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ABSTRACT

The process-structure-property relation in short-fiber reinforced composites made
in Fused Filament Fabrication (FFF) remains inadequately understood, much trial-
and-error and extensive testing is required to use these materials for load-bearing
applications. As a consequence, the largely empirical design process has hindered
the adoption of this technology, notably due to the lack of reliable structural
analysis capability. In order to surpass the limitations of mechanical property
prediction using simplified artificial microstructures, this work demonstrates the
decisive advantage of using geometries obtained directly from imaging of printed
specimen instead. The analysis of µCT images is performed via a purpose-built
extraction tool called OpenFiberSeg, yielding profound insight into the process-
structure relation. The use of real microstructures is shown to considerably improve
the mechanical behavior prediction capability via dual-scale FFT-based homoge-
nization, bringing relative error margins below 5%, for full anisotropic description.
It also becomes possible to investigate the effect of processing parameters such
as nozzle diameter and printing pattern on morphological properties and on
mechanical behavior, revealing the magnitude of the spatial variation of local
properties. The combination of experimental and simulation enables insight that
is not accessible to either alone. Original imaging data and source code are made
publicly available.

1. Introduction

Fused filament fabrication (FFF) is an additive manufacturing (AM) method by which complex parts

are built layer-by-layer by the deposition of semi-molten polymer filaments through numerical control. As

opposed to injection or compression molding, the process requires no molds or tooling, which leads to fewer

design restrictions, low cost per unit in small batches, customizability and simplicity of manufacturing [1–4].

By employing short fiber reinforced polymer (SFRPs) filaments made from high-performance polymers

such as poly ether-ether-ketone (PEEK) mixed with short carbon fibers (CFs), parts made through FFF

exhibit weight-specific properties giving them the potential of replacing metallic components in fields like

the aerospace or automotive industries [1, 4, 5]. In addition, by controlling the orientation of reinforcements,
?
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the mechanical, thermal and electrical properties of parts can be engineered for specific purposes [1, 3, 6].

However, before FFF parts can be used for load-bearing applications, structural analysis tools must be

significantly improved [3, 7, 8]. The lack of understanding of the relation between processing parameters and

mechanical properties makes existing tools insufficiently reliable [1, 7, 9], rendering the design process largely

empirical [3, 10]. The main problem resides in the fact that morphological characteristics are influenced first

by the properties of the base materials and the processing parameters [1, 11–13], which lead to localized

gradients in material properties and contribute to suboptimal part consistency [14–17]. Fiber length and

orientation distributions, local fiber volume fractions and the formation of porosity are all affected by

processing conditions, and exhibit local variation within parts [6, 8, 11, 12, 18, 19]. In addition, parts made

by FFF exhibit structural features at several distinct length scales [1, 7], some of which are absent in molded

parts [13]. Understanding the link between these microstructural features and the resulting mechanical

properties is a crucial, and yet-unsolved, challenge [3, 9, 10, 18, 20, 21].

Generally, three distinct scales are relevant in the context of SFRPs manufactured by FFF. The microscale

is where the constituents (matrix, fibers, intra-bead voids) are explicitly considered [7, 11]. Then, the part

geometry scale, or macroscale, is always present and is the main focus of mechanical design. Lastly, the FFF

process imparts an intermediate, or mesoscale, level of structuring that is determined by the printing infill

pattern selected, and the characteristics of the exterior part shell. Even with the simplest of infill patterns,

i.e., all passes aligned with each other, and 100% volume occupation, each bead being round at the nozzle

tip and forced into a rectangular section leaves voids at the corner of this rectangle, which form a periodic

array of neatly aligned cavities throughout the part [1, 21, 22], contributing to part anisotropy [13, 23–25].

All these scales must be encompassed by an attempt to account for the morphology-property relation of AM

SFRPs [7].

2. Background

2.1. Morphological characterization: fiber properties

Predicting the mechanical stiffness of SFRPs requires a description of their microstructure, often

generated from statistical observations of real materials. Fiber length and orientation distributions are

commonly obtained as follows. The elliptical cross-section of individual fibers can be obtained from scanning

electron microscopy (SEM) images of polished samples. The orientation of individual fibers in three-

dimensional (3D) space are computed by measuring the angle those ellipses make with the printing direction

and their ratio of minor to major axis [11, 26, 27]. Fiber lengths can be measured under optical microscopy

or SEM after they are separated from the matrix, either though pyrolysis [2, 11] or dissolution [26]. However,
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those procedures are time-consuming and suffer from repeatability issues [27], and accuracy is reduced for

fibers almost perpendicular to the image plane [28]. Further, SEM images are two-dimensional (2D) rather

than volumetric, and thus cannot account for property variation at different depths in the material. In

addition, the lengths and orientations aren’t measured at once on the same fibers, therefore the SEM images

method does not produce a full-field description including positions in 3D space, and the correlation between

length and orientation is unknown [27]. Some studies have measured this correlation, more so for carbon

fibers than for glass fibers because of their higher average aspect ratio [11, 29, 30]. It is possible to obtain

data at several depths, by repeatedly polishing the specimen to produce a 3D rendering [27, 31], or use

confocal microscopy to image beyond the surface [32].

These statistics can be used directly in analytical modelling [18, 26, 33, 34] or artificial geometries can be

tailored to have similar average properties [2, 11, 35–38]. These geometrical descriptions, or representative

volume elements (RVEs), are a volume description of a sample of the microstructure which is small enough

so modelling is achievable, but rich and complex enough to be representative of the variability of the real

morphology (for strict definitions, see [39, 40]). The generation of such RVEs is complex and computationally

costly, especially when large fiber aspect ratios and volume filling fractions vf are required [2, 11, 37, 41].

As a consequence, the vf considered only rarely reach 25% [38], whereas the vf in SFRPs are commercially

available at 30% and can reach as much as 40% [29, 42]. A commonly used method of microstructure

generation is random sequential adsorption (RSA) [14, 38, 43–45], in which inclusions (fibers and/or

pores) are seeded into a volume one at a time, checking for interference with existing inclusions, and

randomly repositioned in case of interference, until the desired volume fraction is reached. Fiber segments

that extend beyond volume boundaries are repeated on opposite faces of the volume, ensuring geometric

periodicity [38, 41]. Notably for large aspect ratios, this method has been modified in several ways to

enable higher volume fractions [9, 11, 45]. Other methods draw from molecular dynamics modeling, in

which fibers have velocities and collide with each other while increasing in volume, until the desired vf

is reached [41, 46, 47]. A few studies attempted generating artificial microstructures with a specific set

of orientation and lengths distributions, in addition to infill fractions. Tian et al. proposed a fiber growth

method by which they were able to reach 25% of infill [14, 45], but only 19% was achieved with an aspect ratio

of 10 [38]. Tang et al. achieved vf = 38% at a mean aspect ratio of 15, but only for random orientations [9].

Using a modification of the RSA algorithm, they generated microstructures (including fibers and voids)

in which fibers conformed to an orientation tensor obtained from a computed micro-tomography (µCT)

scan of a real CF polyamide-12 (PA12) specimen. By generating RVEs with varying characteristics, they
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demonstrated that fiber alignment has a pronounced effect on tensile properties: an RVE with an average

deviation of 18° shows a tensile modulus 2.67 larger than one with random orientation.

Nasirov et al. [2] used artificially generated RVEs with vf up to 10% with a constant fiber length of

60 µm, with either uniform (random) orientations or aligned with the print direction. This microstructure

was homogenized first, then embedded in a mesotructure of unidirectional or 0◦-90◦ printing pattern (each

layer has aligned beads, and subsequent layers are perpendicular to each other). For their mesostructure

description, the authors considered ideal RVEs of beads modelled as rounded rectangles and actual RVEs,

generated according to mesotructures observed in microscope images of physical specimens. They compared

the tensile moduli predicted by simulation to tensile testing measurements performed on carbon fiber

reinforced polylactic acid (PLA), and encounter up to 20% error in unidirectional configuration, and

up to 40% error for 0◦-90◦, using actual mesotructure RVEs (error was higher for ideal mesotructures).

Another study from the same group considered aligned carbon fibers in polycarbonate (PC), and an ideal

mesostructure, and reported 3.5% to 36% error in tensile modulus prediction [22]. These studies suggest

the mesoscale porosity has a significant influence on effective properties, notably in making the material

anisotropic, even when considering a pure (non-reinforced) isotropic polymer [13]. They also highlight the

fact that real microstructures are not perfectly aligned, which has a decisive impact on effective properties.

The non-uniform nature of real mesoscale porosity and the probable spatial variation in microscale properties

can also cause discrepancies between those models and reality. The correlation between those attributes is

also not accounted for. Those factors explain the rather large error encountered when comparing predictions

to experimentally measured tensile moduli.

Volumetric characterization based on imaging methods such as µCT has also been reported for

SFRPs [8, 19, 27, 29, 48–50]. Obtaining microstructures this way is technically challenging, requiring

specialized post-processing that is computationally costly, but the microstructures produced are detailed

and high fidelity to physical specimen can be achieved [27, 29, 48]. To the authors’ knowledge, however,

material data produced in this manner has only rarely [51] been utilized directly for mechanical properties

prediction.

2.2. Effect of processing on microstructure

The rheological phenomena by which fiber alignment and lengths are affected by processing has been

studied from modelling and expeximental perspectives. Using flow simulations, most studies [33, 52] utilize a

so-called weakly coupled approach, in which fluid flow is solved first without considering the presence of fibers.

Then, a fiber orientation tensor is inferred from flow profiles via the Advani and Tucker’s equations [53].

Sosa-Rey et al.: Preprint submitted to Elsevier Page 4 of 33



Multiscale FFT-homogenization of AM fiber reinforced composites from component-wise description of morphology

The weakly coupled assumption is considered valid for vf < 10%, beyond which fiber-fiber and fiber-matrix

interactions induce strong coupling. These models predict a change of fiber alignment at nozzle tip. Lewicki

et al. [6] performed flow simulations using discretely modelled fibers and epoxy resin, with a vf = 6% and

aspect ratio of 50. They found that alignment is promoted during the extrusion phase, most notably close

to the walls. Zhang et al. [10] performed a coupled fluids/discrete fiber modelling of extrusion in FFF to

study the phenomena of nozzle clogging. They used their modelling and µCT data of CF filled PA6 to

propose nozzle geometries and fiber characteristic to prevent nozzle clogging and promote fiber alignment.

On the experimental front, Chacón et al. [54] studied the effect of nozzle diameter on the tensile and strength

properties of CF reinforced polyamide-6 (CF-PA6) specimens, along with porosity generation and geometric

accuracy. They found that mechanical properties increased with a larger nozzle diameter, and that porosity

is lowest for large diameter nozzles (measured up to 0.8 mm). However, to the author’ knowledge, there

hasn’t been numerical prediction of mechanical properties taking nozzle diameter as a variable. Extrusion of

SFRPs is known to cause fiber breakage, which attenuates their mechanical properties [6, 12, 55]. Limited

data exists on this phenomenon, whether experimental [12, 29] or simulated [10], as the computational

requirements to model this phenomenon would be prohibitive [3].

2.3. Mechanical property prediction: homogenization

Homogenization is the process of estimating the effective properties of a heterogeneous solid. There are

generally two families of methods by which this process is carried out: mean-field and full-field methods.

Mean-field, or analytical, methods use statistics about the size and orientation of inclusions along with their

material properties to estimate those of the composite solid. Such methods include the Mori-Tanaka [56, 57],

the self-consistent scheme [58], Lielen [59] and others, see [36]. These methods all assume ellipsoidal inclusion

shapes and uniform spatial distribution of orientations, sizes and local density [60]. Further, the interaction

between inclusions is possible only to a limited extent (usually for vf < 15%) [36, 60]. It has been suggested

that these simplifications make mean-field methods unsuitable for modelling complex microstructures such

as high-vf SFRP [38], notably at high property contrasts and aspect ratios [36].

Recent progress in full-field or volumetric approaches have produced more accurate predictions [2, 11,

36, 37, 60], though at a much higher computational cost. In full-field methods, a unit cell representing the

microstructure (the RVE) is subjected to external strain, and the local stress response is computed at each

point in space by numerical resolution of the constitutive laws. The effective response is obtained by volume

averaging of the local responses [18] (see Appendix A for details). The chosen boundary conditions (BCs)
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directly affect the convergence rate towards true effective properties [40, 45], with periodic BCs converging

the fastest [39].

The most well-known of full-field methods is the Finite Element (FE) method, which has had some success

in the context of homogenization of SFRPs [11, 14, 38, 45, 51]. However, the FE method requires a suitable

mesh representing the microstructure geometry, whose construction becomes increasingly challenging and

computationally costly with high vf [11, 38]. For high fiber content and aspect ratios, the meshing can

fail altogether due to numerous contact points between fibers [14, 61]. Mesh-free methods offer a means to

circumvent this problem.

One such method was developed by Moulinec and Suquet [62], where the elasticity equation is expressed

in a so-called Lippman-Schwinger form, and resolved iteratively with the help of the Fast Fourier Transform

operation (FFT) (see Appendix B for details). In the FFT method, the microstructure is described by an

orthogonal grid (a 3D array), which means this method has the decisive advantage of being able to use data

from 3D-imaging techniques directly [20]. The absence of meshing also lowers the memory requirements,

which combined with the computational efficiency of the FFT method, enables the resolution of large and

realistic microstuctures [60, 63]. Recent developments have extended the original Moulinec and Suquet

method to allow convergence in presence of infinite phase contrast (as for porous materials), which was a

limitation of the original formulation [64]. The AMITEX software implements the FFT method with these

improvements, along with distributed computing techniques that allow performance gains on multi-CPU

architectures [65, 66].

When a material exhibits structuring phenomena at dissimilar length scales, such as in SFRPs made by

FFF, attempting to consider the smallest features at the largest scale is often unfeasible [20, 67]. Sommireddy

et al.[51] attempted it for predicting tensile properties, using a single RVE with a simplified description of

both micro and mesostructure, with error margins of 16 to 26%, depending on load direction. Multiscale

techniques are used instead, where the constitutive equations at the macroscale are substituted by the output

of the boundary value problem computed at the microscale. Doing so allows the combination of different

methods for each scale, drawing on the strengths of each. For instance, the efficiency of FFT method applied

to the microscale can be combined by the ability of FE at the macroscale to account for arbitrary part

geometry and BCs [60, 63]. For the multiscale method to be valid, however, a sufficient scale separation

must exist between the each scale: the typical length at which the smallest features vary, or ln, must be

small when compared to the RVE size used to homogenize those features, or Ln. That RVE size must also

be small when compared to the features at the scale above it, or ln+1, and the RVE size used to model those,

or Ln+1 [68]. This can be expressed as ln << Ln << ln+1 << Ln+1.
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3. Methods and materials

We investigated the process-structure-property relation of SFRPs made by FFF. As shown in Figure 1,

specimens of CF reinforced PEEK were manufactured using unidirectional (0◦-0◦), 0◦-90◦ and 90◦-90◦

patterns and an intermediate nozzle diameter. Unidirectional specimens were also fabricated for 2 additional

nozzle diameters, one smaller and one larger. As shown in Figure 2, for each scenario, both the microscale

and mesoscale morphologies were characterized through µCT imaging. Component extraction was then

performed using OpenFiberSeg, a special-purpose tool developed by the authors [29]. This tool enables

the identification of individual fibers, as well as the intra-bead (microscale) and inter-layer (mesoscale)

porosity. Sub-volumes where no mesoscale features are present are located, which serve as representation of

the intra-bead microstructure itself. This microscale description C(x) (stiffness as a function of position in

space) was then processed with the AMITEX software to obtain an homogenized effective stiffness at the

microscale, C̃micro, which was used in turn to obtain the homogenized stiffness at the mesoscale, or C̃meso.

The stiffness predicted by dual-scale homogenization was then validated by comparing with experimental

data and contrasted with predictions made with simplified artificial microstructures.

Figure 1: Schematic representation of the printing patterns used to produce the test specimens. For all nozzle diameters,
the 0◦-0◦ or unidirectional along the longitudinal axis was studied. For the 0.4 mm nozzle, additional specimens using the
0◦-90◦ and 90◦-90◦ pattern were also considered.

3.1. ASTM D638 Type 4 specimen preparation

Commercial filament Tecafil™ PEEK VX 30CF from Ensinger was placed in a vaccum oven for 24 h

at 60◦C and 17 kPa. Figure 1 shows an ASTM D638 Type 4 dogbone specimen that was printed in

an AON3D™ Mark 2 industrial 3D printer using 3 different nozzle diameters (Volcano model from E3D,

diameters D = 0.25, 0.4 and 0.8 mm). The slicing parameters utilized in the Simplify3D™ slicer are shown in

Table 1. The layer height and extrusion multiplier were set empirically by attempting to minimize inter-layer

porosity, with a printing speed of 30 mm/s. In addition, the following temperature settings were common

to all specimens: nozzle temperature: 410◦C, bed temperature: 180◦C, and chamber temperature: 120◦C

(maximum allowable in AON Mark 2). A total of 6 specimens were produced for each nozzle diameter,
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Figure 2: Schematic flowchart of the dual-scale FFT-homogenization. a) µCT imaging data of physical specimen, performed
with large field of view for the mesoscale, and at high resolution for the microscale. b) Constituent extraction using
specialized software OpenFiberSeg. c) The result of FFT-homogenization at the microscale serves as input for the mesoscale
homogenization.

Table 1
Printing parameters used for each specimen type

D, nozzle Layer Extrusion Extrusion Printing
diameter (mm) height (mm) width (mm) multiplier pattern

0.25 0.10 0.22 0.95 0◦ − 0◦

0.40 0.20 0.42 1.10 0◦ − 0◦, 0◦ − 90◦, 90◦ − 90◦

0.80 0.25 0.80 1.01 0◦ − 0◦

using longitudinal or 0◦-0◦ (all passes are along the longitudinal axis of the specimen, i.e., the 0◦ direction).

Using the 0.4 mm nozzle, 6 additional dogbones were made using a 0◦-90◦ pattern (layers alternate printing

passes along the long and short axis) and a 90◦-90◦ pattern (all passes perpendicular to the dogbone axis).

Filaments spools were kept in the heated chamber for the duration of printing.

Additionally, for each of the nozzle diameters considered, 3 specimens were made by extrusion in free-

space, meaning the printhead is not pressed against the table. These specimens enable the characterization

of the microstructure at the bead scale, excluding all phenomena related to the deposition onto a part.

3.2. Tensile testing

The specimens were loaded at a rate of 5 mm/min using a MTS Insight Material Testing system and a

MTS uniaxial extensometer model 634_25F-25. For each loading sequence, the strain was obtained directly

from the calibrated extensometer readings, and the stress was computed by dividing the loading force by

the specimen cross-section area (measured from the average of 4 caliper measurements along the narrow

section of the dogbone). The linearly elastic range for each specimen was identified in the following manner.
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A first-degree polynomial was fitted by the least-square method to the entire stress-strain data. The fit

was then performed iteratively, each time removing the point at the highest stress from the data, until the

relative error between the fitted line and the experimental curve reached 1%. This segment of the data was

considered within the linear regime, and the tensile modulus for each specimen is the slope of the fitted line.

3.3. Volumetric characterization

3.3.1. Tomographic data acquisition

Using a specimen of roughly the same physical dimensions as the scanning field of view (FoV) minimizes

the noise contributed by material outside the FoV and helps achieve the highest quality imaging data. To

ensure that individual fibers are differentiated and tracked, at least 10 pixels [8, 29] for the typical fiber

diameter of 7− 10 µm are required for carbon fibers, which leads to a pixel size of 0.7− 1.0 µm. The Zeiss

XRadia™ 520 micro-tomographic scanner has a cylindrical FoV with a diameter and height of ∼ 1000 pixels,

which at that pixel size allows for a diameter and height of 0.7 − 1.0 mm of physical specimen volume. In

each specimen, a roughly cylindrical section of diameter 1− 1.5 mm was manually carved from the narrow

part of the dogbones and mounted on the specimen holder. The following scanning parameters were used:

source power: 7 W, source voltage 80 kV, distance from source to specimen: 9.1 mm, distance from detector

to specimen: 23.0 mm, optical magnification: 10×, exposition time: 1.25 s, number of projections: 3200, and

no filter (i.e., using air attenuation). This configuration yields a pixel size of 0.764 µm, and a total scan

time of 2 h 20 m per specimen. Two separate FoVs were chosen inside each specimen to account for local

variations in properties. In total, 4 FoVs were scanned at high resolution for each printing configuration:

2 FoV per specimen and 2 specimens per configuration. The free-space specimens, along with a section of

feedstock 1.75 mm filament, were also scanned in this manner.

Except when using the nozzle withD = 0.25 mm, the grid-like printing pattern is larger than the diameter

of the high resolution scans. To enable the analysis of those mesoscale features, rectangular sections measuring

∼ 4 mm on one side were also produced and scanned at a larger FoV (meaning at a lower resolution). Here,

the scan resolution was reduced considerably since we are mainly interested in the larger mesoscale porosity,

not the small intra-bead pores, nor the fibers. The parameters used are the same as above, except for: distance

from source to specimen: 21.1 mm, distance from detector to specimen: 9.0 mm, optical magnification 4×,

exposition time: 0.4 s, number of projections: 1600. This yielded a pixel size of 4.69 µm and a total scan time

of 40 min. One such FoV was produced for each nozzle diameter and print configuration. As the specimen

preparation for µCT scanning is destructive (a small section is carved from the dogbones) all imaging was

performed after tensile testing.

Sosa-Rey et al.: Preprint submitted to Elsevier Page 9 of 33



Multiscale FFT-homogenization of AM fiber reinforced composites from component-wise description of morphology

Figure 3: Segmentation of mesoscale porosity and definition of subvolume for homogenization. a) Slice of tomographic
data showing a rectangular specimen printed according to the 0◦-0◦ pattern and a 0.4 mm nozzle. Horizontal printing
layers are visible, leaving mesoscale porosity in dark. b) The inter-layer porosity identified by OpenFiberSeg is highlighted
in light blue. c) Cumulative sum of all porosity voxels in the out-of-plane direction. The grid-like arrangement of printing
passes is revealed in sharp contrast. The red rectangle is the chosen subvolume for homogenization.

3.3.2. Component extraction (OpenFiberSeg)

The tomographic scans were processed with the help of OpenFiberSeg, an open-source software built for

the purpose of identifying the constituents in the volume (matrix, pores and individual fibers). With this

software, the user first manually labels a small patch of data to identify the constituents. This labelling is then

fed to a machine learning algorithm to identify the remaining pixels in the entire dataset. On a slice-by-slice

basis, the pixels containing fibers are automatically grouped into connected regions, and the centroids of

those regions are tracked across 3D space to form neatly aligned chains, which are used to infer the presence

of individual fibers. Thanks to this extraction, it is possible to build a voxel-based (regularly-spaced volume

elements) representation of the microstructure for a specific specimen. Porosity is labelled using classical

image processing methods such as the Canny edge detection algorithm. As can be seen in Figure 3 a),

at this length scale, the large pores belonging to the mesostructure and the smaller intra-bead pores can

be discriminated according to their size. Each pore size is estimated by the number of connected pixels it

contains, then a size threshold (∼ 1% of total FoV volume) was chosen such that only mesoscale porosity is

kept. Examination of Figure 3 b), in which the pores above the threshold are in shown in light blue serves

to ascertain that all the mesoscale porosity has been labelled.

3.3.3. Subvolume definition, micro and mesoscale

For the purpose of homogenization, one or more rectangular subvolumes inside the cylindrical FoV need

to be identified. These combined subvolumes form the RVE for a particular printing configuration. The

FoV must be cropped for several reasons. First, the rectangular subvolume must lie entirely within the

material. Then, for the case of mesoscale homogenization, the subvolume dimensions should respect the
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periodic structure formed by the evenly spaced printing layers and extrusion beads, since only a handful of

periods is included. Lastly, for the purpose of dual-scale homogenization, the microscale structure containing

fibers/matrix/intra-bead pores must be isolated from the mesoscale pores, to not skew the results by

including those twice.

The shape and size of porosity made by the priting pattern is irregular and the grid-like pattern is not

readily visible on a single slice. To reveal this pattern more clearly and to identify suitable subvolumes within

a FoV, the following method was used. Across the entire volume, the pixels containing pores were assigned

the value 1, and all other pixels the value 0. Then, we took the cumulative sum of all 2D slices in the

volume along a reference direction (for instance, the out-of-plane direction in the Figure 3 b), creating a 2D

map with high values where the mesoscale porosity in concentrated, and low values otherwise, as shown in

Figure 3 c). Here, the mesoscale porosity is revealed unambiguously for the entire volume. A subvolume that

is inscribed in the natural periodicity of the mesostructure is thus identified: the red rectangle in Figure 3

c) encompasses an integer number of layers (starts and ends at mid-layer in the vertical direction) and of

passes (starts and ends at bead centers).

The same projection procedure was repeated for the case of microstructure homogenization, on the

high-resolution imaging data, as shown in Figure 4 for the nozzle with D = 0.4 mm and a specimen made

with a 0◦-0◦ pattern. In Figure 4 a), the input imaging data is shown, with the corresponding material

labelling in Figure 4 b). In Figure 4 c), the subvolumes identified are the largest possible such that they

contain only microscale porosity.

Figure 4: Segmentation of fibers and microscale porosity and definition of subvolumes for homogenization. a) Slice of
tomographic data of a specimen printed according to the 0◦-0◦ pattern with a 0.4 mm nozzle, showing horizontal printing
layers. b) Fibers and porosity found by OpenFiberSeg highlighted in orange and light blue, respectively. c) Cumulative sum
of porosity voxels in the out-of-plane direction. The location of mesostructure porosity across the volume is made obvious,
relatively to the single-slice rendering in b). The red rectangles are chosen for homogenization, selected to the maximum
size while avoiding mesoscale porosity.
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Table 2
Material properties for base constituents, see [69, 71, 72].

Polymer E (GPa) ν Carbon fibers El (GPa) Et (GPa) νl νt Gl (GPa)
Victrex 450G PEEK 4.0 0.3855 Toray T300 230 13.4 0.256 0.3 27.3

3.4. Dual-scale homogenization

Under the condition of scale separation, the microscale morphology (including fibers, matrix, and the

small, inter-layer porosity) can be homogenized by itself if the scale at which this homogenization occurs

(a single pass) is large when compared to the dimension of constituent phase change (the size of fibers and

pores). Using many subvolumes across several different scans enables the estimates given by homogenization

to be representative of the variability in the real material.

The AMITEX software accepts as inputs a volumetric description containing a number of different

materials, which can be the organized in zones, for instance for fibers or grains with different orientations.

For the problem at hand, the isotropic matrix is described by tensile modulus E and Poisson’s ratio ν.

If the axis of the transverse isotropy is ~e1, and the transverse plane is ~e2×~e3, the fibers are described by

longitudinal (along ~e1) and transverse (along ~e2 or ~e3) moduli El and Et, respectively, Poisson’s ratios

between axes (~e1,~e2) and (~e2,~e3), i.e. νl and νt respectively, and the shear modulus between axes (~e1,~e2), i.e.

Gl. The matrix properties were obtained from manufacturer datasheets on Victrex 450G PEEK [69]. The

precise carbon fiber type is not disclosed, but the most likely candidate are the so-called standard modulus

fibers, of which Toray T300 carbon is the most common and cost-effective [70]. The material properties for

T300 fibers are taken from [71, 72]. Property values are given in Table 2.

Whereas all matrix and porosity voxels can share the same default zone (they are isotropic), the different

fiber orientations are represented using zone descriptors at each voxel, which include a rotated reference

frame onto which the stiffness tensor is projected. The implementation of the AMITEX software has the

number of zones limited to 215 = 32768. For large subvolumes containing more fibers than this limit, the

orientation angles φ and θ (spherical coordinates) are rounded to the nearest integer, and fibers with common

angle pairs are grouped under the same zone identifier, with negligible effect on homogenization output (this

was tested on subvolumes below the fiber count limit, for which it is possible to not round the angle values).

The homogenized stiffness tensor for an equivalent solid is obtained by subsequently applying the uniaxial

strains in the 3 references directions, and the 3 pure shear strains to a given microstructure. For each load

case, the volume-averaged stress response of the entire solid yields one column vector in the homogenized

stiffness tensor for this material (see Appendix A for more details). For each printing configuration, each

subvolume is processed through AMITEX in this manner, and the stiffness tensors for each realization were
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averaged. This averaged tensor represents the composite made of matrix-fiber-microscale pores, which is then

used in mesoscale homogenization, where the RVE contains this composite and the grid-like porosity pattern

due to the printing procedure. For the 0◦-90◦ printing pattern, the microscale was homogenized separately

for beads containing only 0◦ or 90◦ subvolumes, and the two resulting C̃micro were averaged together to

represent the 0◦-90◦ pattern. Only then was inserted into the mesostructure RVE. The output of this last

stage is the effective stiffness for each printing configuration.

The specimen made with the D = 0.25 mm nozzle has a printing pattern with layer height × extrusion

width of 0.1 mm×0.2 mm. As such, a single high-resolution scan volume of �≈0.75 mm contains several

printing passes, so in this case only single-scale homogenization is required.

3.5. Alternative approach: artificial microstructures

The approach based on high-resolution tomographic imaging is restrictive in many respects. It requires

access to expensive equipment and technical expertise, and extensive post-processing of the imaging data. To

benchmark the quality of our modelling approach against those found in the literature [2, 22], and quantify

its added value, the following approach is also presented. Producing an artificial geometry with the full

orientation and lengths distribution of real materials, at high vf is technically challenging, and beyond the

scope of this work. Much like the approach used in [2, 22], a simplified set of artificial geometries can be used

instead. Based on the work of Ghossein et al. [41], microstructures can be created using an algorithm based

on molecular dynamics modelling, in which ellipsoidal fibers are generated at a fixed aspect ratio (AR), with

near-ideal alignment (some fibers rotate during the generation process due to collisions), up to a desired vf .

Spherical pores, occupying a specified volume fraction vp = are also produced. To determine which AR is

representative of a real physical specimen, the following method was used. In Figure 5 a), the distribution of

lenghts and deviation angles θ as seen in real physical specimens is shown. Longer fibers contribute more to

the effective stiffness than shorter fibers, therefore simply using the mean length as seen in a real specimen

will not capture the outsized effect of longer fibers. An estimation of the effect of AR on effective properties

was gained by performing Mori-Tanaka simulations on aligned microstructures, for AR ranging from 1 to

100.

In Figure 5 b), the relative effect (or weight) of a fiber’s AR is shown: by keeping vf constant, the tensile

modulus predicted by the Mori-Tanaka model is normalized by the modulus for AR = 1. The value obtained

is an indication of the effect each AR has on the effective moduli: an AR=10 was a weight of 3, meaning it

has 3× the effect on effective stiffness than a fiber of AR=1. Using these weights, a weighted mean can be

computed, which accounts for the larger effect of longer fibers. For instance, instead of one fiber with AR=1
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Figure 5: Generation of representative simplified artificial microstructure. In a) the fiber lengths and deviations in all
physical specimen is shown. In b) the Mori-Tanaka model is used to give a weight to each fiber according to its aspect
ratio, and its relative impact on effective tensile properties. c) Example of a microstructure, with constant aspect ratio
AR = 8, corresponding to the weighted mean in b), and near-ideal alignment. This RVE was used to compare against the
prediction accuracy of the homogenization procedure using imaging data. Fibers occupy vf = 23.1%, and pores occupy
vp = 2%, which is consistent with real material microstructures.

and one with AR=10 giving a mean AR of 5.5, we consider the fiber with AR=10 to be duplicated 3 times,

according to its weight, therefore the weighted mean becomes (10∗3+1)/4 = 7.8. Therefore, a Mori-Tanaka

estimate using two fibers with AR=1,10 is equivalent to one with a single fiber of AR=7.8, keeping total vf

constant. The weighted mean procedure is done on the distribution of ARs in a real specimen, duplicating

each fiber by the integer amount of its weight. The weighted and unweighted mean obtained are presented

in Figure 5 a), with values of 32 µm (AR = 4.2) and 60 µm (AR = 8.0), respectively.

The latter value of AR is used to generate artificial microstructures, along with vf = 23.8% and vp = 2%,

and a deviation value θ ≈ 0◦. As these microstructures are costly to generate for large fiber counts, 20

subvolumes with 300 fibers and 8 pores were used instead. An example of such a microstructure is presented

in figure 5 c), with fibers identified in different shades of grey, and pores shown in red. Keeping the same

dual-scale FFT-homogenization approach, these artificial geometries are used as a stand-in for the microscale

description from real materials. The averaged output of this homogenization (C̃micro) was then inserted into

the same mesoscale RVE obtained from µCT imaging of each specimen type, to evaluate the relevance of using

high-resolution imaging and individual fiber tracking. The alternate approach uses only the low-resolution

µCT images for the mesoscale, and the much simpler labelling of mesoscale porosity, along with idealized

microstructure description.
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Table 3
Measured averaged modulus for each specimen type, with 95% confidence intervals

D, nozzle Printing Averaged
diameter (mm) pattern modulus (GPa)

0.25 0◦ − 0◦ 19.4± 1.0
0.40 0◦ − 0◦ 16.4± 0.7
0.80 0◦ − 0◦ 18.5± 1.0
0.40 0◦ − 90◦ 9.7± 0.6
0.40 90◦ − 90◦ 3.2± 0.3

4. Results and discussion

4.1. Tensile testing results

Figure 6 contains the stress-strain curves as measured during tensile testing, as well as the line segments

that represent the estimated linear domain for each test. In general, considerable variability is observed

between specimens of the same printing configuration.

The averaged modulus for each specimen category is presented in Table 3. Among the specimen made

with the 0◦-0◦ print pattern, those made with the D = 0.4 mm nozzle have a stiffness 14% lower than the

average of specimens made with the D = 0.25 and 0.8 mm nozzles. The specimens made with the 90◦-90◦

pattern have the lowest tensile modulus, since the fibers are mainly oriented in the direction perpendicular

to the testing direction, and the specimens at 0◦-90◦ exhibit an intermediate modulus.

4.2. Effect of nozzle diameter

The probability density functions (PDF) of fiber lengths and deviation angles from the extracted fiber

properties pertaining to the free-space extrudates and the segment of 1.75 mm filament feedstock are shown

in Figure 7. In Figure 7 a) the extent of fiber breakage is revealed: for all 3 nozzles, the proportion of fibers

shorter than 20 µm increased by nearly a third, when compared to that of the 1.75 mm filament, with
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Figure 6: Stress-strain curves for each specimen, for all 5 printing configurations. Solid lines segments represent the
estimation of the linear elastic domain for each curve, from which the tensile modulus is calculated.
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no large distinction between nozzle diameters. In Figure 7 b), the effect of extrusion on fiber alignment

is appreciated, as measured by the peak locations (θmax) on each curves and the measure of full width

at half maximum (FWHM). Although the position of peaks is nearly unchanged, there is more dispersion

surrounding the peak in all extruded specimens. Though these variations are small, their magnitude had

not been measured before. Having these distributions along with the corresponding 3D renderings of the

fibers as they present in each bead could be valuable for future rheology modelling efforts of the extrusion

of SFRPs.
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Figure 7: Probability density functions (PDFs) of a) fiber lengths and b) fiber deviation angles relative to printing direction
(θ), for each nozzle diameter D. In a), the comparison to the PDF in the feedstock filament (�=1.75 mm) shows that
fiber breakage occurs for all nozzle diameters to roughly the same degree. The peak locations (θmax) on each curve and
the full width at half maximum (FWHM) in b) reveal the effect of extrusion on fiber alignment. The drops in peak heights
in b) could be explained by fiber breakage: the short segments produced by breaks are more likely to be misaligned. This
effect is particularly prevalent in the 0.25 mm nozzle.

4.3. Local property variation

The same cumulative sum procedure described in Section 3.3.3 was used to visually analyze the

microstructure for each printed configuration. As presented in the Video in Supplementary Materials, in

addition to computing the cumulative sum of pixels containing fibers or pores, here each pixel is also given

the value of a property: first fiber length, then fiber alignment with the 0◦ print direction. As a reminder, x

and y are the 0◦ and 90◦ printing direction, respectively, the x − y plane is the printing bed plane, and z

is the vertical direction. Cumulative sums are taken along both x and y, enabling the study of gradients in

material property, that is not easily seen on a slice-by-slice basis.

Figure 8 presents the cumulative sums of fiber alignment with the 0◦ print direction, fiber length, fiber

and pore densities, for specimens printed with nozzle D = 0.4 mm, and the 0◦-0◦ printing pattern. Three

whole layers are visible, and one partially at the bottom. In Figure 8 a), we can see that there are pockets

of stronger and weaker alignment (pale blue patches) that are of a size comparable to the layer height.

This degree of non-uniformity is one possible explanation to the variability observed in tensile properties:
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these variations are not always present depending on which specimen or scan location is considered. If more

patches of weak alignment are present in a specimen, it would lead to lower macroscopic modulus in that

direction. In addition, there is noticeable decrease in both fiber length and fiber density at the layer interfaces

(Figure 8 b anc c). This effect is subtle, but indicative that different rheological characteristics are found at

the interface. In Figure 8 d), we also observe a vertical gradient in the distribution of intra-bead porosity,

which accumulate towards the bottom of each layer. These phenomena offers an interpretation to the known

deviation of tensile and fracture properties at the inter-layer region.
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Figure 8: Morphology visualization: 0◦-0◦ pattern, nozzle diameter D = 0.4 mm. Cumulative sum of per-voxel properties
along x and y directions. a) Alignment with 0◦ print direction x (1.0 is perfect alignment (θ = 0◦), 0.0 is perpendicular
(θ = 90◦)). b) Length of fibers. c) Fiber density. d) Pore density.

Figure 9 depicts the same cumulative sums, for specimens of nozzle D = 0.4 mm, and the 0◦-90◦ printing

pattern. From top to bottom, 4 layers are distinguished, namely 0◦-90◦-0◦-90◦. The alignment color code

in Figure 9 a) is with direction x, therefore the white parts in the 90◦ layers are those with the strongest

alignment with y. Again, regions of weaker alignment are perceptible in both the 0◦ and 90◦ passes, although

in this case they are in the shape of elongated streaks. In addition, the x−z (left-hand side) and y−z (right-

hand side) cumulative sums plots are not mirror images: the right-hand side shows much more pronounced

waves. There are also noticeably longer fibers present in the center of those deeper indentations, as visible in

Figure 9 b). We surmise this is due to the different cooling duration between the 0◦ pass and the 90◦ pass:
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Figure 9: Morphology visualization: 0◦-90◦ pattern, nozzle diameter D = 0.4 mm. Cumulative sum of per-voxel properties
along x and y directions. a) Alignment with 0◦ print direction x (1.0 is perfect alignment (θ = 0◦), 0.0 is perpendicular
(θ = 90◦)). b) Length of fibers. c) Fiber density. d) Pore density. e) Fiber alignment, using alternative square-shaped
specimen (part aspect ratio of 1, dimensions 20×20×4 mm). The indentations left on previous layers are of similar extent
for print passes in both directions.

the central part of the dogbone specimen has a long aspect ratio. Therefore, the print head travels 115 mm

for the 0◦ pass and only 6 mm for the 90◦ pass, a difference of 19 times. As a consequence, for each 90◦ bead

much less cooling has occurred when the adjacent one is applied, therefore local base layer temperature is

higher. More remelting of the base layer can thus occur, forming deeper indentations. We corroborate this

explanation by scanning and analyzing a specimen made from a square plate (aspect ratio of 1, dimensions

20× 20× 4 mm) printed in the 0◦-90◦ configuration, also with the D = 0.4 mm nozzle. In Figure 9 e), the

resulting cumulative sum visualization for fiber alignment in such a specimen is presented. In this scenario,

the indentations left on the preceding layer are of similar severity for the passes in both directions. This

effect suggests that feature aspect ratio is a source of microstructure orthotropy: the fiber alignment and

length distribution is less symmetrical when part aspect ratio is high, leading to a different moduli in the x,

y and z directions.

The reader is referred to the Supplementary Materials for the renderings of data from the nozzles with

D = 0.25 mm and D = 0.8 mm mm. All these local variations highlight the need for using several FoVs

across many specimens, as this is the only way to reach a true RVE for each printing configuration for this

class of material.
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4.4. Microscale orthotropy

It is expected that the presence of fibers in SFRP introduces transverse isotropy, i.e. the material’s

stiffness is symmetric with respect to rotation along one axis, here the printing direction x. However,

the degree to which the microstructure by itself is orthotropic rather than transversely isotropic is not

clear, meaning that the tensile moduli along directions y and z are also different from each other, which

breaks the rotational symmetry along x. This effect is hard to disentangle from global orthotropy, to which

the mesoscale printing pattern is a known contributor [13, 23–25]. Having a detailed description of the

microstructure allows us to investigate this feature. As shown in Figure 10, each fiber in a microstructure

can be represented in polar coordinates, in the following manner. The angle θ the fiber makes with the

printing direction x is the radial coordinate, and the azimuthal angle in the y − z plane is the angular

coordinate. Doing so, a two-dimensional histogram can be generated, by binning all the fibers in a specimen

by θ and φ. In addition, just as in artificial microstructure generation, the histogram is weighted to account

for longer fibers’ estimated effect on effective stiffness (see Section 3.5). Figure 11 presents the resulting

histograms for nozzles with D = 0.25, 0.4 and 0.8 mm. The degree of alignment with print direction is

higher for nozzle D = 0.25 and 0.8 mm, as seen in Figure 11 a) and c). The cumulative distribution function

in Figure 11 d) shows that, for those specimen categories, 56% of all fibers have θ < 15◦, whereas for

the D = 0.4 mm specimen the proportion is 29%. This explains the drop in tensile modulus observed in

experiments, as presented in Table 3, where the D = 0.4 mm specimen is 14% less stiff in the x direction

that the average of the D = 0.25 and 0.8 mm specimens. Furthermore, the more elongated and horizontally

aligned red regions in Figure 11 b) indicate that the D = 0.4 mm specimen has a higher ratio of fibers aligned

with the y direction against the z direction. This is not correlated with the extrusion cross-section (layer

height/extrusion width, see Table 1), as the D = 0.25 and 0.4 mm specimen have a cross-section aspect

ratio of 2, and the D = 0.8 mm specimen has an aspect ratio of 3. Nonetheless, this phenomenon deserves

further investigation, as D = 0.4 mm nozzle offers a good trade-off between geometric print resolution and

printing speed, but the drop in tensile properties is deleterious. Whereas the experimental measurement of

microscale orthotropy, separately from the mesoscale contribution is not feasible, the degree of orthotropy

can be gauged from the homogenized stiffness tensors at the microscale, C̃micro. The degree of congruence

with either transverse isotropy or orthotropy can be measured by projecting C̃micro to either space, i.e.

rebuilding the tensor from the extracted independent parameters for each symmetry class, and measuring

the L2 norm of the difference between the two. For instance the distance e of the projection into orthotropic

space is: e =
∣∣∣C̃micro − C̃

ortho
micro

∣∣∣
L2
. The distances for all nozzle diameters are presented in Table 4, along with

the ratio of tensile moduli along each of the reference directions. While the distance for the the D = 0.25
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Table 4
Remainder of C̃micro after projection to transversely isotropic and orthotropic space. Ratios of tensile moduli along x, y
and z.

D, nozzle Printing Distance Distance
diameter (mm) pattern Trans. iso Orthotropy Ez/Ey Ez/Ex Ey/Ex

0.25 0◦ − 0◦ 1.15 1.07 0.97 0.26 0.27
0.40 0◦ − 0◦ 3.02 1.86 0.84 0.33 0.40
0.80 0◦ − 0◦ 2.08 2.02 0.96 0.24 0.25
0.40 0◦ − 90◦ 8.88 1.71 0.42 0.63 1.52

0.40 (plate) 0◦ − 90◦ 5.53 0.70 0.52 0.54 1.04
0.40 90◦ − 90◦ 1.26 1.19 1.02 0.25 0.24

and 0.8 mm specimens are nearly identical for both symmetry classes, the one for the D = 0.4 mm specimen

has a value 50% larger for transverse isotropy than orthotropy. The same effect is noticeable with the Ez/Ey

which is further from unit for the latter specimen, and the moduli perpendicular to the printing direction

Ez/Ex and Ey/Ex are also relatively larger.

Figure 10: Polar representation of a fiber by its deviation angle θ and azimuthal angle φ. The angle θ the fiber makes with
the printing direction x becomes the radial coordinate, and the angular coordinate φ is the angle made by the x− y′ plane
containing the fiber and the x− y print bed plane.

However, in many applications, having an isotropic response is preferable, for which the 0◦-90◦ printing

pattern is better suited. In Figure 12, the histograms for the D = 0.4 mm nozzle are presented, first by

separating the fibers in the 0◦ and the 90◦ passes in Figures 12 a) and b), then by showing both passes

together in Figure 12 c). Note that the 90◦ pass is made in the y direction, therefore most fibers in that pass

have values of θ ∼ 90 and φ ∼ 0, 180, where the two red regions in Figure 12 b) are located. However, much

as was observed in the morphological visualizations in Figure 9, the two directions show salient asymmetry.

As can be observed visually, no red region is present in Figure 12 a), meaning the concentration of fibers

aligned with x is lower. In addition, the ratio of fibers better aligned with y to those aligned with x is 57:43,

suggesting the different thermal conditions seen by the 90◦ pass are more favorable to fiber alignment in that

direction. The difference in alignment between the two passes suggests tensile properties are inferior in the x

direction (0◦) than the y direction (90◦), likely due to part aspect ratio. That prediction is corroborated in

the homogenization output, as seen in Table 4: just as the alignment profile was asymetrical in the dogbone
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Figure 11: Histogram of fibers angular distributions, for the 0◦-0◦ specimen made with: a) nozzles D = 0.25 mm, b)
D = 0.4 mm and c) D = 0.8 mm, including ∼ 105 individual fibers each. The radial coordinate is the deviation angle θ,
and the angular coordinate is the azimuthal angle φ. As the cumulative distribution function of θ for each nozzle diameter
showns in d), the specimens made with 0.25 and 0.8 mm nozzles have their fibers much more aligned with the print
direction, with 56% of fibers with θ < 15◦, when compared to 29% for the D = 0.4 mm nozzle, which explains lower axial
tensile properties for the latter. In addition, the specimen made with D = 0.4 mm nozzle exhibits a preferential alignment
in the y direction (ratio between y-alignment and z-alignment of 74:26 instead of 61:39 for D = 0.25 and 0.8 mm).

Figure 12: Histogram of fibers angular distributions, for the 0◦-90◦ specimen made with the D = 0.4 mm nozzle. The
fibers are separated as belonging to: a) the 0◦ pass, b) the 90◦ pass, and c) both 0◦ and 90◦ passes combined. More fibers
are aligned with the y direction than with the x direction, with a ratio of 53:47, introducing orthotropy, attributable to
part aspect ratio of 19 in ASTM D638 Type 4 dogbones.

specimen vs. the square plate, the C̃micro is also far more symmetrical for the plate specimen, with a ratio

of Ey/Ex=1.04, against 1.52 in the dogbone specimen.

4.5. FFT Homogenization results

Using the fully detailed description of the microstructure for elastic homogenization allows the study of

the stress-strain fields that develop inside the material. In Figure 13, a slice oriented in the printing bed

plane inside one of the subvolumes used for homogenization for a specimen printed with the 0◦-0◦ pattern

and the D = 0.25 mm nozzle is presented. For this nozzle, the micro and mesoscale homogenization are

made in a single step as the printing pattern is present at a length scale close that of the individual fibers.

In Figure 13 a), the tomographic data is depicted, where the fibers are distinguished in white, the matrix

in grey, and the pores in dark. The printing pattern is also discernible, with the extrusion width annotated

in red. In Figure 13 b) and c), the von Mises strain and stress fields computed with the help of AMITEX
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Table 5
FFT-simulation results, microscale only (C̃micro)

D, nozzle diameter Pattern Ex (GPa) Ey (GPa) Ez (GPa)
0.25 0◦ − 0◦ 20.30 5.53 5.37
0.40 0◦ − 0◦ 18.32 7.27 6.13
0.80 0◦ − 0◦ 21.37 5.30 5.10
0.40 0◦ − 90◦ 10.07 15.26 6.34

0.40 (plate) 0◦ − 90◦ 11.25 11.75 6.07
0.40 90◦ − 90◦ 5.59 23.21 5.73

are presented. The fibers being the phase with the highest stiffness, most of the stress concentrates inside

them, and they exhibit very little strain. The opposite is true for the pores: they have no stiffness, therefore

they develop no stress, and the maximum values of strain are inside them, as they deform freely (contrary

to what is done in the FE method, in FFT-homogenization the nodes are regularly-spaced, meaning the

inside of pores is also solved for).Inside the matrix phase, we can observe stress concentration near the tip

of fibers, or where pores have sharp corners. Those locations are likely to be damage initiation sites.

Figure 13: Result of the FFT homogenization procedure on a subvolume of a specimen made with the D = 0.25 mm
nozzle and the 0◦-0◦ printing pattern. a) Tomographic data in the plane of the printing bed. b) Von Mises strain field,
mainly present in pores. c) Von Mises stress field, concentrating inside fibers.

In Figure 14, the mesoscale homogenization results for the specimen made with the 0◦-0◦ printing

pattern and the D = 0.4 mm nozzle are presented. In this case, only two phases are homogenized: the

mesoscale porosity and the solid phase described by the C̃micro stiffness tensor obtained at the microscale

homogenization step. In Figure 14 b), the strain field is again maximal inside pores, however the strain also

forms bands in the vertical direction. In Figure 14 c), the stress field shows that stress concentrates where

the mesoscale pores form small radii.
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Figure 14: Resulting stress-strain fields for the mesoscale FFT homogenization procedure on a subvolume of a specimen
made with the D = 0.4 mm nozzle and the 0◦-0◦ printing pattern (0◦ is out-of-plane). a) Tomographic data. b) Von
Mises strain field. c) Von Mises stress field.

Table 6
FFT-simulation results, dual-scale homogenization (C̃meso). For the D = 0.25 mm nozzle, both the separate and
simultaneous dual-scale outputs are shown.

D, nozzle diameter (mm) Pattern Ex (GPa) Ey (GPa) Ez (GPa) Experimental Ex (GPa) Relative error (%)
0.25 (simultaneous) 0◦ − 0◦ 18.76 5.02 4.60 19.4± 1.0 3.37

0.25 (separate) 0◦ − 0◦ 17.67 4.64 4.17 19.4± 0.7 8.98
0.40 0◦ − 0◦ 15.60 5.69 3.49 16.4± 0.7 4.60
0.80 0◦ − 0◦ 18.82 4.63 4.31 18.5± 1.0 1.63
0.40 0◦ − 90◦ 8.80 13.30 4.25 9.7± 0.6 9.63
0.40 90◦ − 90◦ 4.37 19.55 3.23 3.2± 0.3 36.23

4.6. Simulation vs experimental results

In Tables 5 and 6, the homogenization results for each specimen type are presented, for the microscale

and the mesoscale, respectively. The relative errors between the tensile testing values and the prediction for

FFT-homogenization using real data are all below 5%, except for the 90◦-90◦ specimen with the 0.4 mm

nozzle which has a 36% error. For the D = 0.25 mm nozzle, the relevance of using simultaneous dual-scale

instead of separating them as for the rest of the specimen types is demonstrated: the relative error is nearly

halved by doing simultaneous dual-scale homogenization, as the scale separation is insufficient in this case

to successfully account for C̃micro alone.

In Figure 15, the final output of the dual-scale FFT-homogenization procedure for each specimen

type is presented, along with the tensile testing measurements, and the results of the alternate method

using artificial microstructures for the microscale step. The confidence intervals in the simulated results

are calculated from the dispersion of results for each subvolumes in each of the simulated cases. The

relative errors between the tensile testing values and the predictions made with artificial data are all in

excess of 19%. Even though the artificial microstructures used are simplified, the recourse to fully detailed

mesostructures makes the prediction quality somewhat improved, when compared to similar methods in the
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literature [2, 22]. Nonetheless, using real microstructures is considerably more reliable, and the prediction

quality is within or near the confidence interval for the experimental measurements. A few sources of error

that affect the result quality bear mentioning. First, the material variability due to the manufacturing

process is considerable, as witnessed by the width of the confidence intervals in tensile properties themselves.

Then, local morphological properties can vary within and between specimens, which affects both physical

specimens as well as homogenization prediction quality. Then, the FFT method assumes periodic boundary

conditions. When generating artificial microstructures, both RSA or molecular dynamics methods enforce

geometrical periodicity by repeating fiber segments that exceed the unit-cell boundary on the opposite side,

which isn’t the case in microstructures based on real (non-periodic) imaging data. Also, the matrix-fiber

interface is considered ideal in our method, which is likely not true in real materials [26], and were this

included, the homogenization prediction would be somewhat lower. However, the quality of these results for

such a broad range of morphological configurations leaves no doubt that using rich microstructures from

actual specimen is a decisive advantage over relying on artificial geometries. Note that the simplification

made in some studies considering isotropic CFs [2] is not advisable: when our simulations were done with

isotropic CFs, the estimated moduli were in excess of 20% above experiment. Using transversely isotropic

CFs, while requiring more analysis to differentiate individual fibers, is also a determining factor for successful

homogenization. In addition, the number of fibers that encompass the RVEs are in the order of 104, much

higher than the customary 10 − 200. Each of the predictions in Figure 15 requires ≈ 10 h in combined

processing on AMITEX, using 24 CPUs and 90GB of RAM. This is on top of the ≈ 20 h of extraction done

on OpenFiberSeg for each FoV.
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Figure 15: Comparison of tensile moduli as predicted from FFT-homogenization and as measured experimentally. Values
are averaged for at least 4 subvolumes in each configuration. The error bars indicate 95% confidence intervals. The variation
in the simulation output is representative of the spread of values encountered for the subvolumes that makeup the RVE
for each configuration.
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5. Conclusion

In this work, the process-structure-property relation for FFF SFRPs is investigated, including the effect

of using three nozzle diameters, and three different printing patterns. Physical specimens were produced and

comprehensively characterized, using µCT imaging and individual component extraction, both in free-space

extrusion (no contact with print bed) or in standard tensile testing specimen. Dual-scale homogenization

was employed to successfully predict the tensile properties of 5 different print configurations, and it was

demonstrated that the relative errors are reduced by a factor of 4, when compared to using simplified artificial

microstructure descriptions. Variations in local morphology and in angular deviations between specimens

were exposed, which provides insight into the variability in tensile properties between specimen. For instance,

the large angular dispersion in specimens made with aD = 0.4 mm nozzle explain the lower tensile moduli. In

addition, the impact of part aspect ratio on the microscopic morphology is revealed, which is an important

phenomena for predicting part behavior for real applications. Future work on this topic would include a

more rigorous handling of the size of representative volume element (RVE), an exploration of inter-layer

properties, the application of this method to fracture modelling, the use of imperfect matrix-fiber interfaces,

and mechanical modelling using parts of more complex geometry, infill pattern and loading scenarios. The

FFT homogenization method can also be applied to FFF SFRPs to study other material behavior laws,

including thermal and electrical conductivity, thermal expansion, viscoelasticity and piezoelectricity.

6. Source code and data repository

The full source code repository and selected original tomographic data including processed results are

available at https://github.com/lm2-poly/OpenFiberSeg.
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A. Appendix: Deriving effective properties of a microstructure

Notation and conventions used

In the following discussions, unless otherwise specified scalars are represented by lowercase letters

(a, b, α, β), vectors by lowercase latin bold letters (a,b), 2nd-order tensors by lowercase bold greek letters:

(ε, σ), 4th-order tensors by uppercase bold Latin letters: (C,S). Einstein summation convention is adopted,

which reads for the singly contracted product:

a · b = aibi =
∑

i

aibi = c (a scalar) (A.1)

α · β = αijβjk =
∑

j

αijβjk = δik = δ (a 2nd-order tensor) (A.2)

The doubly-contracted tensor product is denoted: Aijklxjl = bik, or A : x = b. The spatial averaging

operation is denoted b̄ = 〈b(x)〉 (with b being a scalar or tensor of any order).

The 4th rank tensors that are of relevance to continuum mechanics generally present minor and major

symmetries, and can be represented concisely in the so-called modified Voigt notation. A 4th−order tensor
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A takes the following modified Voigt notation:

Aijkl =




A1111 A1122 A1133

√
2A1123

√
2A1131

√
2A1112

A2211 A2222 A2233

√
2A2223

√
2A2231

√
2A2212

A3311 A3322 A3333

√
2A3323

√
2A3331

√
2A3312

√
2A2311

√
2A2322

√
2A2333 2A2323 2A2331 2A2312

√
2A3111

√
2A3122

√
2A3133 2A3123 2A3131 2A3112

√
2A1211

√
2A1222

√
2A1233 2A1223 2A1231 2A1212




. (A.3)

Writing AIJ refers to the Ith row and Jth column in the modified Voigt representation.

Homogenization

For any given microstructure described by C(x), an equivalent homogeneous C̃ tensor can be derived.

With the help of a numerical scheme (FE, FFT, etc), a solution for σ(x) = C(x) : ε(x) can be found for

any average applied strain ε̄ = 〈ε(x)〉. By applying a pure uniaxial strain such as ε̄ = [1, 0, 0, 0, 0, 0]T , we

thus obtain the corresponding σ(x) given C(x), and the volume averaged equation 〈σ(x)〉 = C̃ : 〈ε(x)〉 is

then:




Σ11

Σ22

Σ33

√
2Σ23

√
2Σ13

√
2Σ12




=




C11 # # # # #

C21 # # # # #

C31 # # # # #
√

2C41 # # # # #
√

2C51 # # # # #
√

2C61 # # # # #




·




1

0

0

0

0

0




(A.4)

(The symbol # denotes irrelevant values). The first column in C̃ is then inferred from the average stress

〈σ(x)〉 as :

[
C11, C21, C31, C41, C61, C51

]T
=

[
Σ11,Σ22,Σ33,Σ23,Σ13,Σ12

]T
(A.5)

Performing this procedure for the 3 uniaxial loadings and the 3 pure shear yields the entire C̃ tensor for

the microstructure at hand.
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B. Moulinec’s algorithm

The local deformation can be written as the sum of a constant term E, and a fluctuating term ε(u∗(x)),

as: ε(u(x)) = ε(u∗(x)) + E, or equivalently: u(x) = u∗(x) + E · x. Here u∗ is considered periodic, and the

stress term σ is antiperiodic: σ(L) · n = −σ(−L) · n so that the traction term σ · n = 0 at the boundary

(equilibrium condition). n is the vector normal to the boundary, and the unit cell has side of length 2L.

The classical elasticity equation becomes:





σ(x) = C(x) :
(
ε(u∗(x)) + E

)
∀ x ∈ V

∇ · σ(x) = 0 ∀ x ∈ V
(B.1)

We pose a reference media with stiffness C0 and define δC(x) = C(x)−C0. Inserting δC(x) into equation

(B.1) gives:

σ(x) = (δC(x) + C0) : ε(u(x)) (B.2)

= C0 : ε(u(x)) + δC(x) : ε(u(x)). (B.3)

We define: τ(x) = δC(x) : ε(u(x)), (B.4)

called the polarization, which contains the position-dependent stiffness through δC(x), and the “random”

component of deformation through ε(u(x)). This formulation is termed the periodic Lippmann-Schwinger

equation [73]. The Moulinec algorithm iteratively solves for this τ(x) through a fixed-point scheme.

Expessing equation (B.3) in the Fourier domain, it is possible to write the solution as:

ε(u∗(x)) = −Γ0 ∗ τ(x) (B.5)

where Γ0 is the Green operator corresponding to the reference media C0, and ∗ denotes a convolution

product. In the Fourier domain, Γ0 can be derived explicitly, and takes the following form for isotropic

symmetries [62, 74]:

Γ̂0
khij(ξ) =

1

4µ0|ξ|2
(
δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi

)
− λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
|ξ|4 (B.6)

where δij is the Kroeneker delta, ξ are the frequency domain variables and µ0 and λ0 are the Lamé

coefficients of the reference material. The work of Mura [74] details the derivation of the Green operator for

other material symmetries.
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The principle behind the Moulinec algorithm is to use equations (B.4-B.5), respectively in the real

and Fourier space, to iteratively solve equation (B.3). A constant deformation E is applied, and the stiffness

tensors C(x) and C0 are known. we start by computing σ and τ(x) from C(x) and E (equations (B.9-B.10)).

This initial τ(x) will not be accurate, as it only accounts for the average displacement E. It can be used

to arrive at a better estimate of ε̂ (equation (B.13)), which in turn yields a better estimate of σ (equation

(B.15). The entire algorithm is repeated until the solution has converged (equation B.12), meaning the

estimated error is inferior to a prescribed value. The error at iteration i is defined as:

ei =

(〈
|∇ · σi|2

〉)1/2
〈
|σi|

〉 =

(〈
|ξ · σ̂i|2

〉)1/2
〈
|σ̂i|

〉 , (B.7)

where |·| is the Euclidean norm, and 〈·〉 is the spatial average. A typical value of stopping criteria is e ≤ 10−4.

The main algorithm is as follows:

Initialization (step i=0) ε0(x) = E ∀x ∈ V (B.8)

σ0(x) = C(x) : ε(x)0 ∀x ∈ V (B.9)

Iteration (step i+1) a) τ i(x) = σi(x)−C0 : εi(x) (B.10)

b) τ̂ i(ξ) = F(τ(x)i) (B.11)

c) Convergence test (B.12)

d) ε̂i+1(ξ) = −Γ̂0(ξ) : τ̂(x)i(ξ) ∀ξ 6= 0, and ε̂i+1(0) = E (B.13)

e) ξi+1 = F−1(ε̂i+1) (B.14)

f) σi+1(x) = C(x) : εi+1(x) (B.15)

Once an equilibrium condition has been reached, if the applied strain E was chosen to be uniaxial

and unitary, one column of the homogenized stiffness tensor C̃ is obtained directly from <σ(x)> (see

Appendix A).

The Moulinec basic algorithm is known to have poor convergence for the cases of high property contrasts,

and in the presence of voids (infinite contrasts), as the number of iterations required is proportional to the

contrast between phases [35, 75]. To deal with this problem, Eyre and Milton [75] proposed a modification

to deal with the cases of high contrasts.
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ABSTRACT

The process-structure-property relationship in short-fiber reinforced composites
made in Fused Filament Fabrication (FFF) remains inadequately understood,
much trial-and-error and extensive testing is required to use these materials
for load-bearing applications. As a consequence, the largely empirical design
process has hindered the adoption of this technology, notably due to the lack
of reliable structural analysis capability. In order to surpass the limitations of
mechanical property prediction using simplified artificial microstructures, this work
demonstrates the decisive advantage of using geometries obtained directly from
imaging of printed specimen instead. The analysis of µCT images is performed
via a purpose-built extraction tool called OpenFiberSeg, yielding profound insight
into the process-structure relation. The use of real microstructures is shown to
considerably improve the mechanical behavior prediction capability via dual-scale
FFT-based homogenization, bringing relative error margins below 5%, for full
anisotropic description. It also becomes possible to investigate the effect of pro-
cessing parameters such as nozzle diameter and printing pattern on morphological
properties and on mechanical behavior, revealing the magnitude of the spatial
variation of local properties. The combination of experimental and simulation
enables insight that is not accessible to either alone. Original imaging data and
source code are made publicly available.

1. Effect of processing on microstructure: radial dependence of fiber properties

The non-uniform distribution of fiber properties through an extrusion bead has been suggested by several

modelling-based studies. These models predict a radial variation of fiber alignment at nozzle tip. Heller et

al. [1] found it is maximized at the periphery for CF filled ABS, vf = 15%, with aspect ratio of 15, using

a nozzle diameter D = 0.35 mm. Wang et al. [2] found that alignment is maximized at the center of the

bead for a large (3 mm) nozzle used in Large Area Additive Manufacturing (LAAM), using a realistic

length distribution of fibers in 13% Acrylonitrile Butadiene Styrene (ABS). Lewicki et al. [3] performed flow

simulations using discretely modelled fibers and epoxy resin (a thermosetting polymer), with a vf = 6% and

aspect ratio of 50. They found that alignment is promoted during the extrusion phase, most notably close
?
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to the walls. Bertevas et al. studied the impact of fiber aspect ratio and vf on the flow-induced orientations,

finding that printing beads exhibit skin-core alignment differential, also predicting higher alignment at

perimeter for fiber-filled PLA [4]. They comment on the lack of rich experimental data to corroborate their

findings against. Wang et al. used a fully coupled model in which the effect of fiber presence on the flow

characteristic is accounted for, and compare with a weakly-couple approach, in the context of large nozzles

used in LAAM [2]. They found that both models predict increased alignment at the walls, and decreased

alignment at the center, but less so in the fully coupled model.

Experimental measurements of radial dependence

By knowing the position of each fiber or pore relatively to the axis of each cylindrical extrudate specimen,

the radial dependence of fiber alignment, fiber length and fiber and pore densities can be computed. Those

statistics are presented in Figure 1. Contrary to what was predicted in the literature [1–3], only some curves

show some radial dependence, notably the higher fiber lengths at the periphery of the D = 0.4 mm nozzle

and its more centralized porosity distribution. The porosity is higher for that nozzle as well, and is much

more lateralized for both the D = 0.25 mm and D = 0.8 mm extrudates. We do not have a clear explanation

for this observation at this stage, given that the input filament has evenly distributed porosity and that

the extrusion speeds and temperatures used are all identical. However, the effect is seen consistently across

many specimens.

2. Cumulative sum of morphological properties

Once the properties of each fiber have been extracted, the spatial variations of fiber properties can

be investigated with the following method, as shown in Video 1. For the volume under consideration, the

numerical value of the property of each fiber (e.g. fiber length or alignment with the x direction) is inserted

at the location where that fiber is present (or NaN where matrix or porosity is present). Then, the cumulative

sum of those properties all 2D slice across the volume along one of the reference directions is taken, and for

each column of pixels along that direction, the sum is divided by the number of pixels containing fiber in

that column of voxels. This is so that the value isn’t skewed by the absence of fibers in some regions, for

instance where mesoscale porosity is dominant. As a reminder, x and y are the 0◦ and 90◦ printing direction,

respectively, the x − y plane is the printing bed plane, and z is the vertical direction. This procedure is

illustrated in Video 1
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Figure 1: Variation of fiber characteristic as a function of radial position in free-space extrusion, for 3 nozzle diameters
D, and the feedstock filament. a) Alignment with print direction (1.0 is perfect alignment (θ = 0◦), 0.0 is perpendicular
(θ = 90◦)) is highest in the 1.75 mm filament, and has no appreciable radial dependence in any of the 4 cases. b) Fiber
lengths has little radial dependence: is slightly higher at the periphery in the D = 0.4 mm nozzle, and slightly lower at
the periphery in the D = 0.8 mm nozzle. c) Fiber density is evenly distributed for all nozzle diameters. d) Pore density
is slightly more centralized in feedstock filament and the D = 0.4 mm nozzle, and much lower and more lateralized for
nozzles of D = 0.25 mm and D = 0.8 mm

Video 1: Material property visualization by taking cumulative sum along x and y direction, for a specimen printed with
the 0◦-90◦ pattern and the D = 0.4 mm nozzle. Local property variability is exposed. Video available at github.com/lm2-
poly/OpenFiberSeg/blob/main/MaterialProperties_cumulativeSums.mp4
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