

𝑸(𝜃) = 𝑻𝑸(0), (23) 

 

𝑻 =  

[
 
 
 
 
 

𝑐4 2𝑐2𝑠2 𝑠4 4𝑐2𝑠2

𝑐2𝑠2 𝑐4 + 𝑠4 𝑐2𝑠2 −4𝑐2𝑠2

𝑠4 2𝑐2𝑠2 𝑐4 4𝑐2𝑠2

𝑐3𝑠 −𝑐𝑠(𝑐2 − 𝑠2) −𝑐𝑠3 −2𝑐𝑠(𝑐2 − 𝑠2)

𝑐𝑠3 𝑐𝑠(𝑐2 − 𝑠2) −𝑐3𝑠 2𝑐𝑠(𝑐2 − 𝑠2)

𝑐2𝑠2 −2𝑐2𝑠2 𝑐2𝑠2 (𝑐2 − 𝑠2)2 ]
 
 
 
 
 

, 𝑸(0) =  

𝑄11(0)

𝑄12(0)

𝑄22(0)

𝑄66(0)

(24) 

Next, we calculate the in-plane stiffness matrix terms for the stress resultants. 

𝐴𝑖𝑗
∗ =

1

𝑡
෍ 𝑄𝑖𝑗(𝜃𝑘)(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

(25) 

Finally, the stiffness properties of the material along the laminate axis may be obtained. 

𝐸𝑥 = 𝐴𝑥𝑥
∗ −

𝐴∗
𝑥𝑦
2

𝐴𝑦𝑦
∗ (26.1)  𝐸𝑥 = 𝐴𝑦𝑦

∗ −
𝐴∗

𝑥𝑦
2

𝐴𝑥𝑥
∗ (26.2) 

𝜈𝑥𝑦 =
𝐴𝑥𝑦

∗

𝐴𝑦𝑦
∗ (26.3) 𝜈𝑦𝑥 =

𝐴𝑥𝑦
∗

𝐴𝑥𝑥
∗ (26.4) 𝐺𝑥𝑦 = 𝐴𝑠𝑠

∗ (26.5) 

Let us consider an orthotropic laminate with the following layup [0, 90, 0, 90]2S, and material 

properties given in Table 2 below. 
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Table 2. Material properties of the composite for the given example. 

Young’s Modulus  𝐸1 137.4 GPa 

Young’s Modulus 𝐸2 11.71 GPa 

Shear Modulus 𝐺12 5.510 GPa 

Poisson’s Ratio 𝜈12 0.250  

Ply Thickness 𝑡𝑝𝑙𝑦 0.200  mm 

The resulting CLT analysis provides polar plots of the material properties as shown below in 

Fig. 10. 

  

Figure 10. Polar plots for modulus (left) and Poisson’s ratio (right) dependent upon the material 
direction of orientation. 

The resulting phase velocities for both the symmetric and antisymmetric modes at 200 kHz 

are plotted below in Fig. 11. As evident, the change in material properties has a marked effect 

upon the acoustic response of the panel and should be considered in any form of analysis. 

 

Figure 11. Polar plot of the phase velocities of both Lamb wave modes. 
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Edge Reflections 

Edge reflections of lamb waves has not been implemented but a proposed addition to the 

original numerical model is a raytracing method that would predict the path of the Lamb 

wave through a discrete number of angles, like that shown in Fig. 12. Boundary conditions 

can be implemented by considering whether the plate is fixed or free at an edge, resulting in 

an inverted or non-inverted reflection, respectively. Likewise, a relationship for reflected 

energy could be used to predict the amplitude of reflected waves as well as models for 

predicting mode conversion. Edge reflections are an important phenomenon, as the colocation 

of waves would result in constructive and destructive interference, affecting the ability to 

analyse and localise the emission.  

 

Figure 12. The general principles of ray tracing edge reflections. 

Previous approaches including Monte Carlo simulations are computationally expensive, and 

hence, the use of ray tracing algorithms that can accurately and efficiently analyse the path of 

the wave from source to sink are desirable. Heinze, et al. [51] developed a ray tracing 

algorithm for anisotropic composite materials based on Fermat’s principle. Zhang, et al. [52] 

proposed a novel version of the linear travel time interpolation method which was also used 

to predict and visualise geometric defects in plates. Balvantín, et al. [53] also developed a ray 

tracing method based on Fermat’s principle by discretising the plate into a grid of constant 

material properties and applying Snell’s law. A thickness reduction defect was experimentally 

and numerically studied which showed the ability to reconstruct the tomography of a plate 

based upon the wave’s time of flight. 

Conclusion 

Ultimately, this work has presented a novel first principles numerical model for predicting 

the behaviour of Lamb wave propagation in 2D plate structures. The model is easier to 

understand and implement compared to analytical solutions and faster than traditional 

numerical methods. Validation against WFR3 shows excellent correlation. The presented 

numerical model opens opportunities for improved NDT&E and SHM of aerospace vehicles. 

The study also identifies potential avenues for future research and improvements to the code, 

including the modelling of high temperature effects, anisotropic materials, and edge 

reflections. Overall, this research paper has contributed to the field of Lamb wave propagation 
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modelling and provides valuable insights for researchers and engineers in the aerospace 

industry. 
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