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Abstract

Understanding how tissue growth in porous scaffolds is influenced by geometry is a fundamental challenge in the field

of tissue engineering. We investigate the influence of pore geometry on tissue growth using osteoblastic cells in 3D

printed melt electrowritten scaffolds with square-shaped pores and non-square pores with wave-shaped boundaries.

Using a reaction-diffusion model together with a likelihood-based uncertainty quantification framework, we quantify

how the cellular mechanisms of cell migration and cell proliferation drive tissue growth for each pore geometry.

Our results show that the rates of cell migration and cell proliferation appear to be largely independent of the pore

geometries considered, suggesting that observed curvature effects on local rates of tissue growth are due to space

availability rather than directly affecting cell behaviour. This result allows for simple squared-shaped pores to be

used for estimating parameters and making predictions about tissue growth in more realistic pores with more realistic,

complicated shapes. Our findings have important implications for the development of predictive tools for tissue

engineering and experimental design, highlighting new avenues for future research.
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1. Introduction

Tissue engineering aims to regenerate damaged or diseased tissues [1]. A key challenge in tissue engineering

is to understand how various clinically-motivated experimental conditions influence tissue growth [2]. Recent ad-

vancements in three-dimensional (3D) printing allow us to investigate tissue growth in 3D-printed scaffolds of various

shapes and sizes, enabling realistic migration and proliferation behaviours to be studied in well-controlled experi-

mental conditions [3, 4]. While the effect of pore geometry and tissue curvature on tissue growth is well-known

[5–7], understanding how these effects relate to cellular-level mechanisms remains poorly understood. Understanding

these cellular mechanisms would enable the prediction and analysis of tissue growth in complex geometries from

the calibration of mathematical models in simpler geometries, providing a valuable computational tool for screening

experimental designs [8] of scaffold geometries and providing plausible results on these new geometries. This kind
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of computational tool could enable more personalised approaches to tissue engineering, in which a specific scaffold

size and shape could be tailored to an individual patient, making use of these predictions to screen for possible patient

outcomes.

3D printing technology for biofabrication has evolved rapidly [9, 10]. Melt electrowriting, a technique for high

quality 3D printing, allows for micro- and nano-scale fibres to created, enabling great control over the fibres and the

pore geometry, making it possible to produce realistic scaffold geometries with a regular array of pores for growing

tissue [11–14]. These scaffolds are designed so that cells and tissues experience a similar mechanical support as they

would, for example, in skin and bone tissues, enabling realistic cell migration and cell proliferation behaviours to be

observed and measured [3]. Previous work has focused primarily on squared-shaped pores [15, 16], although more

complicated scaffolds can also be produced [10, 17]. One important factor in understanding tissue growth is curvature

[18, 19]. In the context of bone tissue, Bidan et al. [20] suggest that cell tension can influence tissue curvature that,

in turn, can stimulate tissue growth. Callens et al. [21] discuss how cells respond to their surrounding geometry,

even across large spatial scales, and how this affects bone tissue growth. Mathematical modelling studies performed

by Alias and Buenzli [22–24] and Hegarty-Cremer et al. [25] also investigate the role of geometry and curvature on

tissue growth and cell crowding in bone tissue growth experiments.

Figure 1: Scaffold pore boundary (red boundary), void (black interior), void boundary (magenta boundary), tissue (blue/green region), and fibres
(exterior black boundary). The white outlines show the scaffold boundaries. The blue channel in the microscope images shows the cell nuclei
(DAPI), and the green channel shows the tissue and cytoskeleton (phalloidin). The DAPI on the right image is shown in grey.

Tissue growth experiments in porous scaffolds are of great importance in tissue engineering [16, 26]. In these

experiments, cells are seeded onto the perimeter of a scaffold, leading to cell migration and cell proliferation that

produces an inward-growing tissue. The shape of the region that is devoid of cell and tissue material, referred to as

the void in Figure 1, matches the shape of the scaffold boundary for early times, rounding off over time, eventually
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forming a circular front until the void closes, which we call pore bridging. The feature of interest in these experi-

ments is the time that the tissue bridges, called the bridging time [16, 26]. A circular front arises with time in many

pore scaffold geometries such as square, triangular, and hexagonally shaped pores [15, 16, 27, 28], though the precise

mechanisms driving the cells into these circular fronts in general geometries remains unclear. The most common way

to report a set of pore bridging experiments is to record snapshot images of the tissue growth process [15, 16, 26]. This

approach allows us to estimate the bridging time within an interval instead of identifying the precise time of bridg-

ing [16, 26], thereby introducing some uncertainty into the experimental estimate of the bridging time. To interpret

such measurements meaningfully, we are interested in developing mathematical modelling tools that mechanistically

capture cell migration and cell proliferation within a framework that explicitly incorporates uncertainty in the ex-

perimental measurements, uncertainty in the parameter estimates in the mathematical model, and that is capable of

making predictions of new experiments that incorporate these uncertainties. This will allow us, for example, to study

how variability in bridging times can be explicitly integrated into the mathematical model, as well as interpreting the

predictions of the mathematical model.

In this paper, we study mechanistic cell behaviour in pore bridging experiments performed within pores on 3D-

printed scaffolds made from polycaprolactone [4, 10, 26]. We consider tissue growth in two different shaped pores, a

square-shaped pore (Figure 1(a)) and a wave-shaped pore (Figure 1(b)), with the aim to understand whether the details

of cell migration and cell proliferation are affected by differences in the pore geometry. In particular, we are interested

in determining whether the cellular mechanisms driving tissue growth in the more realistic wave-shaped pore are

indistinguishable from the cellular mechanisms driving tissue growth in the simpler square geometry. Moreover, we

are interested in obtaining estimates of bridging time with uncertainty, for both pore geometries, through probability

distributions that allow a user to predict probabilities of bridging time occurring within a specified time window for

any pore geometry. All experiments reported in this paper involve tissue growth using murine calvarial osteoblastic

cells (MC3T3-E1) [29]. Our group has previously used these experiments on the square pores with different sizes [15,

16, 26], investigating the relationship between the cell migration rate measured in terms of the cell diffusivity D, cell

proliferation rate λ, and scaffold size. This previous work showed that the product Dλ, which controls the long-time

rate of tissue production, appeared to be unaffected by the pore size, but did not consider the role of pore shape. These

previous experiments displayed variability in the time to bridge, even in well controlled experiments with the same

pore size. This variability motivates the need for developing mathematical modelling tools that incorporate variability

and uncertainty quantification into predictions. Hence, our analysis uses a combination of numerical simulations from

a mathematical model and with statistical analysis that takes numerical simulations and quantifies results together

with uncertainty. These considerations will be used to answer the following broad questions:

1. Are the cellular mechanisms driving tissue growth independent of pore shape?

2. Can we use results on one pore shape to make predictions, with uncertainty, on another geometry?

3. What data, and how much data, is sufficient for accurately comparing results for different shaped pores?
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We address these questions using a model-based approach, using the Porous-Fisher partial differential equation

(PDE) as a model for tissue growth driven by combined cell migration and cell proliferation [30]. Solving this

mathematical model requires parameter estimates for the cell diffusivity, D, the cell proliferation rate, λ, and the initial

cell density on the scaffold boundary, u0. Estimates for D and λ cannot be obtained directly from experimental images,

hence methods that use information about the images are needed. For each pore shape, we calibrate this mathematical

model with an experimental dataset containing information about the position of the tissue front over time. We

apply a likelihood-based analysis to this dataset [31] with the aim to estimate the combined effect of proliferation

and migration rates, by estimating the product Dλ. Profile likelihoods are used to quantify the uncertainty in Dλ,

providing confidence intervals for Dλ [32], and allowing us to determine what parameters or parameter combinations

can be estimated [33, 34], providing insights into the second and third research questions listed above. The confidence

intervals obtained on each geometry can be used to compare the tissue growth mechanisms for each pore geometry

to answer the first research question. This analysis also enables us to make predictions with uncertainty about the

pore bridging time. By using this likelihood-based approach to make predictions, we can take results from the square-

shaped pores and estimate, with uncertainty, the pore bridging times on the wave-shaped pores. Similarly, we can

use the wave-shaped pores to make predictions on the square-shaped pores. Comparing both situations allows us

to answer the second research question. The simplest interpretation of our results is that the cell migration and cell

proliferation rates are independent of the pore scaffold geometry.

2. Materials and Methods

In this section, we describe the methods used for the experiments and the data that we collect from these ex-

periments. Following this description, we introduce the mathematical models we use and how we apply likelihood

analysis for performing statistical inference from these experiments.

2.1. Tissue growth experiments

All reagents are sourced from Thermo Fisher unless otherwise stated. Using a melt electrowriting printer described

previously [26], polycaprolactone (45 kDa, Sigma Aldrich) fibres of diameter 50 µm are fabricated into a three-layer

scaffold which was then biopsy punched to form a 6 mm disc. The resultant scaffold has a thickness of approximately

150 µm. The code used to produce the outline of each pore is adjusted to produce square-shaped and wave-shaped

pores of comparable size, both being derived from a unit of cell of 500 µm. Prior to cell seeding, scaffolds are

sterilised under UV light overnight. The cells used are murine calvarial osteoblastic cells (MC3T3-E1) [29] that are

cultured in α-MEM, 10 % fetal bovine serum, and 1 % penicillin-streptomycin, and are approximately 20–30 µm in

diameter [26]. Cells were expanded in a T75 culture flask and at 80 % confluency were detached with TrypLE. Cells

were seeded at a density of 10,000 cells per scaffold in 48-well plates. After allowing 4 h for the cells to attach to

each scaffold after seeding, an additional 500 µL was added. Cell-seeded scaffolds were cultured in a humidified

environment at 37 ◦C in 5 % CO2 for 28 days. The media is changed every 2–3 days from day 5 to day 14, every 1–2
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days from day 15 to 28. The viability of the cells are assessed at day 10, 14, and 28 using calcein-AM and ethidium

homodimer-1 to stain live and dead cells, respectively. At specific timepoints, cell-seeded scaffolds were fixed with

4 % paraformaldehyde and stained with 4’,6-diamidino-2-phenylindole (DAPI) and Alexa Fluor™ 488 Phalloidin,

which stain cell nuclei and actin filaments, respectively. High resolution images of the centre of each scaffold are

obtained using fluorescent microscopy (Zeiss, AxioObserver 7). For each pore shape and timepoint, fixation, staining,

and microscopy are repeated across two or three identically prepared replicates. Each experimental replicate provides

information of several pores, giving information about tissue growth data from day 5 to day 28. This procedure

gives 41 data points for the square pore, and 3 data points for the wave pore; while this number of data points is

relatively small, it is sufficient for our analysis as we use a likelihood-based uncertainty quantification framework that

naturally incorporates variability associated with finite sample sizes, as introduced in Section 2.4. More information

on the procedure for capturing these images is provided in [26]. These experiments lead to a tissue composed of a

monolayer of cells within the pore. The growth of monolayers is achieved through the design of the pore geometry

as the width of the pores is large compared to the pore depth. The vertical pore depth is approximately equal to the

average cell diameter, 20–30 µm [26], which means that we do not observe cells growing on top of each other in the

vertical direction.

2.2. Data and image processing

The experiments provide us with several images at four time points (days 7, 14, 25, and 28), and each image

contains information about several pores. To summarise the tissue growth processes, for each pore we calculate two

quantities:

yi, j
c =

area of void
area of pore

, yi, j
p =

perimeter of void
perimeter of pore

, (1)

where yi, j
c and yi, j

p denote the void coverage and normalised void perimeter, respectively, for the jth pore at the ith

time, ti. We do not collect data from any pores that have bridged, or pores that have bridged in a way so that the void

splits into multiple disconnected regions. All images at t = 25 day and t = 28 day show that all pores have bridged

before 25 days, so we focus on measuring (1) at t1 = 7 day and t2 = 14 day. A precise description of how we compute

the quantities in (1) from the images is given in Section S1 of the Supplementary Material.

To complete the processing, we select the computational representations for the square and wave geometries for

use in the mathematical model described Section 2.3 (Figure 2) for comparison with each data point. In the square

case, we construct this independent of the images, and simply define a boundary for a square with its lower-left corner

at the origin and side length L = 475 µm. For the wave geometry, we take a single image from the experiments

and choose its boundary as a representative boundary for each experiment, which is reasonable as all scaffolds are

uniformly printed.
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2.3. Mathematical model

We use the Porous-Fisher PDE to model tissue growth, as this model explicitly describes how cell migration and

cell proliferation leads to tissue growth with sharp fronts that we observe in the experiments (Figures 3 and 4) [15, 30].

Since the pore bridging process starts after 5 days, the PDE is solved for t > 5 day. Letting ũ(x, y, t) [cells/µm2]

denote the density of cells at a point (x, y) and time t [day], and K̃ denoting the maximum carrying capacity density

[cells/µm2], we define a normalised density u(x, y, t) ∈ [0, 1] by u(x, y, t) = ũ(x, y, t)/K̃. Thus, the model for u(x, y, t)

is given by

∂u(x, y, t)
∂t

= D
{
∂

∂x

[
u(x, y, t)

∂u(x, y, t)
∂x

]
+
∂

∂y

[
u(x, y, t)

∂u(x, y, t)
∂y

]}
︸                                                                   ︷︷                                                                   ︸

contact stimulated cell migration

+ λu(x, y, t)
[
1 − u(x, y, t)

]︸                        ︷︷                        ︸
contact inhibited cell proliferation

, (x, y) ∈ Ω, (2)

du(x, y, t)
dt

= λu(x, y, t)
[
1 − u(x, y, t)

]︸                        ︷︷                        ︸
contact inhibited cell proliferation

, (x, y) ∈ ∂Ω, (3)

u(x, y, 5) =


u0 (x, y) ∈ ∂Ω,

0 (x, y) ∈ Ω.
(4)

where (2) is applied on the interior scaffold pore space Ω, the space inside the red curves of Figure 2; (3) is applied

on the boundary ∂Ω, the red curve in Figure 2. We note that while our scaffolds are three-dimensional, their thickness

is small compared to their width, and so this two-dimensional depth-averaged model (2)–(4) is reasonable [35]. This

model is characterised by three parameters (D, λ, u0), where D [µm2/day] is the cell diffusivity that controls the rate of

cell migration, λ [day−1] is the cell proliferation rate, and u0 is the normalised density of cells on the scaffold boundary

∂Ω at t = 5 day. We solve Equations (2)–(4) numerically using the finite volume method with an unstructured

triangular mesh (Figure 2), as described in Section S2 of the Supplementary Material.

Figure 2: Schematics for triangular meshes used for numerical solutions of Equations (2)–(4) on the (a) square-shaped pore, (b) the wave-like pore,
and (c) the cross-shaped pore considered in Section 3.3. Denser meshes are used for the actual solutions. The triangles represent the mesh we use
for studying these geometries computationally, as discussed in Section 2.3. The red curves represent the boundary ∂Ω, and the region bounded by
these curves is the interior domain Ω.
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Solutions of Equations (2)–(4) are used to compute model predictions corresponding to the data yi, j
c and yi, j

p from

(1). Using the numerical solution for u(x, y, t), we identify the contour u(x, y, t) = 1/2 to indicate the location of the

tissue front [15, 16]. We define predictions of the yi, j
c and yi, j

p by

µc(t) =
1

A(Ω)

n∑
k=1

Ak(t), µp(t) =
1
ℓ(∂Ω)

n∑
k=1

ℓk(t), (5)

respectively, where n is the number of triangular elements in the mesh, Ak(t) is the area of the portion of the kth

element at the time t that is inside the contour u(x, y, t) = 1/2, ℓk(t) is the length of the line through the kth element at

the time t that is on the contour u(x, y, t) = 1/2 or zero if the contour does not go through the element, and A(Ω) and

ℓ(∂Ω) are the area and perimeter of the domain Ω, respectively. More details on how we compute the coverage µc and

normalised perimeter µp are given in Section S3 of the Supplementary Material.

We remark that our definition of the PDE (2)–(4) involves working with a nondimensional dependent variable u

and nondimensional parameter u0, while retaining the dimensional parameters D and λ and dimensional variables x, y,

and t, so that spatial and temporal features can be compared with experimental images, similar to [36]. Our interpreta-

tion of the dependent variable, u(x, y, t), is different, though. While it is possible to work with the dimensional density

ũ(x, y, t) [15, 37], this would require manually counting cells to estimate cell densities in space and time [36, 38, 39].

Thus, to be consistent with the fact that we only treat the leading edge in the experimental images for computing yi, j
c

and yi, j
p , it makes sense to consider the dimensionless ratio u(x, y, t) = ũ(x, y, t)/K̃ rather than ũ(x, y, t) itself.

2.4. Parameter estimation

We use a likelihood-based approach to estimate model parameters [33, 40]. This approach takes predictions µc(t)

and µp(t) from solutions of Equations (2)–(4) and compares them with the noisy experimental observations, yi, j
c and

yi, j
p . We assume that these noisy experimental observations are all independent realisations of random variables Y i

c and

Y i
p, respectively, that are defined by [15]

Y i
c ∼ N

(
µc(ti; θ), σ2

c

)
, and Y i

p ∼ N
(
µp(ti; θ), σ2

p

)
, (6)

where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. These random variables in (6) each

have a mean that depends on θ = (D, λ, u0), and the variances σ2
c and σ2

p need to be estimated. The values of σc

and σp are treated as constants that are pre-estimated using the sample standard deviation of the experimental data

aggregated for each ti and each j, as described in Section S3 of the Supplementary Material.

Given sufficient experimental data we could, in theory, estimate all model parameters θ and σ2
c and σ2

p directly,

however, as we will show, our data is insufficient for this purpose. We find that our numerical simulations of Equations

(2)–(4) on the time scale of our experiments are relatively independent of u0, and so we show results for a range of

pre-specified values of u0 rather than focusing on any single value, demonstrating this independence. While it would

be ideal to estimate both D and λ, we find that it is difficult to treat them separately, as we show in Section S4 of

the Supplementary Material [16, 37]. For our purposes, though, we are mainly interested in the combined effect Dλ,
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as this is the variable that affects the velocity of the tissue and thus the bridging time [16]. Thus, rather than using

θ = (D, λ, u0), we instead re-parametrise the vector of model parameters as θ = (Dλ, λ), omitting u0 and following

[41]. With this definition, µc(ti; θ) and µp(ti; θ) still refer to predictions from the solution of the PDE with parameters

D and λ, and the choice of the fixed value of u0 is left implicit.

2.4.1. Log-likelihood function

The log-likelihood function ℓ(θ | y) is a function of the model parameters that describes the likelihood that the

model has parameter values θ given that the data observed is y [31, 42]. In this work we have

ℓ(θ | y) =
2∑

i=1

J(i)∑
j=1

[
log ϕ

(
yi, j

c ; µc (ti; θ) , σ2
c

)
+ log ϕ

(
yi, j

p ; µp (ti; θ) , σ2
p

)]
, (7)

where y is the vector of observations, ϕ(x; µ, σ2) = (2πσ2)−1/2 exp
[
−(x − µ)2/(2σ2)

]
is the normal probability density

function, and J(i) is the number of pores included at the time ti. For the wave pore, the log-likelihood (7) only includes

the sum at i = 2 as there is only data at t2 = 14 day in this case. For notational convenience we write ℓ(θ | y) as

ℓ(θ). The log-likelihood depends on the parameters θ = (Dλ, λ) and the fixed values for u0, σc, and σp, with {D, λ, u0}

governing the solution to the PDE and σp and σc governing the measurement model.

2.4.2. Maximum likelihood estimation

We obtain a best-fit estimate for the parameters θ by maximising ℓ(θ). This procedure is called maximum likeli-

hood estimation [31], and it results in a maximum likelihood estimate (MLE) for θ, denoted θ̂. For this maximisation,

we constrain the values of D and λ so that 0 µm2/day2 < Dλ ⩽ 10 000 µm2/day2. For λ we use 0 day−1 < λ ⩽ 5 day−1

in the square and 0 day−1 < λ ⩽ 10 day−1 in the wave. These bounds do not affect the results significantly. More

detail on how we perform this maximum likelihood estimation is given in Section S5 of the Supplementary Material.

2.4.3. Uncertainty quantification

One limitation of maximum likelihood estimation is that we obtain a single point estimate for the MLE θ̂, and

the asymptotic uncertainty in this point estimate depends upon the curvature of the log-likelihood function [43].

To quantify the uncertainty in this estimate, we combine two approaches. For the first approach, we evaluate the

log-likelihood function ℓ(θ) over a large grid of Dλ and λ values. We then use this grid to find all points where

ℓ(θ) − ℓ∗ ⩾ −χ2
2,1−α/2, where χ2

d,q is the qth quantile of the χ2 distribution with d degrees of freedom and ℓ∗ = ℓ(θ̂) is

the maximum likelihood, as the resulting set of values defines a 100(1 − α)% credible region (CR) for θ [31, 44]. We

use α = 0.05 in this work, giving −χ2
2,0.95/2 ≈ −3.

The approach above gives us a two-dimensional region representing the uncertainty in θ. It will also be useful to

reduce these regions to confidence intervals for each parameter, and most importantly for the parameter combination

Dλ, which allows us to make predictions about the variability in tissue growth later in Section 2.4.5. We take a profile

likelihood approach to consider each parameter individually, specifying a range of values for an interest parameter
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and using numerical optimisation, reducing the log-likelihood function to a series of interpretable univariate func-

tions. These univariate results then provide insight into the curvature of the log-likelihood function, and hence the

uncertainty in the MLE point estimates. The resulting univariate function results in what is known as the profile log-

likelihood function [31]. Following [15, 33, 40], we define the profile log-likelihood in terms of the interest parameter

Dλ. For a given value of Dλ, we define the normalised profile log-likelihood:

ℓp(Dλ) = max
λ∈Λ

[ℓ(Dλ, λ)] − ℓ∗, (8)

where ℓ(Dλ, λ) = ℓ(θ), ℓ∗ = ℓ(θ̂), and Λ = {λ : 0 day−1 < λ ⩽ 5 day−1}. This definition gives a simple univariate

function of Dλ that reaches a maximum of zero at the MLE, and the curvature of this function is related to inferential

precision — a profile log-likelihood function with a well-defined peak at zero indicates a parameter that has been

well estimated and identified, while a flat profile means that the data was insufficient for estimating or obtaining any

inference for that parameter [40, 45]. A useful feature of (8) is that it can be used for constructing approximate

confidence intervals for Dλ, with an approximate 100(1−α)% confidence interval given by the set of all Dλ such that

ℓp(Dλ) ⩾ −χ2
1,1−α/2 [31]. In this work, we use α = 0.05 so that we are constructing 95% confidence intervals, giving

c∗ = −χ2
1,0.95/2 ≈ −1.92. The procedure we use for computing profile likelihoods is implemented in the Julia package

ProfileLikelihood.jl [46], and a summary of the procedure is outlined in Section S5 of the Supplementary

Material.

2.4.4. Parameter-wise prediction intervals

The two-dimensional likelihood function allows us to propagate the uncertainty in Dλ through to give us a pre-

diction interval in terms of the outcome of the mathematical model for a variable of interest, such as the bridging

time or cell density. Using the approach developed by [33, 40] which builds on basic properties of likelihood function

[31], we are able to quantify the uncertainty in the cell densities u(x, y, t) and the bridging time tb directly from our

likelihood function. In particular, by taking pairs of parameter values inside of the 95% credible region from the

log-likelihood function and computing the variable of interest at each pair, we obtain a sample of values that gives the

uncertainty in our variable of interest, as described in Section S5 of the Supplementary Material. We use this method

to obtain prediction intervals for yi, j
c and yi, j

p over time. Moreover, we can obtain prediction intervals for the bridging

time, tb, at which µc(t) first becomes zero. This procedure returns, in addition to the prediction intervals, a sample of

bridging times, which we use to obtain probability distributions for the bridging time via KernelDensity.jl [47].

We represent this probability distribution using a probability density function (PDF) p(tb) for the bridging time which

can be understood as [42]

p(tb)∆t ≈ P(t < tb < t + ∆t), (9)

where P(t < tb < t +∆t) is the probability that the bridging time tb is between t and t +∆t, given the uncertainty in the

parameters θ, and ∆t is some small sufficiently interval of time. This PDF p(tb) allows us to compute probabilities that

the bridging time occurs in any given interval. The complete procedure for how we obtain these results is implemented

9



in ProfileLikelihood.jl [46], and the method that we implement is outlined in Section S5 of the Supplementary

Material.

2.4.5. Predicting variability in tissue growth

We further extend our results to provide a more qualitative approach to assess the uncertainty in the tissue growth

on these pores. Taking values for the parameters inside their confidence intervals from the profile likelihoods, we can

produce time series model predictions of the solution to Equations (2)–(4), indicating the variability that we might

expect in the tissue growth. For these predictions, we take three parameter values for θ: (1) θ̂, the MLE; (2) θ̂L, where

we take Dλ to be the lower endpoint of its confidence interval from ℓp(Dλ) and λ to be the lower endpoint of its

confidence interval from ℓp(λ); (3) θ̂U , where we take Dλ to be the upper endpoint of its confidence interval from

ℓp(Dλ) and λ to be the upper endpoint of its confidence interval from ℓp(λ). Solving Equations (2)–(4) with these

three combinations of θ provides a simple way of giving a visual interpretation of the uncertainty in cell density as an

approximation to the true uncertainty bounds.

3. Results

We now give the results from our experiments and from our likelihood analysis. Following these results, we

conclude with a description of how we can use these results to predict future pore bridging experiments.

3.1. Experimental images

A subset of the results for the pore bridging experiments on the square geometry are shown in Figure 3 for days 7,

14, 25, and 28, where we see most of the pores take longer than 14 days to bridge, although there is some significant

variability in this bridging time as we can even see some pores have completely bridged by day 14. In each pore, the

growing tissue always forms a circle before bridging. In total, we have n = 41 imaged pores included in the dataset

for the square, with 26 at day 7 and 15 at day 14.

The results we use for the pore bridging experiments on the wave geometry come only from day 14, and they are

shown in Figure 4. Just as we saw in Figure 3, there is significant variability in the bridging time – while most pores

appear to have bridged by day 14, some are still open, with a few being far from closed. In these wave pores, the void

appears to initially close in as an oval before the void boundary eventually forms a circle. Our interest is in comparing

the cell migration and cell proliferation rates between the pores of Figure 3 and Figure 4, but from these images it

is not immediately clear whether these are similar or not. Section 3.2 shows results making this comparison using a

mathematical model. In total, we only have n = 3 pore images for the wave geometry, all at day 14, since all other

pores are closed and thus no other data is available for yi, j
c and yi, j

p , or parts of the scaffolds were not imaged as in the

leftmost pore in the first image of Figure 4. The pores used for the data are given in the first, fourth, and sixth images

in Figure 4.
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Figure 3: Experimental images for the square geometry. The images are composite fluoresence microscopy images of pore bridging experiments,
with the blue channel showing the cell nuclei (stained with DAPI); the green channel showing the tissue and cytoskeleton (stained with phalloidin).
Note that each image is from an independent experiment.

Figure 4: Experimental images for the wave geometry on day 14 of each experiment. The images are composite fluoresence microscopy images of
pore bridging experiments, with the blue channel showing the cell nuclei (stained with DAPI); the green channel showing the tissue and cytoskeleton
(stained with phalloidin). Note that each image is from an independent experiment.
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3.2. Parameter estimation and parameter identifiability

We now consider the likelihoods, profile likelihoods, prediction intervals, and tissue growth predictions for the

square and wave pores, demonstrating how well we can calibrate our model to the experimental data and make

predictions between the two geometries.

3.2.1. Square pore
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Figure 5: Likelihood analysis results for the square pore. In (a), the lines give the boundaries of the 95% credible region for θ for each u0, and
the vertical dashed lines show the MLE for Dλ (see Table 1). The profile log-likelihoods for Dλ for each u0 are shown in (b), with the threshold
c∗ ≈ −1.92 shown with a horizontal red line and the vertical dashed lines show the MLEs for Dλ. In (c)–(f), predictions for µc(t) and µp(t) on each
pore geometry are shown, with the blue dots showing the experimental data, the surrounding solid lines giving 95% prediction intervals for each
u0, and the dashed lines showing the corresponding estimates at the MLE θ̂. The estimates for the PDF p(tb) of the bridging time on each pore
geometry are shown in (g)–(h). The results in (d), (f), and (h) are predictions on the wave geometry using parameters inferred from the square pore
data.

Figure 5(a) shows that the credible regions for (Dλ, λ) for each u0 have a similar shape, and the MLEs for Dλ are

all around the same value. The boundary of each credible region is well-defined in Dλ but not for λ, indicating that

we are only able to obtain reliable estimates for Dλ but not for λ as we might anticipate [16, 37]. The confidence

intervals we obtain from the profile log-likelihoods shown in Figure 5(b) for Dλ are approximately the same for each

u0, given approximately by 90 µm2/day2 < Dλ < 300 µm2/day2 for each u0. The width of this interval is relatively

small, noting that previously reported estimates of D in the literature vary across several orders of magnitude [15, 48].

The predictions for µc(t) on each geometry are shown in Figure 5(c)–(d). We see in (c) that we can recover the data on

the square, with the prediction intervals capturing the average experimental data points, and the prediction intervals

are indistinguishable for each u0. The dashed lines show the predictions from the MLE θ̂, indicating the most likely

outcome of the experiments, and these curves too pass through the average of the experimental data points and are

indistinguishable for each u0. In contrast, we see for µc(t) on the wave geometry that we do not capture the precise

values for yi, j
c , although if we had more data points then we would likely capture more values due to their variability.

These results are also independent for u0. The corresponding figures for µp(t) are shown in Figure 5(e)–(f), where we

again capture the data on the square pore but not the data from the wave pore, and again the curves are all independent
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of u0. Lastly, we show the probability distributions for the bridging time (9) on each pore geometry in Figure 5(g)–

(h). These distributions have a similar shape for each u0. The mode for tb on the square pore appears to be around

tb ≈ 24 days, and the distribution shows that we expect more pores to bridge between 23 to 30 days, consistent with

our experiments in Figure 3. Similarly, the mode for tb is around 20 days on the wave geometry, with most pores

bridging within 19 to 24 days. The observation that the computed results in Figure 5, and in Figures 6–10, are all

indistinguishable for each u0 is an important result – it suggests that both the mean and variability in our estimates are

relatively insensitive to u0, indicating that precise measurements of u0 are not critical.
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Figure 6: Model predictions for the variability in the tissue growth behaviour for the square geometry for u0 = 0.2 at days 7, 14, 25, and 28. The
parameters used are θ̂L = (D̂L, λ̂L) = (73 µm2/day, 1.2 day−1), θ̂ = (D̂, λ̂) = (32 µm2/day, 4.9 day−1), and θ̂L = (D̂U , λ̂U ) = (60 µm2/day, 5 day−1).

Figure 6 shows a summary of model predictions where we explore the variability in the behaviour of the experi-

ments over time. In particular, we show numerical solutions of Equations (2)–(4) at θ̂, θ̂L, and θ̂U , each for u0 = 0.2.

In this figure, the columns show predictions for a given time, with each row corresponding to a different value for

θ. The middle row corresponds to θ̂, meaning the prediction that we expect to be most likely. The first two columns

show model predictions for the two days that we use for calibrating the model, while the last two columns are genuine
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predictions since our mathematical model is not calibrated to data from these predictions. We see that there is a lot of

variability in the position of the void boundary, especially at day 14, depending on the choice of θ̂L, θ̂, or θ̂U , which

approximately matches the observed variability in the experimental images in Figure 3. The numerical results on day

14 show that, at θ = θ̂L, the void boundary is still close to the pore boundary, but the bottom row shows that, at θ = θ̂U ,

the pore is half-way to being filled. The tissue boundaries do not round off as clearly as in Figure 3, although there

is some rounding in the corners of these boundaries; this is a limitation of how we calibrate our model, where we

are instead seeing results averaged over more shapes. For some simulations in between the limits of the confidence

intervals, the tissue boundary rounds off more strongly (not shown).
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Figure 7: Model predictions for the variability in the tissue growth behaviour for the wave geometry using results from the square geometry for
u0 = 0.2 at days 7, 14, 25, and 28. The parameters used are θ̂L = (D̂L, λ̂L) = (73 µm2/day, 1.2 day−1), θ̂ = (D̂, λ̂) = (32 µm2/day, 4.9 day−1), and
θ̂L = (D̂U , λ̂U ) = (60 µm2/day, 5 day−1).

The model predictions of the tissue growth in Figure 7 show predictions of how the wave pores will evolve over

time for u0 = 0.2, using parameter estimates obtained by calibrating Equations (2)–(4) to data from the square pores.

Similar to what we noted in Figure 6, we do not see the same circular voids in Figure 7 as we do in the experimental

images in Figure 4, though this is expected as the predictions average over many curves. Similarly, we see high
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variability in the results, with pores at day 14 ranging from being slightly closed to more than half-way closed. This

variability is a positive result, matching the variability in the experimental images (Figure 4).

Together, these model predictions indicate that our model has been well-calibrated to the experimental data on

the square pore, as we have captured the experimental data with our predictions and computed sensible probability

distributions for the bridging time. The model predictions applied to the wave pore are reasonable, giving evidence of

the similarities between the cell migration and cell proliferation mechanisms between the two geometries, although

this is difficult to assess with few data points. Section 3.2.2 discusses the analogous results where we instead consider

the model predictions from the experimental data on the wave.

3.2.2. Wave-like pore
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Figure 8: Likelihood analysis results for the wave pore. In (a), the lines give the boundaries of the 95% credible region for θ for each u0, and
the vertical dashed lines show the MLE for Dλ (see Table 1). The profile log-likelihoods for Dλ for each u0 are shown in (b), with the threshold
c∗ ≈ −1.92 shown with a horizontal red line and the vertical dashed lines show the MLEs for Dλ. In (c)–(f), predictions for µc(t) and µp(t) on each
pore geometry are shown, with the blue dots showing the experimental data, the surrounding solid lines giving 95% prediction intervals for each
u0, and the dashed lines showing the corresponding estimates at the MLE θ̂. The estimates for the PDF p(tb) of the bridging time on each pore
geometry are shown in (g)–(h). The results in (d), (f), and (h) are predictions on the square geometry using parameters inferred from the wave pore
data.

We now show the results obtained when we instead estimate Dλ from the data on the wave pore. The results have

greater uncertainty here than in the square case since we have far fewer data points and only one day is covered by

the data. The credible regions in Figure 8(a) are much wider and flatter at the bottom than they were in the square

case (Figure 5(a)), meaning the estimates for Dλ are less precise. The credible region is not well-defined for larger

values of Dλ, indicating that we are unable to give any estimate for an upper bound on Dλ. The corresponding profile

log-likelihoods in Figure 8(b) for each u0 do not intersect the threshold c∗ ≈ −1.92, independently of u0, and so we

are unable to give any estimate for the upper limit of the confidence intervals for Dλ, as was already suggested from

Figure 8(a). Despite these difficulties, Figures 8(c)–(f) suggest that we are able to recover values for the experimental

data yi, j
c and yi, j

p on each pore geometry, with the predictions from the MLEs going through the experimental data

points on each geometry. The probability distribution for the bridging time for the wave pore is shown in Figure 8(g),
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where we see a mode for tb around 14 days, with most pores predicted to close between 10 and 18 days, which is

consistent with Figure 4. The corresponding probability distribution for the square geometry is shown in Figure 8(h),

where we see that most pores are expected to close between 15 and 25 days, which is a shift from Figure 5(g) but is

still consistent with the experimental images in Figure 3. It is important to emphasise that the recovery of these results

on the square pore with so few data points is remarkable, as it (1) demonstrates the similarity between the migration

and proliferation mechanisms on the two geometries, providing further evidence for the first research question, and

(2) shows that we do not need such detailed, or even plentiful, data to recover these cellular mechanisms from another

geometry.
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Figure 9: Model predictions for the variability in the tissue growth behaviour for the wave geometry for u0 ∈ {0.1, 0.2, 0.3, 0.4} at days 5, 7, 14,
25, and 28. The parameters used are θ̂L = (D̂L, λ̂L) = (581 µm2/day, 0.18 day−1), θ̂ = (D̂, λ̂) = (58 µm2/day, 7.29 day−1), and θ̂L = (D̂U , λ̂U ) =
(117 µm2/day, 10 day−1).

Predictions of tissue growth for the wave geometry, based on experimental data on the wave geometry, are shown

in Figure 9 for u0 = 0.2. These model simulations are consistent with our experimental observations in Figure 4. The

middle row, displaying the most likely outcome, shows that essentially all pores will be closed by 14, which matches

Figure 4. The model simulations at day 14 show that while some pores may be completely open at this time, some

may be closed or almost closed, and we expect this significant variability as we have so few data points.

The predictions we make for the tissue growth on the square geometry using model results on the wave pore are
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Figure 10: Model predictions for the variability in the tissue growth behaviour for the square geometry using results from the wave geometry for
u0 = 0.2 at days 7, 14, 25, and 28. The parameters used are θ̂L = (D̂L, λ̂L) = (581 µm2/day, 0.18 day−1), θ̂ = (D̂, λ̂) = (58 µm2/day, 7.29 day−1),
and θ̂L = (D̂U , λ̂U ) = (117 µm2/day, 10 day−1).

given in Figure 10. We observe significant variations in the closing time. In particular, while there could be some

pores that are only halfway bridged by day 25 or day 28, most are close to closing by day 14 and completely closed

by day 25, consistent with Figure 3. The middle row shows that the most likely outcome, according to our model, is

that the majority of pores will be halfway bridged at day 14 and closed by day 25, which again matches Figure 3.

Overall, these model predictions indicate that, despite only having three data points, we have been able to calibrate

our mathematical model sufficiently well so that we capture the original experimental data on the wave from our model

predictions and, most importantly, we can recover the experimental data from the square pore from our experimental

data on the wave pores. Moreover, the estimated probability distributions for the bridging times on each geometry

are a good match to the experimental images in Figures 3–4, as are the predictions of the tissue growth from the

model simulations. Thus, not only have we demonstrated the practicality and utility of our method for obtaining these

probability distributions, we have provided much stronger evidence than in Section 3.2.1 that the cellular mechanisms

driving tissue growth are similar between the two geometries.
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3.2.3. Tabulated comparison between the two geometries

Table 1 compares values of Dλ and tb, for u0 = 0.2, for the two geometries; the choice of u0 = 0.2 is not significant

as the model results are relatively insensitive to this choice. We see that, while we cannot estimate the upper limit of

the confidence interval for Dλ using the wave geometry, the lower limits are similar between the two geometries, as

are the MLEs. Note that while the MLEs differ by a factor of three, this is an insignificant amount when we note that

estimates for D could vary by many orders of magnitude [15]. These values for Dλ provide strong evidence that the

cellular mechanisms driving tissue growth on the two geometries are the same. The estimates of the bridging times

for each geometry are not too dissimilar when using either the same geometry or predicting from the other geometry.

Square Wave

MLE 95% CI MLE 95% CI

Dλ [µm2/day2] 152 (90, 299) 423 (107,−)
tb (square) [day] 27 (24, 31) 19 (15, 22)
tb (wave) [day] 21 (19, 24) 15 (13, 18)

Table 1: Estimates for Dλ and tb on each geometry for u0 = 0.2. The 95% CI column gives the 95% confidence interval for the respective quantities,
and the MLE column shows the corresponding MLEs. The second row gives predictions of the bridging time on the square geometry, while the
third row is for the bridging time on the wave geometry.

Overall, these model results support the hypothesis that the cellular mechanisms driving the tissue growth on each

geometry are similar. Moreover, the ability to calculate reasonable estimates and probability distributions for the

bridging time provides evidence that the results obtained from one geometry can be used to make predictions about

tissue growth on another geometry using the available data.

3.3. Prediction of tissue growth on a hypothetical geometry

We now take the results on the square geometry and use them to make predictions on a new geometry that is yet

to be experimentally tested. The purpose of this exercise is to demonstrate how our mathematical modelling tools

could be used for making predictions on a new geometry from experimental results on a simpler geometry, such as

about bridging times, without having to conduct any (potentially expensive and time-consuming) experiments. The

geometry we consider is a cross-shaped pore. Using the same values for Dλ as were used in making the predictions

in Figures 6 and 7, we produce the model predictions for the variability in the tissue growth in this new geometry

in Figure 11. We see a similar variance in the previous predictions, namely most pores are closed by day 25 but at

θ̂L there are still some pores that remain half closed. The void maintains the symmetry of the geometry, forming a

diamond shape during the early part of the growth process. These results are also largely independent of u0, as we

find when plotting these predictions for other u0 values (not shown). We similarly show predictions for the yi, j
c and yi, j

p

in Figure 12(a)–(b) and the hypothetical bridging time distribution p(tb) in Figure 12(c), all for u0 = 0.2

An important feature of working with these predictions is that, once the likelihood results have been obtained,

producing these predictions in Figures 11–12, or for any new geometry, is not a significantly time consuming task.

The snapshots in Figure 11 take only around a minute to compute and visualise, and the model predictions in Figure

18



12 may take around 10 minutes to an hour, depending on the number of samples requested for the prediction intervals.

Thus, this type of exploratory analysis of a new geometry can be efficiently performed in a reasonable time.
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Figure 11: Model predictions for the variability in the tissue growth behaviour for the hypothetical geometry using results from the square geometry
for u0 = 0.2 at days 7, 14, 25, and 28. The parameters used are θ̂L = (D̂L, λ̂L) = (73 µm2/day, 1.2 day−1), θ̂ = (D̂, λ̂) = (32 µm2/day, 4.9 day−1),
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4. Discussion

New experimental images and modelling predictions in Section 3 provide answers to the three research questions

posed in Section 1. The first question, namely whether the cellular mechanisms driving tissue growth are independent

of pore shape, appears to be true for the geometries considered. The second question asks whether we can make

predictions of bridging times, with uncertainty, on a geometry from a separate geometry. We have found that we can

produce reliable predictions with uncertainty between separate geometries, both in the form of probability distributions

and prediction intervals. The third question concerns the type and quantity of data required for making predictions

between geometries. We found that the data, and the amount of data, we use for summarising the images is sufficient

for making predictions of tissue growth with uncertainty, namely information about the tissue void — even with

only three data points on the wave geometry. Interestingly, the answers to these questions require only very simple

measurements of the experiments, rather than performing cell counting [49]. This observation agrees with previous

work that has compared methods using leading edge detection and cell counting, demonstrating that tracking the

leading edge is sufficient for estimating the cell migration and cell proliferation rates [49]. We show in Section S6

of the Supplementary Material that if we considered only void area for the analysis of the square geometry then we

would obtain the same conclusions, but both area and perimeter are necessary for the wave geometry to answer the

research questions. The fact that both area and perimeter are required in general can be expected since area and

perimeter together give a detailed description of a shape, but not separately.

These answers have important implications. Firstly, we have demonstrated the ability to extrapolate from exper-

imental results on one geometry to another geometry, making predictions with uncertainty. This facilitates fast and

inexpensive pilot studies to be performed for new pore geometries without conducting the experiments or even fabri-

cating the scaffolds, as with our exploratory analysis in Section 3.3. Numerical simulations could be performed in a

few minutes of computation on a standard desktop computer, while conducting the necessary experiments will require

more than one month for tissue growth and a considerable amount of effort and expense to fabricate the scaffolds with

melt electrowriting. We do not mean to imply that these predictions can replace experimental verification, instead

we view this suite of predictive tools as complementary screening tools that can be used to plan and interpret experi-

ments efficiently. Secondly, the novel method we present for obtaining probability distributions for the bridging time

provides a useful tool for meeting certain needs by helping us to understand the amount of time required for a tissue

to form and bridge the pore, and also for understanding how long tissue growth needs to be incubated for in tissue

engineering constructs. Together with the type of exploratory analysis demonstrated in Section 3.3, these probability

distributions can help facilitate the construction of a geometry that is likely to bridge within some time window for

certain clinical needs, and for determining how long an experiment should be run for.

The mathematical model we use in this study is relative simple as it involves just three parameters: D, λ, and u0. A

model that better incorporates other effects such as cell adhesion or the different phases of tissue growth, in particular

the initial phase where cells move off the scaffold or the later phase where the pore is closing and cells overlap [28],
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could be of interest to provide more biological insight. A key limitation of working with a more detailed mathematical

model, however, would be the need to collect significantly more data so that the necessary additional parameters can

be properly estimated [40, 45].

5. Conclusion and future work

In this study, we use a reaction-diffusion model together with a likelihood-based uncertainty quantification frame-

work to study how pore geometry affects tissue growth, particularly in how we can make inference about tissue growth

on complicated pore geometries using data from tissue growth on simpler square geometries, providing new tools for

studying tissue growth with uncertainty and providing probability distributions for bridging times. We use data from

pore bridging experiments to perform this analysis, considering a square geometry and a wave-like geometry.

Our combined experimental and mathematical modelling results suggest that the cell migration and cell prolifera-

tion mechanisms driving tissue growth appear to be independent of the pore geometry, giving evidence that observed

curvature effects are due to space availability rather than cellular mechanisms. We can make predictions of the bridg-

ing time on a new geometry in the form of a probability density function, a powerful tool for understanding both

quantitatively and qualitatively what may happen in a pore bridging experiment on a new geometry, including the

estimation of probabilities of bridging times over a given time interval.

There are several avenues for future work based on our findings in this study. First, our computational tools can

be applied to new pore bridging experiments involving different geometries or different cell lines since our methods

are independent of these two features. Secondly, it would be of interest to collect more data across more time points

to explore the extent to which additional parameters, such as D and λ separately, can be estimated [15]. If future

works consider more than one variable, we note that it would not be feasible to work with the plots of the log-

likelihood function as we have done, and instead the profile log-likelihood would be required to obtain uncertainty

quantification. Thirdly, the ability to make predictions on new geometries can facilitate a systematic study of how

bridging times depend on curvature, such as by defining a geometry that depends directly on a specified curvature and

comparing the probability distributions over many curvatures. This would provide a plausible set of outcomes to be

analysed prior to running full-scale experiments exploring these features.

The predictions made on geometries from data on a separate geometry can be useful for facilitating a pilot study

for pore bridging experiments on the geometry, such as the geometry demonstrated in Figure 11 and Figure 12. It

would be of interest to see how well these predictions can help with preparing and investing into future experiments,

for example in estimating what time scales an experiment may need to be run for by assessing the uncertainty in

the bridging times. All code and data to reproduce this work are available on GitHub at https://github.com/

DanielVandH/PoreBridging.jl in the Julia language [50].
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Appendix A. Summarising images from the experiments

Here we present the formulae for computing the area and perimeter summary statistics. As discussed in Section

2.2, for an image I(t) at time t we identify a boundary PI(t) for the pore and a boundaryVI(t) for the void. Precisely,

we identify the sets PI(t) = {pI
1(t), . . . ,pI

n(t),pI
n+1(t)} andVI(t) = {vI

1(t), . . . , vI
m(t), vI

m+1(t)}, where pI
n+1(t) = pI

1(t) and

vI
m+1(t) = vI

1(t) and the boundary points are arranged in counter-clockwise order. An example of these sets is shown

in Figure A.13. Using these sets, the area of the pore and the area of the void for this image I(t), denoted A[PI(t)] and

A[VI(t)], respectively, can be computed [51]

A[PI(t)] =
1
2

n∑
i=1

det
(
pI

i (t),p
I
i+1(t)

)
and A[VI(t)] =

1
2

m∑
i=1

det
(
vI

i (t), v
I
i+1(t)

)
. (A.1)

Similarly, the perimeters ℓ[PI(t)] and ℓ[VI(t)] for the pore and void boundaries, respectively, are simply

ℓ[PI(t)] =
n∑

i=1

∥∥∥pI
i+1(t) − pI

i (t)
∥∥∥ and ℓ[VI(t)] =

n∑
i=1

∥∥∥vI
i+1(t) − vI

i (t)
∥∥∥ , (A.2)

summing up each length like the one annotated in Figure A.13.
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Figure A.13: Example of the configuration of the point sets P andV, omitting the superscript I. These are n = 19 points on the pore boundary and
m = 8 on the void boundary, with an extra point at the end of each set to close the boundary. Note also the order of the points.
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Appendix B. Finite volume method

In this section, we give the details for how we solve the PDE

∂u(x, t)
∂t

= D∇ · [u(x, t)∇u(x, t)] + λu(x, t)(1 − u(x, t)), x ∈ Ω, (B.1)

du(x, t)
dt

= λu(x, t) (1 − u(x, t)) , x ∈ ∂Ω, (B.2)

u(x, ta) =


u0 x ∈ ∂Ω,

0 x ∈ Ω,
(B.3)

using the finite volume method [52]. The first step is to compute a triangulation of the domain Ω, denoted T (Ω),

which we accomplish using DelaunayTriangulation.jl [53]. For some interior point xi = (xi, yi)T ∈ T (Ω), we

take the centroids of the triangles neighbouring xi and connect these centroids to the midpoints of the associated

triangle, giving a closed polygon that we denote by ∂Ωi and show in Figure B.14. The interior of this polygon is

denoted Ωi, which we call a control volume, and has some volume Vi. This polygon is defined by a set of edges Ei,

and for each xσ ∈ Ei there is an associated length Lσ, midpoint xσ, and unit normal n̂i,σ which is normal to σ and

directed outwards to Ωi with unit length. It is with these control volumes that we can now discretise (B.1).

(xi,yi)

Ωi

∂Ωi

ni,σ

(xσ,yσ)σ

vk1
vk2

vk3

Tk

Figure B.14: Example of a control volume around a point xi = (xi, yi)T. The control volume is the region in green, and its boundary ∂Ωi is shown
in blue. The edge σ ∈ Ei is shown in magenta. Lastly, the cyan points show an example counter-clockwise ordering (vk1, vk2, vk3) of a triangle
Tk ∈ T (Ω).

We integrate (B.1) over Ωi,

d
dt

∫∫
Ωi

u(x, t) dA = D
∫∫
Ωi

∇ · [u(x, t)∇u(x, t)] dA + λ
∫∫
Ωi

u(x, t) (1 − u(x, t)) dA . (B.4)
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The first integral on the right of (B.4) can be re-written as a line integral using the divergence theorem, and then

re-written as a sum by integrating across each edge of ∂Ωi:

D
∫∫
Ωi

∇ · [u(x, t)∇u(x, t)] dA = D
∮
∂Ωi

[u(x, t)∇u(x, t)] · n̂i,σ(x, t) ds = D
∑
σ∈Ei

∫
σ

[u(x, t)∇u(x, t)] · n̂i,σ ds , (B.5)

with n̂i(x, t) the unit normal vector field on ∂Ωi. Next, defining the control volume averages

ūi =
1
Vi

∫∫
Ωi

u(x, t) dA and R̄i =
λ

Vi

∫∫
Ωi

u(x, t) (1 − u(x, t)) dA ,

our integral formulation (B.4) becomes

dūi

dt
=

D
Vi

∑
σ∈Ei

∫
σ

[u(x, t)∇u(x, t)] · n̂i,σ ds + R̄i. (B.6)

To now approximate the integral in (B.6), we take ūi ≈ u(xi, t), R̄i ≈ λu(xi, t)[1 − u(xi, t)], and use the midpoint rule:∫
σ

[u(x, t)∇u(x, t)] · n̂i,σ ds ≈
{
[u(xσ, t)∇u(xσ, t)] · n̂i,σ

}
Lσ.

To approximate ∇u(xσ, t), we let Ti be the set of triangles in T (Ω) that have xi as a node, and take a triangle

Tk ∈ Ti. Linearly interpolating u over the element Tk,

u(x, t) = αk(t)x + βk(t)y + γk(t), (x, y) ∈ Tk, (B.7)

where the coefficients come from the values of u at each vertex of Tk, gives ∇u(x, t) = (αk(t), βk(t))T inside Tk. Thus,

our approximation becomes, for each time step,

dui

dt
=

D
Vi

∑
σ∈Ei

{[(
αk(σ)(t)xσ + βk(σ)(t)yσ + γk(σ)(t)

) (
αk(σ)(t), βk(σ)(t)

)T]
· n̂i,σ

}
Lσ + λui (1 − ui) , (B.8)

where ui = u(xi, t) and the k(σ) notation is used to refer to the edge σ inside the triangle Tk(σ).

To complete the approximation, the boundary condition (B.2) is dui/dt = λui(1 − ui) for points on the boundary.

Thus, our discretisation is given by (B.8) in the interior, i.e. the regions bounded by the red curves in Figure 2, while

on the red curve we have dui/dt = λui(1− ui). The initial condition for this system of ODEs comes from (B.3), letting

ui = u0 on the boundary and ui = 0 in the interior at the initial time. We solve the system of ordinary differential

equations using DifferentialEquations.jl [54] with the TRBDF2 algorithm and the KLUFactorization linear

solver [55, 56] together with the package FiniteVolumeMethod.jl [57] that computes the equations.

To assess the accuracy of our implementation of the finite volume, we applied several test cases, including setting

up a domain to compare with one-dimensional travelling waves and comparisons with exact solutions. Moreover, we

ensured that the size of the mesh used was sufficient by checking that increasing the number of mesh elements did not

change the quality of the solution. Tests for the implementation itself are examined clearly in the documentation of

the FiniteVolumeMethod.jl package [57].
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Appendix C. Computing summary statistics from model realisations

In this appendix, we consider the problem of computing the summary statistics µc(t) and µp(t) as defined in the

text. We let Cτ(t) = {x ∈ Ω : u(x, t) = τ}; note that τ = 1/2 in the text. The objective is to compute the area and

perimeter of Cτ(t), together with a polygonal representation of Cτ(t) assuming Cτ(t) is simply connected or Cτ(t) = ∅.

In what follows, we instead compute the area of the region where u(x, t) > τ, i.e. A(Ω \ Cτ(t)) = A(Ω) − A(Cτ(t)),

where A(Ω) is the area of Ω and A(Cτ(t)) the area of Cτ(t). The area of Cτ(t) is then obtained by simply computing

A(Cτ(t)) = A(Ω) − A(Ω \Cτ(t)).

Let us take our triangular mesh T (Ω) of our domain, and consider some triangle T (Ω) with vertices xi, x j, xk and

associated solution values at time t given by ui = u(xi, t), u j = u(x j, t), and uk = u(xk, t). The finite volume method

allows us to represent u(x, t) with a linear interpolant inside T , giving

u(x, t) = αx + βy + γ, (x, y) ∈ T,

where the coefficients (α, β, γ) depend on t; these coefficients are defined in Appendix B. This linearity then implies

that, to find intersections of u with the plane u = τ inside T , we need only consider intersections with the edges. We

denote the edge connecting ui to u j by −−→uiu j, and the edge connecting xi to x j by −−→xix j. This edge −−→xix j is parametrised

by x(s) = xi + (x j − xi)s, 0 ⩽ s ⩽ 1. With this parametrisation, we see that, if an intersection does exist on −−→uiu j, it

occurs when s∗ = (τ − ui)/(u j − ui), in particular at x(s∗) = xi + (x j − xi)(τ − ui)/(u j − ui).

Nodal values Intersection? Area contribution
ui u j uk

−−→uiu j
−−−→u juk

−−→ukui

< < < N N N 0
< < > N Y Y A(uki, u jk, uk)
< > < Y Y N A(ui j, u j, u jk)
< > > Y N Y A(ui, u j, uk) − A(ui j, uki, ui)
> < < Y N Y A(uki, ui, ui j)
> < > Y Y N A(ui, u j, uk) − A(u jk, ui j, u j)
> > < N Y Y A(ui, u j, uk) − A(u jk, uk, uki)
> > > N N N A(ui, u j, uk)

Table C.2: Possible configurations of the nodal values relative to the threshold τ. In the first three columns, the symbol refers to ui’s value relative
to τ. For example, a < in the u j column means u j < τ. In the intersection columns, −−−→uiu j is the edge from ui to u j, and the text refers to whether
the plane u(x, t) = αx + βy + γ can intersect with the plane defined by the plane u = τ, with “N” meaning no intersection and “Y” meaning there is
an intersection. The notation A(ui, u j, uk) means the area formed by these points projected onto the plane, and a point ui j denotes the intersection
point on the edge connecting ui and u j.

By considering the eight possible values of the ui, u j, uk relative to u = τ, we can easily determine whether an

intersection exists. These possibilities are shown in Table C.2, which show that we can check each possibility and

compute the area accordingly. All the cases in Table C.2, except for the first and last cases, imply that there is a line

going through T where u = τ, and the length of this line can be easily computed by simply taking the magnitude of the

difference of the intersections on the two associated edges. Moreover, if we are interested in getting a representation
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of the leading edge itself for plotting, we can simply store all these intersection points which we can then sort counter-

clockwise and clear duplicated intersections, giving a vector of points that can be plotted. For the wave geometry

considered in the text, sorting the leading edge is not as simple and so we instead plot the concave hull of these points,

computed with the ConcaveHull.jl package [58, 59].

Now that we understand how to compute the area of the part of a triangle that is above the plane u = τ, which we

denote by AT , the total area where u(x, t) ⩾ τ is given by
∑

T∈T (Ω) AT , meaning A(Cτ(t)) = A(Ω) −
∑

T∈T (Ω) AT . Thus,

normalising by A(Ω), we have

µc(t) = 1 −
1

A(Ω)

∑
T∈T (Ω)

AT . (C.1)

Similarly, letting ℓT be the length of the line in T where u = τ, which is zero if there is no such line, the perimeter of

Cτ(t) is ℓ(Cτ(t)) =
∑

T∈T (Ω) ℓT , giving µp(t) = [1/ℓ(∂Ω)]
∑

T∈T (Ω) ℓT . We note that it is possible to have
∑

T∈T (Ω) ℓT = 0,

which means that there is no part of u(x, t) where u > τ, but this means the whole of Ω is the void, i.e. u < τ in all of

Ω. Thus, the correct definition is

µp(t) =


1
ℓ(∂Ω)

∑
T∈T (Ω)

ℓT
∑

T∈T (Ω)

ℓT , 0,

1
∑

T∈T (Ω)

ℓT = 1.
(C.2)

As described in the manuscript, these quantities µS are used to model the distribution that our data yi, j
S are realisa-

tions of, namely Y i
S ∼ N(µS (ti; θ), σ2

S ). Here we give the formula used for σ2
S . We simply aggregate all the data for

the quantity S into a single set, giving the sample standard deviation

σ2
S =

1
n1 + n2 − 1

2∑
i=1

∑
j

(
yi, j

S − yi, j
S

)2
, where ni is the total number of data points at t = ti for i = 1, 2, and

yi, j
S =

1
n1 + n2 − 1

2∑
i=1

∑
j

yi, j
S

is the aggregated mean of the yi, j
S ; the second sum in each term denotes a sum over all pore indices j. For the square

geometry, n1 + n2 = 41, and for the wave geometry we have n1 + n2 = 3.
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Appendix D. Reparametrisation of the likelihood function

Here we discuss issues with working with D and λ separately in the likelihood function. For this discussion, we

will take u0 = 0.2, but note that the results are the same for any other u0. To start, let us take our log-likelihood

function ℓ(θ | y) with θ = (D, λ). We evaluate this log-likelihood over a grid of points, obtaining the surface shown

in Figure D.15(a). We see that the log-likelihood in this case is banana-shaped, indicating that D and λ are related

[40], and so we would expect problems when trying to compute univariate confidence intervals from the profile log-

likelihoods. One way to overcome this issue is to reparametrise in terms of (Dλ, λ), motivated by noting that our

likelihood function uses data based on the void boundary which is known to have a speed that depends directly on

the product Dλ [37]. The surface we obtain under this reparametrisation is given in Figure D.15(b), where we see

that we can now assign a finite interval to Dλ, meaning we will be able to obtain confidence intervals from the profile

likelihood for Dλ, but we can still not assign any upper bound to λ — λ is not identifiable. This latter issue with λ

is not important for us, though, as we only need Dλ to describe the cellular mechanisms driving tissue growth in our

experiments.
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Figure D.15: Log-likelihood surfaces for ℓ(θ | y) using (a) the (D, λ) parametrisation and (b) the (Dλ, λ) parametrisation. The red curves show the
95% credible region for θ.

We note that, at first glance, it might appear that the surface in Figure D.15(b) could eventually stop on the vertical

axis for larger values of λ. We have computed this surface up to λ = 25 day−1 previously and find that this is not

the case. Moreover, we note that even the maximum value λ = 5 day−1 shown in Figure D.15(b) is large, as the

proliferation time for these cells is typically between half a day to two days, corresponding to a value of λ between

0.5 day−1 and 2 day−1 [16]. Thus, even this value of λ = 5 day−1 is a conservative upper bound, and certainly λ is not

identifiable.
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Appendix E. Profile likelihood analysis

In this section, we will outline (1) how we compute the MLE, (2) how profile likelihoods are computed, and (3)

how prediction intervals are computed.

Appendix E.1. Computing the MLE

The MLE is obtained by maximising ℓ(θ | y) over a certain rectangle defined by the bounds on Dλ and λ. We

maximise ℓ(θ | y) using NLopt.jl with the derivative-free algorithm LN BOBYQA [60–62]. To construct an initial

estimate for the optimiser, we evaluate the log-likelihood on a 40 × 40 grid, taking 40 values for Dλ in 0 < Dλ < 500

and 40 values for λ in 0 < λ < 5. We then take the pair (Dλ, λ) in this grid that gives the greatest value for ℓ(θ | y),

and this then gives the initial estimate we use for the optimiser.

Appendix E.2. Computing profile likelihoods

We describe here how we compute ℓp(Dλ) as defined in Equation (8). We use a simple iterative approach, although

other approaches that exploit the PDE for improving the computation could be used [63]. The basic idea is to step

to the left and right of the MLE D̂λ until we find where ℓp(Dλ) ⩽ c∗ in each direction, or until we reach the bounds

of Dλ; recall that c∗ = −χ2
1,1−α/2 ≈ −1.92 in this work, taking α = 0.05. At each step, we solve the optimisation

problem (8) to get a new value for ℓp(Dλ) at the given Dλ. This optimisation problem starts with an initial estimate

given by the MLE if we have only taken one step, or via linear interpolation of the optimised values for λ∗(Dλ) from

the previous two steps, with λ∗(Dλ) denoting the optimised value of λ that together gives the value for ℓp(Dλ) =

maxλ∈Λ[ℓ(Dλ, λ)] − ℓ∗, meaning ℓp(Dλ) = ℓ(Dλ, λ∗(Dλ)) − ℓ∗. If we find points on each side of the MLE where

ℓp(Dλ) ⩽ c∗, we stop iterating and fit a spline to the data (Dλi, ℓp(Dλi)), using a bisection algorithm on each side of

the MLE to find the two points where ℓp(Dλ) = c∗. These two points define the endpoints of the confidence interval.

This procedure is implemented in the Julia package ProfileLikelihood.jl [46].

Appendix E.3. Computing prediction intervals

Let us now describe how prediction intervals are computed, following the approach developed by [40]. We note

that while we describe the procedure below for propagating uncertainty from the full log-likelihood ℓ(θ | y), we could

just as easily propagate uncertainty from the profile likelihoods, again following [40]. The results turn out to be

essentially the same, and so we only describe the former approach here.

We start with the same 40 × 40 grid that we use for finding an estimate estimate for computing the maximum

likelihood, as described in Appendix E.1. We then find all pairs θ = (Dλ, λ) in this grid such that ℓ(θ)−ℓ∗ ⩾ −χ2
2,1−α/2,

where χ2
2,q is the qth quantile of the χ2 distribution with two degrees of freedom and ℓ∗ = ℓ(θ̂) is the maximum log-

likelihood. With α = 0.05, −χ2
2,0.95/2 ≈ −3. We enumerate the points satisfying this condition as {θ1, . . . , θr}. For

each point θi we compute qi = q(θi) for a prediction function q, giving a sample (q1, . . . ,qr). Now, letting qi j denote

the jth element of qi, define qL = (minr
i=1 qi1, . . . ,minr

i=1 qi|q|) and qU = (maxr
i=1 qi1, . . . ,maxr

i=1 qi|q|), where |q| is the
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length of outputs of q. A parameter-wise prediction interval for q is then given by qL ⩽ q ⩽ qU , where the vector

inequality a ⩽ b ⩽ c means ai ⩽ bi ⩽ ci for each i.

For our application, the prediction function q is defined by

q(θ) =


A(θ; t∗)

P(θ; t∗)

tb(θ)

 . (E.1)

For these functions, we let t∗ be a vector of m = 361 equally spaced points between t = 5 day and t = 70 day.

Then, A(θ; t∗) is the vector of coverages (µc(t∗1), . . . , µc(t∗m)) for the given θ; P(θ; t∗) is the corresponding vector of

normalised perimeters (µp(t∗1), . . . , µp(t∗m)) for the given θ; tb(θ) is the time at which the area of the void first becomes

zero, in particular this is the bridging time for the given θ, computing using the continuous callback interface from

DifferentialEquations.jl [54] to find when µc(t) ≈ 0 by applying rootfinding to the function g(t) = µc(t)−10−9.
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Appendix F. Likelihood results using area only

In this appendix, we show some of the results when we include only area in the likelihood function rather than

both area and perimeter. For the tissue growth predictions, we only show the results at u0 = 0.2, noting that the results

for other u0 are mostly indistinguishable.

Appendix F.1. Square pore

Analogous figures to those in Figures 5–7 are shown in Figures F.16–F.18. The results are very similar, with the

main difference being that the uncertainty is much wider than when we also include perimeter information, as should

be expected. The differences in the model predictions are also not too distinguishable compared to their counterparts

when including perimeter information. Overall, we see that for this data on the square, perimeter does not contribute

significantly to our understanding of these effects.
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Figure F.16: Likelihood analysis results for the square pore without perimeter information. In (a), the lines give the boundaries of the 95% credible
region for θ for each u0, and the vertical dashed lines show the MLE for Dλ (see Table 1). The profile log-likelihoods for Dλ for each u0 are shown
in (b), with the threshold c∗ ≈ −1.92 shown with a horizontal red line and the vertical dashed lines show the MLEs for Dλ. In (c)–(f), predictions
for µc(t) and µp(t) on each pore geometry are shown, with the blue dots showing the experimental data, the surrounding solid lines giving 95%
prediction intervals for each u0, and the dashed lines showing the corresponding estimates at the MLE θ̂. The estimates for the PDF p(tb) of the
bridging time on each pore geometry are shown in (g)–(h). The results in (d), (f), and (h) are predictions on the wave geometry using parameters
inferred from the square pore data.
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Figure F.17: Model predictions for the variability in the tissue growth behaviour for the square geometry for u0 = 0.2 at days 7, 14, 25, and
28 without perimeter information. The parameters used are θ̂L = (D̂L, λ̂L) = (41 µm2/day, 1 day−1), θ̂ = (D̂, λ̂) = (19 µm2/day, 5 day−1), and
θ̂L = (D̂U , λ̂U ) = (57 µm2/day, 5 day−1).
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Figure F.18: Model predictions for the variability in the tissue growth behaviour for the wave geometry using results from the square geometry for
u0 = 0.2 at days 7, 14, 25, and 28 without perimeter information. The parameters used are θ̂L = (D̂L, λ̂L) = (41 µm2/day, 1 day−1), θ̂ = (D̂, λ̂) =
(19 µm2/day, 5 day−1), and θ̂L = (D̂U , λ̂U ) = (57 µm2/day, 5 day−1).
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Appendix F.2. Wave pore

Analogous figures to those in Figures 8–10 are shown in Figures F.19–F.21. The results are much more problematic

in this case than we include area, with the uncertainty significantly wider than before, and Dλ is no longer identifiable.

We do capture the data in our uncertainty intervals, although this is difficult to judge as the uncertainty being so

large implies that we might have captured this data regardless. It is impressive, though, that we recover all of the

experimental data points on the square. The bridging time distributions in this case cover a much wider range, again

due to the large uncertainty in the parameters.
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Figure F.19: Likelihood analysis results for the wave pore without perimeter information. In (a), the lines give the boundaries of the 95% credible
region for θ for each u0, and the vertical dashed lines show the MLE for Dλ (see Table 1). The profile log-likelihoods for Dλ for each u0 are shown
in (b), with the threshold c∗ ≈ −1.92 shown with a horizontal red line and the vertical dashed lines show the MLEs for Dλ. In (c)–(f), predictions
for µc(t) and µp(t) on each pore geometry are shown, with the blue dots showing the experimental data, the surrounding solid lines giving 95%
prediction intervals for each u0, and the dashed lines showing the corresponding estimates at the MLE θ̂. The estimates for the PDF p(tb) of the
bridging time on each pore geometry are shown in (g)–(h). The results in (d), (f), and (h) are predictions on the square geometry using parameters
inferred from the wave pore data.
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Figure F.20: Model predictions for the variability in the tissue growth behaviour for the wave geometry for u0 = 0.2 at days 7, 14, 25, and 28
without perimeter information. The parameters used are θ̂L = (D̂L, λ̂L) = (25 µm2/day, 0.2 day−1), θ̂ = (D̂, λ̂) = (22 µm2/day, 10 day−1), and
θ̂L = (D̂U , λ̂U ) = (2000 µm2/day, 10 day−1).
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Figure F.21: Model predictions for the variability in the tissue growth behaviour for the square geometry using results from the wave geometry
at days 7, 14, 25, and 28 without perimeter information. The parameters used are θ̂L = (D̂L, λ̂L) = (25 µm2/day, 0.2 day−1), θ̂ = (D̂, λ̂) =
(22 µm2/day, 10 day−1), and θ̂L = (D̂U , λ̂U ) = (2000 µm2/day, 10 day−1).
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