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Abstract

Brain tumors are among the most fatal and devastating diseases, often resulting in significantly reduced life ex-

pectancy. An accurate diagnosis of brain tumors is crucial to devise treatment plans that can extend the lives of

affected individuals. Manually identifying and analyzing large volumes of MRI data is both challenging and time-

consuming. Consequently, there is a pressing need for a reliable deep learning (DL) model to accurately diagnose

brain tumors. In this study, we propose a novel DL approach based on transfer learning to effectively classify brain

tumors. Our novel method incorporates extensive pre-processing, transfer learning architecture reconstruction, and

fine-tuning. We employ several transfer learning algorithms, including Xception, ResNet50V2, InceptionResNetV2,

and DenseNet201. Our experiments used the Figshare MRI brain tumor dataset, comprising 3,064 images, and

achieved accuracy scores of 99.40%, 99.68%, 99.36%, and 98.72% for Xception, ResNet50V2, InceptionResNetV2,

and DenseNet201, respectively. Our findings reveal that ResNet50V2 achieves the highest accuracy rate of 99.68%

on the Figshare MRI brain tumor dataset, outperforming existing models. Therefore, our proposed model’s ability

to accurately classify brain tumors in a short timeframe can aid neurologists and clinicians in making prompt and

precise diagnostic decisions for brain tumor patients.
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1. Introduction

The brain is an essential and highly complex component of the human body, responsible for governing both

intentional and unintentional activities (Quader et al., 2022). As one of the most intricate and delicate organs, it

controls various critical functions, including cognition, emotion, vision, hearing, and response (Asif et al., 2022).

Brain tumors, which result from abnormal tissue growth within the skull, are among the most lethal brain disorders.
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These tumors can be categorized into primary and secondary types. Primary brain tumors, accounting for 70% of

cases, only spread within the brain, whereas secondary tumors originate in other organs like the breast, kidney, or

lung before metastasizing to the brain (Kibriya et al., 2022).

Common types of brain tumors include gliomas, meningiomas, and pituitary tumors. Gliomas result from

abnormal proliferation in glial cells, which constitute approximately 80% of the brain. Meningiomas develop in

the meninges spinal cord, the protective layer of the brain, while pituitary tumors arise within the pituitary gland,

responsible for producing essential hormones. Although pituitary tumors are typically benign, they can cause

hormonal imbalances and irreversible vision impairment (Komninos et al., 2004).

Numerous disorders can damage the brain, notably brain tumors, which are primarily accompanied by abnormal

proliferation within the nervous system (Naki and Aderibigbe, 2022). These abnormalities were extremely difficult

to cure; therefore, prompt detection is critical to the human’s wellbeing (Almadhoun and Abu-Naser, 2022). World

Health Organization (WHO) suggests that the brain tumors will expand by 5% each year globally (Çinar and

Yildirim, 2020). Brain tumors are more deadly and difficult to diagnose than a tumor in any other section of

the body. Since the brain is surrounded by the blood-brain barrier, typical radioactivity detectors are unable to

detect tumor cell impulsivity (Graber et al., 2019; Naseer et al., 2021). As a result, magnetic resonance imaging

(MRI) as well as computed tomography (CT) images are considered the most effective clinical tracers for detecting

brain disturbance (Naseer et al., 2021). MRI is a widely used technology for diagnosing and prognosing brain

tumors in a variety of neurological disorders and situations (Gurbină et al., 2019). Many clinical disorders now

require MRI as the main diagnostic evaluation (Abd-Ellah et al., 2019). The premise underlying MRI is to achieve

higher cross-sectional images of organs using non-ionizing radio-frequency electromagnetic waves in the context of

regulated magnetic fields (Katti et al., 2011). It is also thought to be superior to CT since it exposes patients to

less radiation, has less dimensional inaccuracy, and has no adverse effects (Niraj et al., 2016).

In neuroscience, brain tumors are a hot topic, as the detection of brain tumors in the early stages is very

important to protect against loss of human life (Islam et al., 2021). Although there are several approaches for

diagnosing abnormalities in brain magnetic resonance scans, there is still scope for enhancing performance and

making the classification within a reasonable amount of time (Mandle et al., 2022). Due to the growing volume of

medical data, attempt in analyzing and extrapolating them using conventional techniques are becoming increasingly

difficult (Abiwinanda et al., 2019; Badža and Barjaktarović, 2020). Scientists now have a new incentive to optimize

present methodologies for more complete clinical research (Bruton et al., 2020). Deep learning is a popular technique

for evaluating biomedical data in the healthcare field (Naser and Deen, 2020; Talukder et al., 2022).

Deep learning (DL) is an advanced categorization and prediction innovation that has demonstrated outstanding

performance in domains that require multilevel data processing, such as classification, detection, and voice recogni-

tion. (Pyrkov et al., 2018). It can obtain valuable underlying patterns from images that have been shown to achieve

provincial efficiency (Ciregan et al., 2012). It is the most notable ML achievement, capable of managing complex

pattern recognition and object detection from image dataset (Avci et al., 2021). Traditional ML-based techniques

are not applicable for image classification because they rely heavily on hand-made features (Le et al., 2019). The

essential factor to make them attractive to complex biomedical applications is their ability to extract optimized

features directly from raw data to the nature of the problem to enhance classification performance (Kiranyaz et al.,
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2021).

Transfer learning (TL) refers to the process that uses the knowledge of previously trained models to discover a

new set of data to deal with a precise scenario (Tan et al., 2018). Moreover, we do not require a lot of processing

power. The model employs the convent weights of the pre-trained model and trains only the final dense layer (Talo

et al., 2019). There are three ways in which it can be utilized, namely as a baseline model for object classification

that can be used to train TL models on imagenet data (Morid et al., 2021); as a feature extractor that extracts

features from image data and then uses deep learning or machine learning for labels. (Abbasi et al., 2020); as a

fine-tuning, which requires changing the last layer to suit the classes of the preferred data source and retraining the

network’s layers (Montalbo, 2020).

Numerous efforts have been identified in the related works, each based on a unique strategy for classifying brain

tumors (Belaid and Loudini, 2020; Rehman et al., 2020; Afshar et al., 2018; Sadad et al., 2021; Ayadi et al., 2021).

Various medical images have already been identified and represented using DL approaches. Its procedures have

enabled machines to evaluate multidisciplinary pathology scans, high-dimensional image data, and video recordings.

(Talukder et al., 2022; Andresen et al., 2022). As they can handle biomedical image data, many deep-learning

techniques have been applied to disease prediction. (Khan et al., 2022; Islam et al., 2022; Savaş, 2022).

Manually assessing and analyzing a vast array of brain MRI data is not only time-consuming and costly, but it

can also be prone to errors, as the processing and classification of MRI images require expertise. Accurate diagnosis

and classification of brain tumors are vital, as they inform prognostic predictions and enable medical professionals

to select the most suitable treatment options.

To help medical experts in selecting the best line of action and stopping the early death of life due to brain

tumors, we need to build a robust DL model to accurately predict brain tumor with less amount of time. Hence,

our research focuses on creating a productive and well-organized framework to classify brain tumors in which we

use numerous preprocessing steps to prepare our dataset, reconfigure the TL architecture, and add some extra

layers. The proposed DL approach is tested on the publicly available Figshare MRI brain tumor dataset. In order

to build a robust model, we used our novel DL approach for effective improvement in brain tumor classification.

In this research, we assess the effectiveness of our proposed deep learning model by utilizing various performance

metrics, such as Accuracy, Precision, Recall, F1-score, Confusion Matrix, Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE), and Mean Squared Error (MSE). The findings demonstrate that our deep learning model

is capable of classifying brain tumors with an exceptional accuracy rate surpassing 99%.

The main contributions of this research are as follows:

• It proposes a novel deep learning model for brain tumor classification, incorporating comprehensive prepro-

cessing, transfer learning architecture modification, and fine-tuning to enhance efficiency.

• Reconfiguration architecture is modified by involving image augmentation to solve overfitting problems and

utilize the GPU speed. Furthermore, to get instantaneously standardize images based on the configuration,

which helps the initiative of reimplementing the augmentation process.

• Fine-tuning is the process of adding layers with the modified architecture that lets us build a new DL archi-

tecture to classify brain tumor efficiently.
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• Finally, assess the effectiveness of our proposed models using multiple criteria, including accuracy, precision,

recall, f1-score and confusion matrix and finding the best model to categorize brain tumor.

The subsequent sections of the paper are structured as follows: In Section 2, an overview of related work on

brain tumor diagnosis using deep learning is presented. The methodology and dataset used in our research are

elaborated in Section 3. Section 4 outlines the experimental setup and performance evaluation. Lastly, the paper

concludes with Section 5.

2. Related Works

Classification of brain tumours is essential for evaluating tumours and deciding on medication options based on

their categories. Brain cancers are detected using a variety of neuroimaging methods. Conversely, MRI is frequently

employed because of its greater image quality and lack of ionising radiation. DL is a machine learning discipline

that has consistently demonstrated outstanding results, particularly in categorization and detection issues. Table

1 shows the tree diagram of related works for brain tumor classification.

Brain Tumor
Classification

 Transfer Learning
(TL)

Capsule Network
(CapsNet)

Convolution Neural
Network (CNN)

Figure 1: The tree diagram of related works for brain tumor classification

2.1. Brain tumor classification using Transfer Learning (TL)

Belaid and Loudini (2020) explored the use of transfer learning networks to categorize brain tumors in MRI

images. The TL networks were trained and evaluated using several optimization strategies on the Figshare brain

tumor dataset to identify the most frequent brain lesions. With ResNet50 and Adadelta optimisation, the presented

transfer learning model got the greatest classification accuracy of 99.02 percent. The classification results showed

that the most frequent brain tumor may be classified with excellent accuracy. As a result, the transfer learning

paradigm in medicine holds promise and can help physicians make rapid and precise diagnoses.

Rehman et al. (2020) used three different designs of convolutional neural networks to diagnose brain lesions

in three experiments. They employed MRI slices from the Figshare brain tumor dataset; each study investigates

TL strategies, including fine-tuning and freezing. The MRI slices are subjected to data augmentation procedures

to improve the generalization of results and expand data sampling to lower the overfitting chance. The optimized

VGG16 model produced the best results in categorization and had a prediction rate of 98.69% in the tests.

Sadad et al. (2021) utilized NASNet and ResNet50-UNet TL architects to achieve brain tumor classification. To

improve the recognition results, the pre-processing and data augmentation idea was established. According to the
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findings, the research proposal paradigm outperformed the current state of the art. Among the many TL models

used for tumor categorization, NASNet was the greatest accuracy rate of 99.6 percent.

Tummala et al. (2022) used ImageNet-based ViT models that had been pre-trained and fine-tuned for catego-

rization assignment. The Figshare brain tumor data set was utilized to evaluate the performance of the ensemble

ViT model in cross-validation (CV) and testing for a three-class classification task. The combination of all four

ViT variants, L/16,L/32, B/16 and B/32, yielded a 98.7% total testing accuracy. As a result, a collection of ViT

models could be used to support the computer-assisted identification of brain cancers based on MRI scans, easing

the burden on radiologists.

Swati et al. (2019) proposed a blockwise fine-tuning approach utilizing TL with a pre-trained CNN model. On

the Figshare brain tumor dataset, the offered approach was tested. Their strategy was more versatile because it did

not employ any feature extractor, required little preprocessing, and had an average accuracy of 94.82 percent when

tested five times. They contrasted their findings with classic CNN-based ML and DL methods. The developed

VGG19 technique exceeded state-of-the-art classification, according to experimental results.

2.2. Brain tumor classification using Capsule Network (CapsNet)

Afshar et al. (2018) exploited CapsNets to increase the performance of the categorization issue on a real series

of brain MRI images to identify brain tumors. Due to the handling of a limited training set and their units

being increasingly adaptable, they exceed CNNs in the tumor diagnosis challenge by 86.56 percent. Their findings

demonstrated that the suggested method could efficiently defeat CNNs in the categorization of brain tumors.

Afshar et al. (2019) developed a modified CapsNet design that included both raw MRI brain images and tumor

borders in order to categorize cancers. The tumor rough borders are added as new inputs to the CapsNet’s

workflow to boost the CapsNet’s emphasis. They utilized the figshare brain MRI data with 3064 pictures to test

their recommended CapsNet framework and achieved a 90.89 percent accuracy rate, which exceeds its competitors

significantly. They showed that, in contrast to previous CapsNets and CNNs, the new technique improved the

classification accuracy. It was also notable to observe that CapsNets were equipped with features that improved

their interpretability.

Afshar et al. (2020) introduced a Bayesian CapsNet framework, termed the BayesCap, capable of providing

not only mean estimates, but also entropy as an indicator of forecasting uncertainties, by taking advantage of

the ability of capsule networks to regulate small datasets and control uncertainty. To test the BabyesCap model,

they used Figshare brain tumor dataset and obtained a 78 percent accuracy rate in detecting brain tumors. They

demonstrated that screening out the uncertain forecasts improves accuracy, indicating that releasing the uncertain

forecasts was a good method for increasing network comprehensibility.

2.3. Brain tumor classification using Convolution Neural Network (CNN)

Badža and Barjaktarović (2020) demonstrated a new CNN model for brain tumor categorization that is easier

to use than pre-trained networks and was evaluated using Figshare MRI data. The network’s capacity to generalize

was evaluated through various methods, including the use of the 10-fold CV technique. The record-wise CV for the

augmented data yielded the highest results among the different approaches. They had a 96.56 percent accuracy



Accepted in the Expert Systems With Applications on 19 May 2023

rate. The novel CNN architecture could be employed as an excellent verdict utility for radiologists in diagnostic

purposes, together with its high generalization potential and processing speed.

Leveraging two publically accessible datasets, a DL model premised on a convolutional neural network is pre-

sented by (Sultan et al., 2019) to diagnose various brain tumor kinds. For the 2 experiments, the presented network

topology produces remarkable results, with the greatest overall accuracy of 96.13 percent and 98.7 percent, respec-

tively. The findings proved that the proposal could be used to detect multiple types of brain tumors.

Ait Amou et al. (2022) presented an improved hyperparameter optimization strategy for CNN that relies on

Bayesian optimization. This strategy was tested by categorizing MRI scans of the brain into three classes of cancers.

Five well-known deep pre-trained models are examined to optimize CNN’s efficiency using TL. Despite the use of

data augmentation or cropping lesion procedures, their CNN was capable of achieving an accuracy rate of 98.70

percent at most after utilizing Bayesian optimization. Furthermore, using the MRI sample, the suggested model

exceeds the existing work, proving the viability of hyperparameter optimization automation.

Abiwinanda et al. (2019) attempted to train CNN to recognize three different types of brain tumors: gliomas,

meningiomas, and pituitary tumors. The authors used a simple CNN architecture that included only one convolution

layer, a max-pooling layer, and a flattening layer over each hidden layer, followed by a full connection from one

hidden layer. Their model achieved 98.51 percent training accuracy and 84.19 percent validation accuracy despite

its simplicity and lack of prior region-based segmentation. This method has the potential to be a straightforward

tool for doctors in accurately diagnozing brain tumours.

Das et al. (2019) worked on constructing a CNN model for the classification of brain tumors, and the designed

scheme was made up of two major steps: preprocessing images using various image processing strategies and then

categorizing the processed images using CNN. Using their CNN model on a brain tumor dataset, they were able to

attain a high accuracy of 94.39 percent. In the data set, the designed scheme demonstrated satisfactory accuracy

and exceeded the number of well-known current approaches.

Paul et al. (2017) employed 989 axial photos to develop a convolutional neural network over the axial data,

which proved to be efficient in categorization with a 5-fold CV of 91.43 percent on the finest CNN model. This

finding showed that CNN outperformed specialized approaches in tumors that need image dilation and ring-forming

subareas.

Ayadi et al. (2021) demonstrated a novel CNN-based model with multiple layers for classifying MRI brain

tumors. It was an intelligent model that needed very little preprocessing and was evaluated on three different

brain tumor datasets. To test the accuracy of the model and determine the resilience of the system, a variety

of performance metrics were examined. With an accuracy rate of 94.74% for Figshare, 93.71% for Radiopaedia,

and 97.22 percent for Rembrandt datasets, the proposed scheme achieved the best classification and recognition

accuracies relative to previous relevant studies along the same data.

3. Methodology

This section presents our proposed methodology, which includes a description of the various transfer learning

(TL) algorithms that are utilized in our approach. First, we explain the working principle of our proposal and then

we briefly describe the transfer learning algorithms.



Accepted in the Expert Systems With Applications on 19 May 2023

To ensure a brain tumor prognosis, we constructed our proposed approach using image data collection, prepro-

cessing, reconstruction transfer learning architecture and fine-tune by attaching some extra layers such as global

avg. pooling, batch normalization and dense layers to classify brain tumors on a brain tumor dataset. The block

diagram and architecture of our proposed paradigm are depicted in Fig 2 and Fig 3. The following are the steps of

our proposed approach:

Brain MRI Dataset

Image Preprocessing

Reconfigured Transfer Learning Architecture

Fine Tuned by Attaching Layers

Tumor Classification

Glioma Meningioma Pituitary

Figure 2: The block diagram of our proposed research

• Step-1: Initially, we take the brain tumor dataset to conduct our experiment. There are three types of brain

tumors available in our dataset such as glioma, meningioma and pituitary.

• Step-2: During the pre-processing stage, the image is resized to achieve the desired size of 256x256, applied a

filter to sharpen the image, then complements the image and performed image scaling to normalize the image

data.

• Step-3: In the reconstruction transfer learning architecture step, we add image augmentation after the input

layer and then truncate the last few layers after the activation layer.

• Step-4: In this step, we fine-tune by attaching some layers including global average pooling, batch normal-

ization and dense layer to make it more suitable to classify brain tumors.

• Step-5: In this step, some well-known transfer learning algorithms such as Xception, ResNet50V2, Incep-

tionResNetV2 and DenseNet201 are utilized in our approach.

• Step-6: Finally, the performance is evaluated for each transfer learning model and selecting the best one

based on various performance metrics, including Accuracy, Precision, Recall, F1-score, Confusion Matrix,

RMSE, MAE and MSE. Furthermore, a comparison analysis is performed with other existing works.
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Figure 3: The proposed architecture for brain tumor classification

3.1. Data collection

The dataset (Cheng, 2017) contains 3064 T1-weighted contrast-enhanced images of the brains of 233 patients

who had been diagnosed with one of three types of brain tumours: meningioma (708 slices), glioma (1426 slices),

or pituitary tumour (930 slices). The information can be downloaded in the form of Matlab files (.mat files). Each

image file includes a struct that contains pertinent information about the image, such as the label (1 for meningioma,

2 for glioma, and 3 for pituitary tumour), patient ID (PID), image data, and tumour Border. The tumor border is

a vector that contains the coordinates of distinct points on the tumor’s edge, and it is obtained by manually tracing

the tumor border. Due to the availability of this information, the generation of a binary image of the tumor mask

is made simple. In addition, the dataset contains a tumor Mask, which is a binary image with the tumor region

represented by a string of ones.

The distribution of the dataset is depicted in Fig. 4

Meningioma

23.1%
Glioma

46.5%

Pituitary

30.4%

Meningioma
Glioma
Pituitary

Figure 4: The distribution of brain tumor dataset

3.2. Data preprocessing

In the data preprocessing, we took the dataset and prepare it for processing by taking the image and label

information from the dataset as the dataset was in Matlab (.mat) file format. Then we start image preprocessing

by utilizing the resize the images into 256x256, applying a sharp filter to sharpen the images and complement the

images to make them more visible. After that, we scale the image by dividing the images by 255. Moreover, to
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fit into the CNN model, we split our dataset into train, test and validation parts in 80%, 10% and 10% and also

shuffle 1000 times to minimize loss, reduce the variance and generalize the model.

The preprocessed images are sharper, brighter, and have more detectable details than the original images,

making them appropriate for driving into the model and achieving greater performance than existing works. Figure

5 illustrates the image preprocessing steps for brain tumor types, including glioma, meningioma, and pituitary. The

top section of the figure (a,b,c) shows the images before preprocessing, while the bottom section (d,e,f) displays the

images after the preprocessing steps have been applied.

(a) Before (glioma) (b) Before (menin-

gioma)

(c) Before (pituitary)

(d) After (glioma) (e) After (meningioma) (f) After (pituitary)

Figure 5: Brain glioma, meningioma and pituitary image before and after image preprocessing

We have further enhanced the experimental setup by incorporating additional photographs to measure the

impact of the image preprocessing techniques proposed in this paper. In Figure 6a and 6b, we present a selection

of before-and-after images randomly selected from our dataset, illustrating the demonstrable effects of the image

processing methods employed. These visual examples serve to provide compelling evidence of the efficacy of our

image preprocessing approach, enhancing the attractiveness and visual appeal of our research

3.3. Reconstruction transfer learning architecture

In reconstruction transfer learning architecture, we reconstruct the architecture of transfer learning as we have

already known that the transfer learning algorithms are pre-trained with ImageNet data (You et al., 2020) so to use

it in our dataset we need to reconstruct the architecture for better predictions. We reconstruct the architecture so

that we can utilize all transfer learning algorithms in our modified architecture. This procedure follows two steps:

• Image Augmentation: Initially, we take the input layer then we add the image augmentation layer means we

make the augmentation layer part of our architecture so that the modified architecture can use preprocessed

images to perform augmentation on-device, simultaneously with the remainder of the layers, and advantage

from GPU speed. In addition, when we extract our model, the preprocessing layers are stored alongside the
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glioma meningioma pituitary meningioma glioma

meningioma pituitary meningioma meningioma glioma

(a) Before Image Preprocessing

glioma pituitary glioma meningioma meningioma

meningioma pituitary glioma meningioma glioma

(b) After Image Preprocessing

Figure 6: Sample of before and after image preprocessing
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rest of the model. When we afterward deploy this model, it will instantaneously standardize images (based

on the configuration of our layers), saving us the initiative of reimplementing that logic server-side.

• Truncate Layers: After that, we keep all the layers of transfer learning algorithms except after the last

activation layers in our architecture as we want to add more layers to make it a more efficient architecture to

predict brain tumors.

Fig. 7 shows the original and reconfigured transfer learning architectures where Fig. 7(a) represents the original

architecture of transfer learning and Fig. 7(b) represents the reconfigured architecture of transfer learning.

Prediction Layer

Block1
Block2

Block3
Block

N
Block
N-1

Input Layer

Block7

Input Layer

Conv2D

Batch Normalization 

ReLUDepthwiseConv2D

Zero Padding2D

MaxPooling2D Dense Layer

Activation Layer

Global Average Pooling2D

(a) original architecture

Block1
Block2

Block3
Block

N
Block
N-1

Input Layer

Block7

Input Layer

Conv2D

Batch Normalization 

ReLU

DepthwiseConv2D

Zero Padding2D

MaxPooling2D

Dense Layer

Activation Layer

Global Average Pooling2D

Augmentation Layer

(b) reconfigured architecture

Figure 7: The original and reconfigured architecture of transfer learning model

3.4. Image Augmentation

Figure 8 illustrates the image augmentation process used in our proposed architecture. Image augmentation

is a frequently employed approach to enhance the scale and variety of a dataset, which in turn can enhance the

efficacy of deep learning models. In our approach, we applied a series of image processing techniques to the input

images to generate augmented images. The augmentation process includes horizontal flipping, rotation, zooming,

and contrast adjustment. The input images are also rescaled to 0 to 1 to facilitate model training. Additionally, we
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Input Image

RandomFlip("horizontal",input_shape=(size,size,3))

RandomRotation(0.2)

RandomZoom(0.2)

RandomContrast(0.2)

Rescaling(1.0/255)

RandomRotation(30)

RandomTranslation( height_factor=0.2, width_factor=0.3,
fill_mode='reflect',interpolation='bilinear')

Figure 8: The augmentation process of our proposed architecture

randomly rotated and translated the images to increase the diversity of the augmented dataset further. Firstly, we

take the input image from the input layer of TL architecture, later we perform the following image augmentation

processing techniques as follows:

• RandomFlip(”horizontal”,input shape=(size,size,3)): This technique randomly flips the input image horizon-

tally with image shape of 256x256x3, where 256 is height, 256 is width and 3 is the channel for rgb image.

• RandomRotation(0.2): This technique randomly rotates the input image by a maximum of 0.2 radians.

• RandomZoom(0.2): This technique randomly zooms in or out of the input image by a maximum of 20%.

• RandomContrast(0.2): This technique randomly adjusts the contrast of the input image by a maximum of

20%.

• Rescaling(1.0/255): This technique rescales the input image pixel values to a range of 0 to 1.

• RandomRotation(30): This technique randomly rotates the input image by a maximum of 30 degrees.

• RandomTranslation(height factor = 0.2, widthfactor = 0.3, fill mode =′ reflect′, interpolation =′ bilinear′):

This technique randomly translates the input image horizontally and vertically by a maximum of 20% and

30% of the image height and width, respectively. The ”fill mode” parameter determines how the pixels outside

the image boundary are filled, and the ”interpolation” parameter determines how the image is interpolated

after the translation.

The augmentation process was carefully designed and adjusted to ensure the augmented dataset was diverse

and representative of the original dataset. The resulting augmented dataset was used to train our proposed model,

which achieved state-of-the-art performance on the task of interest. Thus, these image-processing techniques can

help augment the dataset’s size and diversity, which can upgrade the performance of deep-learning models.
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3.5. Fine-tuning

In Fine-tuning, we add some layers to suit the classes of the preferred brain MRI data making a better ar-

chitecture. We add Global Average Pooling2D and twice Batch Normalization and Dense layer to complete the

proposed architecture. In the Global Average Pooling2D layer, we add the output of the base model after that,

we add Batch Normalization and Dense layer of neuron 1280, activation of ’relu’, kernel initializer of ’glorot uni-

form’ with seed 1377 and bias initializer is ’zeros’. Then we again add another Batch Normalization and later we

add a prediction Dense layer with 3 neurons which is the class number. ’softmax’ activation is utilized as it is a

multilabel classification (Kini et al., 2022; Thilagaraj et al., 2022), ’random uniform’ kernel initializer and ’zeros’

bias initializer. we use the pre-trained trainable weighted to utilize the knowledge in our architecture. Finally,

the architecture is compiled with ’Adamax’ optimizer with a learning rate of 0.0001 and ’sparse categorical cross’

entropy with ’accuracy’ metrics. The ’Adamax’ is utilized as it is an Adam variant relying on the infinity norm

that outperforms Adam, particularly in models with embeddings. The learning rate is 0.0001, since at this rate,

the output models can ensure durability with less loss than others (Mustapha et al., 2020). We utilized ’sparse

categorical cross’ entropy as the output labels are in integer form (performs label encoding) and It helps in saving

memory and computation time by using a single integer for a class rather than an entire vector (Kakarla et al.,

2021; Andrei-Alexandru and Henrietta, 2020; Chai et al., 2022).

3.6. Transfer leaning algorithms

• Xception: The Xception architecture, also known as ”Extreme Inception” (Chollet, 2017), is a convolutional

neural network design consisting of a sequence of depthwise separable convolution layers with residual con-

nections. The architecture comprises 36 convolutional layers grouped into 14 blocks, where all but the first

and last blocks feature linear residual connections between them. This appears to consider the architecture

very simple to interpret and customize; utilizing a top-level library such as Keras (Joseph et al., 2021) or

TensorFlow-Slim (Silberman, 2017), it requires only 30 to 40 lines of code, similar to VGG-16 (Simonyan and

Zisserman, 2014), but unlike architectures such as InceptionV2 or V3, which are far more difficult to delineate.

• ResNet50V2: ResNet is a novel neural network that was first invented by (He et al., 2016a). The success of

this model is undeniable, as demonstrated by the fact that its ensemble was able to secure the first position

in the ILSVRC 2015 classification contest, with an impressively low defect rate of only 3.57 percent. It has

many varieties using the same principle but has various numbers of layers. Resnet50 is a variation that can

work with 50 neural network layers. Deep residual nets employ residual blocks to enhance model accuracy.

The central idea behind residual blocks, known as ”skip connections,” is the robustness of this neural network

architecture. ResNet50V2 (He et al., 2016b) is an adapted variant of ResNet50 that demonstrates superior

performance over ResNet50 and ResNet101 in the ImageNet dataset. Specifically, ResNet50V2 (Rahimzadeh

and Attar, 2020) introduces a modified inter-block connection structure to improve information flow between

blocks.

• InceptionResNetV2: According to (Szegedy et al., 2017), the InceptionResNetV2 architecture, based on the

Inception block, extracts features using transformation and merging functions. It outperforms inceptionRes-

Netv1 with less computation. Residual learning and inception blocks underpin it. Residual connections link
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different-sized convolution filters. Residual connections avoid degradation and shorten training. This network

uses Stem, InceptionResNet, and Reduction blocks to improve detection accuracy. According to (Asif et al.,

2022), the deep network connects one main block, five Inception ResNetA blocks, ten ResNet-B blocks, five

ResNet-C blocks, one Reduction-A block, and one Reduction-B block.

• DenseNet201: The architecture of DenseNet, as introduced in (Huang et al., 2017), utilizes feedforward

connections to establish interactions between each layer and all subsequent layers. This is in contrast to

traditional L-layer CNNs that only have L connections. With DenseNet, the number of direct connections

between layers increases significantly to (L(L+1))/2, leading to improved feature propagation and gradient

flow throughout the network. A feature map is included in each layer of the model. Each layer’s feature

map is utilized as the next layer’s input. It maximizes information transfer within the network by directly

connecting all layers. It significantly reduces the dimensionality, lessens gradient runaway, improves feature

diffusion, and encourages feature reusability. When contrasted with traditional CNN. DenseNet needs fewer

parameters since the feature map is not discovered twice. Furthermore, by using regularisation, DenseNet

minimizes the possibility of overfitting. DenseNet121 is made up of four dense blocks, each with six, twelve,

twenty-four, and sixteen convolution blocks (Asif et al., 2022).

4. Results and Discussion

We have reconfigured transfer learning architecture and fine-tuning by attaching some extra layers, used four

transfer learning algorithms, and evaluated the performance of our proposed scheme to identify brain tumors. The

performance is evaluated using a variety of performance indicators. The experiment setup, performance evaluation

metrics, results analysis, and discussion are provided in the following section.

4.1. Experiment Setup

The research is carried out using a computer that is powered by an Intel Xeon CPU with 2 Cores, 13GB of

RAM, a 16GB GPU, and a 73GB hard drive. With the help of a Jupyter notebook, the experiment has been

conducted. Python is used to implement the proposed approach, together with a number of widely used libraries

such as Scikit-learn, Keras, TensorFlow, Seaborn, Matplotlib, Numpy, and Pandas.

4.2. Performance Evaluation Metrics

Several performance indicators, such as accuracy, precision, recall, f1-score, confusion matrix, MSE, MAE, and

RMSE, evaluate the performance of our proposed approach. The following are the metrics developed for evaluating

performance:

• A method for evaluating the effectiveness of machine learning categorization is the confusion matrix. This

table-like structure displays four different combinations of predicted and actual values, namely TP (True

Positive), TN (True Negative), FP (False Positive), and FN (False Negative). The confusion matrix, depicted

in Table 1, uses these labels to represent correct and incorrect predictions for positive and negative values.

A confusion matrix is a valuable tool for assessing accuracy, precision, recall, and f1-score in evaluating

dependability, as cited by Talukder Talukder et al. (2023).
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Actual positive Actual negative

Predicted positive TP FP

Predicted negative FN TN

Table 1: Confusion Matrix

• The most considered highly statistical is accuracy, which depends on the number of proper outcome expecta-

tions over the total number of observations.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

• Precision is defined as the proportion of accurately predicted positive values among the total number of

predicted positive values. It is visually represented as:

Precision =
TP

TP + FP
(2)

• Recall is the proportion of positively predicted values that are accurate to all other actual values. As seen, it

is:

Recall =
TP

TP + FN
(3)

• The F1-score, which is a measure of performance for classification tasks, is calculated as the harmonic mean

of precision and recall scores. It is typically represented in the following formula:

F1score = 2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(4)

• The mean absolute error (MAE) is a metric used to compare errors in observations that are connected and

represent the same phenomenon. The arithmetic mean of the expected and actual numbers, as stated in

Willmott and Matsuura (2005), is utterly inaccurate.

MAE =

n∑
i=1

Predict(i)−Actual(i)

n
(5)

• The mean squared error (MSE) calculates the average of the squared residuals or the average squared difference

between the values that were actually observed and those that were predicted. The most crucial aspect of

MSE is it’s frequently completely positive (rather than zero) due to unpredictability or if the classifier does

not permit data that could produce a reasonable forecast (Lehmann and Casella, 2006; Das et al., 2004).

MSE =

n∑
i=1

(Predict(i)−Actual(i))2

n
(6)

• The root mean square error is the assessment measure most frequently employed in regression issues (RMSE).

Its foundation is that mistake is objective and appears to have a normal distribution. The impact of outlier

traits on RMSE is fairly significant.
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RMSE =

√√√√ n∑
i=1

(predict(i)− actual(i))2

n
(7)

where n is the total number of values.

• An classifier evaluation can be made with the help of the Matthews correlation coefficient (MCC). The value

can be anything from -1 to 1, with -1 indicating that the expected and actual results are completely at

odds with one another, 0 indicating that the predictions are completely random, and 1 indicating that the

predictions are spot on.

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(8)

• Kappa is a measurement for evaluating the degree of agreement between a classification model’s anticipated

and observed results, controlling for the possibility that the observed agreement is due to chance alone. It

goes from -1 to 1, with -1 denoting total disagreement, 0 denoting chance agreement, and 1 denoting perfect

agreement.

Kappa =
(Po − Pe)

(1− Pe)
(9)

where P o = observed agreement, and P e = expected agreement.

Po =
(TP + TN)

(TP + TN + FP + FN)
(10)

Pe =
((TP + FP ) ∗ (TP + FN) + (TN + FP ) ∗ (TN + FN))

(TP + TN + FP + FN)2
(11)

• The Classification Success Index (CSI) is a measurement tool that assesses the effectiveness of a classification

model by counting the percentage of samples that were properly classified out of all the samples. CSI has a

scale from 0 to 1, with 0 denoting incorrect classification and 1 denoting flawless classification.

CSI =
TP

TP + FP + FN
(12)

4.3. Results and Performance Analysis

Our proposed approach uses four transfer learning algorithms on the brain tumor dataset to classify brain

tumors efficiently. Table 2 and Fig. 9 shows the performance and error analysis of our deployed transfer learning

models. In 9(a), we can see that the accuracy rates are 98.40%, 99.68%, 99.36%, 98.72%; the precision rates are

97.94%, 99.49%, 99.14%, 98.16%; the recall rates are 98.02%, 99.78%, 99.27%, 98.83%; the f1-score rates are 97.97%,

99.64%, 99.20%, 98.48%; for Xception, ResNet50V2, InceptionResNetV2 and DenseNet201 respectively. Among all

the models, ResNet50V2 achieves the highest performance rate with 99.68% accuracy, 99.49% precision, 99.27%

recall and 99.20% f1-score rate.

Similarly, in 9(b), we can see that the MAE rates are 1.6%, 0.32%, 0.64%, 1.28%; the MSE rates are 1.6%, 0.32%,

0.64%, 1.28%; the RMSE rates are 12.66%, 5.66%, 8.01%, 11.32%; for Xception, ResNet50V2, InceptionResNetV2
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Table 2: Performance analysis of Transfer learning models

Proposed Model
Performance Metrics

Accuracy Precision Recall F1-score MAE MSE RMSE MCC Kappa CSI

Xception 98.40 97.94 98.02 97.97 1.6 1.6 12.66 98.39 98.36 98.40

ResNet50V2 99.68 99.49 99.78 99.64 0.32 0.32 5.66 99.69 99.67 99.68

InceptionResNetV2 99.36 99.14 99.27 99.2 0.64 0.64 8.01 99.35 99.34 99.36

DenseNet201 98.72 98.16 98.83 98.48 1.28 1.28 11.32 98.70 98.68 98.72

Accuracy Precision Recall F1-score
Performance Metrics
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Figure 9: Analysis of Transfer learning models
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and DenseNet201 respectively. Among all the models ResNet50V2 attains the lowest error rate with 0.32% MAE,

0.32% MSE and 5.66% RMSE rate.

Fig. 10 shows all transfer learning models’ accuracy and loss graphs. With the number of epochs, the accuracy

rate rises while the loss rate falls. The learning curves also reveal that the models are not overfitting because the

models learn the given input very well at each epoch. The augmentation procedure addresses the overfitting issue.

The following is a brief analysis of all accuracy and loss graphs:

• Xception: In Fig. 10(a), we can visualize that the training and validation accuracy rate are slightly far away

where the training accuracy is close to 99.5% and the testing accuracy is close to 98.5%. In Fig. 10(b), we

can see that the training and validation error rate are also slightly far away, where the training accuracy is

close to 0.3% and the testing accuracy is close to 1.5%.

• ResNet50V2: In Fig. 10(c), the training and validation accuracy rates are smooth and close to each other

where the training accuracy is close to 99.99% and the testing accuracy is close to 99.7%. In Fig. 10(d), we

can see that the training and validation error rate are also close to each other where the training accuracy is

close to 0% and the testing accuracy is close to .3%.

• InceptionResNetV2: In Fig. 10(e), the training and validation accuracy rate isn’t smooth where the training

accuracy is close to 99.8% and the testing accuracy is close to 99.4%. In Fig. 10(f), we can see that the

training and validation error rate are slightly far away where the training accuracy is close to 0.1% and the

testing accuracy is close to .6%.

• DenseNet201: In Fig. 10(g), the training and validation accuracy rates are slightly close to each other and

the training accuracy is close to 99.8% and the testing accuracy is close to 98.7%. In Fig. 10(h), we can see

that the training and validation error rate are also slightly close where the training accuracy is close to 0.2%

and the testing accuracy is close to 1.2%.

Fig. 11 represents the confusion matrix for all transfer learning models. The following is a brief description of all

confusion matrices: Fig. 11(a) shows the confusion matrix of Xception model where considering the glioma TP, TN,

FP, FN rates are 48.08%, 51.28%, 0%, 0.64%; considering meningioma TP, TN, FP, FN rates are 19.87%, 78.53%,

0.64%, 0.96%; and considering pituitary rates are 30.45%, 68.59%, 0.96%, 0% respectively. In Fig. 11(b), the

confusion matrix of the ResNet50V2 model where considering glioma TP, TN, FP, FN rates are 48.4%, 51.28%, 0%,

0.32%; considering meningioma TP, TN, FP, FN rates are 20.83%, 78.85%, 0.32%, 0%; and considering pituitary TP,

TN, FP, FN rates are 30.45%, 69.55%, 0%, 0%. Fig. 11(c) shows the confusion matrix of the InceptionResNetV2

model where considering glioma TP, TN, FP, FN rates are 48.4%, 51.28%, 0%, 0.32%; considering meningioma TP,

TN, FP, FN rates are 20.51%, 78.85%, 0.32%, 0.32%; and considering pituitary TP, TN, FP, FN rates are 30.45%,

69.23%, 0.32%, 0%. Fig. 11(c) shows the confusion matrix of DenseNet201 model where considering glioma TP,

TN, FP, FN rates are 47.76%, 51.28%, 0%, 0.96%; considering meningioma TP, TN, FP, FN rates are 20.51%,

78.21%, 0.96%, 0.32%; and considering pituitary TP, TN, FP, FN rates are 30.45%, 69.23%, 0.32%, 0%.

After analyzing all the performance metrics, we can conclude that among all the transfer learning models,

ResNet50V2 provides the best performance and lowest error rate as well as high TP and TN rates and less number
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Figure 10: Accuracy and Loss for Transfer learning models
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Figure 11: Confusion matrix for Transfer learning models
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of FP and FN rates. ResNet50V2 (He et al., 2016b) is a revised version of ResNet50 which uses residual nets that

utilize residual blocks to improve model performance. ’skip connections’ is the spirit of residual blocks which render

it much simpler for the layers to gain knowledge identification operations in skip connections. ResNet50v2, similar

to ResNet50, increases the effectiveness of deep neural networks with more neural layers while reducing the portion

of errors (Shafiq and Gu, 2022).

The analysis results reveal that ResNet50V2 achieved the highest overall performance with an accuracy of

99.68%, followed by InceptionResNetV2 with an accuracy of 99.36%, DenseNet201 with an accuracy of 98.72%,

and Xception with an accuracy of 98.40%. ResNet50V2 also achieved the highest precision, recall, F1-score, MCC,

Kappa, and CSI among the proposed models. Overall, the analysis indicates that ResNet50V2 is the most effective

transfer learning model for the given task, followed by InceptionResNetV2, DenseNet201, and Xception.

Further, a test performance measurement analysis as depicted in Fig 12 we have also included a measure of

our proposal where we provide a performance of our efficient brain tumor classification model by illustrating a

visualization of performance metrics for some random images to prove the effectiveness of our model in random

input images. The results of the random test images (a total of 8 images) were astonishing, with a perfect accuracy

rate of 100% for each image!

True: glioma, Predicted: glioma
Accuracy: 100.0

True: glioma, Predicted: glioma
Accuracy: 100.0

True: meningioma, Predicted: meningioma
Accuracy: 100.0

True: meningioma, Predicted: meningioma
Accuracy: 100.0

True: pituitary, Predicted: pituitary
Accuracy: 100.0

True: meningioma, Predicted: meningioma
Accuracy: 100.0

True: pituitary, Predicted: pituitary
Accuracy: 100.0

True: pituitary, Predicted: pituitary
Accuracy: 100.0

Test Images Performance: Accuracy=100.00, Precision=100.00, Recall=100.00, F1=100.00

Figure 12: Performance measurements of our proposed model

4.4. Complexity analysis

We ascertain the complexity of our experiments by calculating the prediction time in seconds using an Intel Xeon

CPU with 2 Cores, 13GB RAM, and a 16GB GPU. The experiments have been conducted utilizing 312 test images

to classify brain tumors. The predicted times are 19s, 16s, 27s, 23s for Xception, ResNet50V2, InceptionResNetV2

and DenseNet201 respectively. Among all the models, our proposal ResNet50V2 takes only 16s which underperforms

others. Table 3 and Fig 13 show the analysis of prediction time in tabular and graphical format.
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Proposed Model Prediction Speed (In sec)

Xception 19

ResNet50V2 16

InceptionResNetV2 27

DenseNet201 23

Table 3: Prediction speed analysis
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Figure 13: Prediction speed analysis

4.5. Discussion

In our proposal, we have conducted preprocessing, architecture reconfiguration as well as fine-tuning by attaching

some extra layers to build a novel model to detect brain tumors efficiently. Our proposed efficient brain tumor

classification model has been evaluated against other existing works and significantly achieved a notably superior

level of accuracy. Table 4 shows the comparison study of brain tumor classification. Among all the accuracy

performances our proposal provides the greatest accuracy with the same (brain tumor (Cheng, 2017)) dataset as

well as the same number of images (3064). The use of the same dataset and number of images allows for a fair

comparison to predict efficiency. The study demonstrates that by using RestNet50V2, we can reach the highest

99.68 percent accuracy rate for the brain tumor dataset that significantly outperforms others.

There are several methods available for categorizing brain tumors, each with its advantages and disadvantages.

Here, we compare the following approaches: Transfer Learning (TL) Belaid and Loudini (2020); Rehman et al.

(2020); Tummala et al. (2022), Capsule Network (CapsNet) Afshar et al. (2020, 2019) and Convolution Neural

Network (CNN) Ait Amou et al. (2022); Ayadi et al. (2021); Badža and Barjaktarović (2020) with our proposed

approach. Table 5 illustrates the advantages and disadvantages of other approaches.

Besides, the proposed research can be applied to various classification tasks related to neural networks, CNN,

and deep learning beyond brain tumor classification. The techniques and methods proposed in the paper, such as

preprocessing, reconstructing transfer learning architecture, and fine-tuning, can be applied to various classification

tasks in medical imaging and beyond. For example, the proposed model can be adapted for the detection of COVID-

19 in medical imaging data, as demonstrated in the papers Irfan et al. (2021); Almalki et al. (2021). The application

of deep learning models in the diagnosis of COVID-19 has become an important area of research during the pandemic

and the techniques proposed in the paper can be utilized to improve the accuracy of diagnosis and facilitate timely
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SI. NO Author Architecture Dataset No. of Images Accuracy (In %)

1 Belaid and Loudini (2020) VGG16 Brain tumor (Cheng, 2017) 3064 96.5

2 Rehman et al. (2020) Fine-tune VGG16 Brain tumor (Cheng, 2017) 3064 98.69

3 Badža and Barjaktarović (2020) CNN Brain tumor (Cheng, 2017) 3064 96.56

4 Sultan et al. (2019) DL Brain tumor (Cheng, 2017) 3064 98.7

5 Ait Amou et al. (2022) Optimized CNN Brain tumor (Cheng, 2017) 3064 98.7

6 Tummala et al. (2022) Ensemble ViT Brain tumor (Cheng, 2017) 3064 98.7

7 Abiwinanda et al. (2019) CNN Brain tumor (Cheng, 2017) 3064 84.19

8 Paul et al. (2017) CNN Brain tumor (Cheng, 2017) 3064 91.43

9 Das et al. (2019) CNN Brain tumor (Cheng, 2017) 3064 94.39

10 Afshar et al. (2018) CapsNet Brain tumor (Cheng, 2017) 3064 86.56

11 Afshar et al. (2019) CapsNet Brain tumor (Cheng, 2017) 3064 90.89

12 Afshar et al. (2020) BayesCap Brain tumor (Cheng, 2017) 3064 78

13 Swati et al. (2019) VGG19 Brain tumor (Cheng, 2017) 3064 94.82

14 Sadad et al. (2021) NASNet Brain tumor (Cheng, 2017) 3064 99.6

15 Ayadi et al. (2021) CNN Brain tumor (Cheng, 2017) 3064 94.74

16 Our proposal DL (ResNet50V2) Brain tumor (Cheng, 2017) 3064 99.68

Table 4: The comparison analysis of brain tumor classification

treatment. Additionally, the proposed model can be applied to fault diagnosis in industrial settings, as shown in

the paper Glowacz (2022). By utilizing deep learning models in conjunction with thermal imaging techniques, the

proposed model can facilitate the early detection and diagnosis of faults in machinery, leading to reduced downtime

and increased productivity. Overall, the proposed research can serve as a valuable basis for various classification

tasks involving medical imaging, fault diagnosis, and other applications that require deep learning models.

4.6. Application and Profitable Implications on Society

The proposed research aims to develop a fine-tuned deep-learning model for brain tumor classification, leveraging

the power of deep learning to identify different types of brain tumors accurately. The potential applications of this

research are numerous and could have a significant clinical impact in neuro-oncology. Figure 14 illustrates the

potential application of our proposed brain tumor classification research.

• Improved Brain Tumor Diagnosis: The proposed research can assist radiologists and clinicians in accurately

diagnosing brain tumors from medical imaging data, such as MRI scans. It provides accurate and consistent

tumor classification results, reducing the risk of misdiagnosis and enabling early detection of brain tumors.

• Personalized Treatment Planning: Accurate classification of brain tumors can help tailor personalized treat-

ment plans for patients. The model aids in identifying the specific tumor type, enabling clinicians to design

targeted treatment plans, leading to more effective and precise treatment outcomes.

• Clinical Decision Support System: The developed model can serve as a clinical decision support system,

assisting healthcare providers in making informed decisions about patient management. It provides accurate
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Model Description Advantages Disadvantages

Transfer Learning

(TL)

Uses a pre-trained model

as a starting point for

training a new model on a

related task

Reduces the amount of

data needed for training,

speed up the training pro-

cess, can improve accu-

racy by using pre-trained

models trained on large

datasets

Difficult to find a pre-

trained model suitable for

the specific task of brain

tumor classification, the

model may not be opti-

mized for the specific fea-

tures of brain tumor im-

ages

Capsule Network

(CapsNet)

Uses capsules to repre-

sent the features of an im-

age, can handle variations

in pose and deformation,

can handle multiple view-

points of the same object

Can improve accuracy for

analyzing brain tumor im-

ages

Can be computationally

expensive to train, may re-

quire a large amount of

data for training

Convolutional Neu-

ral Network (CNN)

Commonly used for im-

age classification tasks,

can handle spatial rela-

tionships between pixels

in an image, can iden-

tify features such as edges

and textures, can iden-

tify complex patterns in

an image

Can improve the accuracy

of classification for brain

tumor images

Can require a large

amount of data for

training, can be computa-

tionally expensive

Proposed Model Utilizes extensive prepro-

cessing, reconfiguration of

transfer learning architec-

ture, and fine-tuning for

classification of brain tu-

mors

Efficient utilizes image

augmentation to solve

overfitting problems and

utilize GPU speed, can

standardize images based

on configuration, allows

building of new DL archi-

tecture

Require advanced tech-

niques in image process-

ing, and the suggested

framework would enhance

the appropriateness of the

task.

Table 5: Advantages and disadvantages of other approaches
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AI Model For
Brain Tumor

Classification

Improved Brain Tumor Diagnosis
Assisting radiologists and clinicians in accurately diagnosing brain
tumors from medical imaging data (MRI)

Personalized Treatment Planning

Clinical Decision Support System
Supporting healthcare providers in making
informed decisions about patient management

Enabling clinicians to design a targeted treatment
plan that is tailored to patient's needs

Providing real-time tumor localization and guidance
during surgical procedures

Image-Guided Surgery

Facilitates the development of new treatment strategies and drugs
for brain tumors, advancing the field of neuro-oncology

Research and Drug Development

Figure 14: Application of proposed research

and reliable tumor classification results, aiding clinical decision-making for more precise and personalized

patient care.

• Image-Guided Surgery: The proposed model can be integrated into image-guided surgery systems, providing

real-time tumor localization and guidance during surgical procedures. This helps neurosurgeons accurately

identify tumor margins, optimize tumor resection, and minimize damage to healthy brain tissue, improving

surgical outcomes.

• Research and Drug Development: The model can aid brain tumor research and development by accurately

classifying tumors and identifying specific genetic mutations or molecular characteristics associated with dif-

ferent tumor types. This provides insights into tumor biology and potential therapeutic targets, facilitating

the development of new treatment strategies and drugs for brain tumors.

Hence, the proposed research has significant potential applications in improving brain tumor diagnosis, guiding

personalized treatment planning, facilitating research and drug development, image-guided surgery, and serving as

a clinical decision support system. These applications can positively impact patient care, outcomes, and neuro-

oncology advancement.

Furthermore, our innovative research has the potential to reshape the medical imaging field, providing signifi-

cant benefits to society. Our proposed deep learning model accurately classifies brain tumors and employs creative

reconstruction and fine-tuning methods. The model’s direct clinical relevance and easy integration into existing

workflows allow for smooth implementation in clinical settings, enhancing brain tumor diagnosis, treatment plan-

ning, and patient outcomes. Our approach also reduces the need for extensive manual annotation, lowering costs

and development time and making it more suitable for clinical use. The model’s capacity for personalized medicine

is groundbreaking, as tailored treatment plans based on tumor characteristics lead to more effective therapies,

improved results, and better patient well-being. In addition to clinical impact, our research holds significant so-

cietal implications by improving patient care, reducing healthcare costs, and addressing global healthcare system

challenges. Overall, our model’s innovative reconstruction and fine-tuning techniques contribute to deep learning
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research and inspire further progress in medical imaging across various applications.

5. Conclusion

This article presents a novel deep learning (DL) method for classifying brain tumours that combine prepro-

cessing, transfer learning (TL) architecture reconstruction, and fine-tuning. Four TL algorithms were utilized in

our methodology: Xception, ResNet50V4, InceptionResNetV4, and DenseNet201. We evaluated the performance

of the model using a variety of metrics, including accuracy, recall, precision, f1 score, MAE, MSE, and RMSE,

to demonstrate the substantial progress made. Using the Figshare Brain Tumor Image dataset, we demonstrated

that our proposed model is highly effective in accurately diagnosing brain tumors. The classification accuracy for

brain tumors was 98.40% for Xception, 99.68% for ResNet50V4, 99.36% for InceptionResNetV2, and 98.72% for

DenseNet201. Further investigation revealed that ResNet50V2 outperforms other models and existing methods in

terms of precision. We hope that our developed model can be implemented in clinical settings to facilitate faster

and more accurate diagnosis of brain tumours. Despite the architecture’s enhanced precision, further advances in

image processing and the proposed architecture could improve its suitability for this task. The absence of clearer

images and an improved DL architecture is the primary limitation of this study, which hinders the achievement of

even higher performance results.

The following statements about what has been accomplished in the paper can be made in light of the conclusion:

• Developed a novel DL approach for brain tumor classification that integrates preprocessing, reconstruction of

TL architectures, and fine-tuning. Employed four TL algorithms, namely Xception, ResNet50V2, Inception-

ResNetV2, and DenseNet201 in the approach.

• Conducted an extensive experiment using the Figshare MRI brain tumor image dataset. Multiple performance

metrics, such as precision, precision, recall, f1 score, confusion matrix, root mean square error, mean absolute

error, and mean squared error, were used to evaluate the effectiveness of the suggested method.

• Found that ResNet50V2 provides better accuracy than other models and existing works for brain tumor

classification.

• Identified the insufficiency of the work, which is the lack of more clear images with improved DL architecture

that resist getting higher performance outcomes.

In the future, we intend to improve our proposed DL model by adopting more advanced hybrid ensemble

techniques with newly available brain tumor datasets. Moreover, we desire to employ explainable AI techniques to

provide greater insight into the decision-making process of our DL model, thus improving the confidence and trust

of clinicians and patients in diagnosis.
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