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Abstract

Undersaturated oil viscosity is a dominant fluid parameter to be measured in oil reservoirs due to
its direct involvement in flow calculations. Since PVT experimental work is expensive and time costly,
prediction methods are essential. This work presents the utilization of viscosity data from more than
five hundred fluid reports with the purpose of developing data driven models to predict undersaturated
oil viscosity using easy-to-get measurements. The suitability of popular machine learning techniques
in performing this task is also examined by comparing the models obtained for each method using
several popular statistical metrics. A complete workflow for this process is introduced to demonstrate
the integrity of the process followed and to guide in further research in predicting similar PVT proper-
ties.The workflow showcases the advantages of combining engineers expertise to the art of data driven
models developement, specifically on accuracy and ease of implementation, as well as their limitations.

Keywords: undersaturated oil viscosity; correlations; predictive methods; machine learning; super-
vised regression;

1 Introduction

Undersaturated oil viscosity (µo) refers to the viscosity of live oil at pressures above the bubble point
(Pb), which typically correspond to the pressure range that prevails during most of a reservoir’s lifespan.
Although oil viscosity varies only with pressure in undersaturated reservoirs with a constant composi-
tion, the degree of this variation may be quite drastic. Indeed, the extent of viscosity change can range
from 0.5% to 40% per 1,000 psi, in contrast to volumetric properties such as the oil formation volume
factor (Bo) which typically varies from 0.5% to 2.8% per 1,000 psi. This indicates that a reduction in
pressure during production has a significant and direct impact on viscosity, which in turn could affect
the performance of the reservoir as the latter is directly involved in the flow laws.

The exact measurement or even a fair computational estimate of viscosity is essential in all flow cal-
culations in reservoir and production engineering [1], as it directly affects the pressure drop associated
with flow. For example, Darcy’s equation for steady state cylindrical (radial) flow in the near-wellbore
area incorporates viscosity in the mobility ratio as shown in eq. (1) [2].
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where Pe − Pwf is the pressure drawdown in the reservoir, k/µo is the mobility ratio, re/rw is
the geometry factor and S is the skin factor. The analysis of fluid flow in pipelines, such as the
production tubing and the surface network, involves the application of the continuity equation and of
the momentum conservation, for the prediction of pressures and flow rates. [3]. In that case, viscosity
is incorporated in the pressure drop as shown by:
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where ρo is the oil density, θ is the pipe inclination and d is the pipe diameter. The three parts of
the equation’s right hand side correspond to the hydrostatic, frictional and kinetic energy losses in
the system, respectively. The frictional factor f , indirectly involves viscosity as it is obtained from
the Moody Friction factor chart which is a function of the Reynolds Number [4] with the latter being
calculated by

R =
1488 · d · ν · ρo

µo

where ν is the fluid’s velocity.

Introducing accurate oil viscosity values to a flow simulator is of utmost importance as all errors
in the fluid properties can only be compensated by means of history matching. Depending on the error
in the viscosity value, the fluids might be considered to flow easier or more difficult than what really
happens. History matching would try to account for that by abnormally modifying complementary
terms such as the relative permeability of the oil phase (e.g. by modifying the parameters of a Stones
model). This way the reservoir model can be twisted, thus reducing its prediction capability for the
future production scenarios that need to be evaluated.

Dead oil viscosity is typically determined in the PVT (pressure-volume-temperature) laboratory through
a standardized procedure. The dead oil sample is prepared in a controlled temperature environment
and then introduced into the rotational viscometer. The rotational speed is increased gradually and
the torque necessary to maintain the rotation is measured and used to calculate the viscosity of the oil
using the viscometer’s calibration data. On the other hand, measuring live oil viscosity can be time-
consuming and expensive as it requires apparatus that utilizes the measurement of the time required
for a rolling nickel ball, affected by shear and pressure of the fluid, to travel a pre-determined distance
at controlled conditions. The ball is positioned inside the measuring barrel with the test fluid sample
so that it is limited to an only rolling type motion and an electronic timer records the time required
for the ball to roll through the barrel. This procedure requires skilled personnel, as the oil sample is
under high pressure and temperature. When detailed lab values are not available, correlations can be
used instead to estimate the reservoir oil viscosity [5]. These correlations typically utilize pressure and
bubble point viscosity (µob) as the most significant input parameters, while other properties such as
fluid GOR (Gas Oil Ratio), API gravity and dead oil viscosity (µod) are considered secondary and used
by few correlations only.

Developing a correlation typically involves collecting a number of physical observations and gener-
ating a function that captures the dependency between these observations. When physical evidence
is utilized to select the appropriate function form, the correlations are referred to as physics-driven
models. In contrast, Machine Learning (ML) methods are used to uncover patterns and relationships
in the data that may not be apparent to the researcher. It is important to note, however, that scientist’s
experience and intuition are still critical in handling the data, choosing the correlating function form
and in developing a ML model that performs optimally.

The utilization of ML methods for the prediction of PVT properties is an actively researched area.
Various methods have been explored for the prediction of bubble point pressure [6], formation volume
factor [7], dead oil viscosity [8] and even multiple PVT properties ensembles [9], [10], [11]. When it
comes to undersaturated oil viscosity however, ML research has been limited. Notable attempts include
data-driven correlations that have been generated with symbolic regression [12] which is an approach
based on genetic algorithms [13] and ensemble methods with support vector machines [14]. In this
work, several ML algorithms have been utilized for the prediction of undersaturated oil viscosity, in-
corporating a dataset that consists of more than 500 PVT reports. A complete, easy-to-implement
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workflow is followed and presented. Furthermore, ML models generated following this workflow are
compared to each other and results are drawn.

The rest of the paper is organized as follows. Correlation-based models are briefly explored in Section
2, to showcase the strenuous and time consuming process that researchers went through for their de-
velopment. Section 3 details the characteristics of the dataset utilized as well as the quality control
procedure that it went through. Section 4 provides a comprehensive account of the workflow employed
for optimizing the models, including a description of the algorithms utilized. Subsequently, Section
5 presents the results obtained from the study followed by a broad discussion on the results and the
outline of the process limitations. Finally, conclusions and suggestions are drawn in Section 6 based
on the findings of this work.

2 Correlation review

In this section, the correlations commonly available to the industry to predict undersaturated oil viscos-
ity are presented. The selection of these correlations is based on their historic significance, popularity
and integration into commercial software packages for handling reservoir or pipeline flow problems.
Rather than the pressure (P ) itself, the available methods utilize either the pressure ratio or the pres-
sure differential (i.e., P/Pb and P − Pb respectively) as the primary correlating parameter, along with
bubble point viscosity (µob). Additional PVT properties, such as solution GOR, API gravity and dead
oil viscosity (µod), are used by some correlations only. The most pronounced correlations can be found
in any commercial software running flow calculations [15].

It is important to point out that when additional viscosity values in the undersaturated pressure range
are known apart from µob, a technique that involves modifying known correlations by applying shift-
ing and multiplying coefficients may be used. By using this ”tuning” approach, the original viscosity
prediction is replaced by µ′

o = αµo + β which matches optimally the extra viscosity measurements and
is now adequate in predicting the value of undersaturated oil viscosity accurately. Software packages
like IPM [15] already utilize this method to improve accuracy in their predictive models.

Beal (1946) [16] correlated graphically 52 viscosity measurements from California and noted a viscosity
increase with pressure which was greater with an increasing bubble point viscosity. Later, Standing
(1977) [17] generated correlation equations for Beal’s graphical method, resulting in a model linear in
∆P = P −Pb and a slope that depends polynomially on µob. Kouzel (1965) [18] correlated data points
with an exponential model known as the Barus’ model µ = µobe

α(P−Pb), while Vazquez and Beggs
(1976) [19] were first to gather thousands of measurements across the world and generate a model
exponental in the pressure ratio P/Pb with a pressure dependant exponent. Labedi (1982) [20] created
two models, one for Libyan reservoirs and one for Nigerian and Angolan ones. Both models are linear in
the pressure ratio and they utilize a polynomial relationship on dead oil viscosity, bubblepoint pressure
and an exponential one on API gravity. Khan (1987) [21] correlated measurements from Saudi Arabian
reservoirs using Barus’ model, whereas Petrosky (1990) [22] gathered data points from the Gulf of
Mexico to generate a model similar to Beal’s with the exception of the slope depending exponentially
on µob. Kartoatmodjo and Schmidt (1991) [23] utilized thousands of PVT data points from North and
South America, Southeast Asia and the Middle East to modify the parameters in Beal’s model.

Al-Khafaji, Abdul-Majeed and Hassoon (1987) [24] used Middle East samples to generate a model
that is polynomial in ∆P and exponential on API gravity, while Abdul-Majeed, Kattan and Salman
(1990) [25] built on the previous model by additionaly utilizing an exponential relationship on GOR.
Orbey and Sandler (1993) [26] correlated a model using Barus’ equation, however, unlike previous
researchers, they correlated different exponent values for paraffinic, naphthenic and aromatic hydro-
carbons. De Ghetto, Paone and Villa (1994) [27] evaluated thousands of measurements, by splitting
their data into four classes, based on API gravity and correlating equations, and modified existing
models that performed best. Almehaideb (1997) [28] generated a model similar to that of Vazquez and
Beggs on data points from UAE reservoirs and claimed an imporved performance due to the inclusion
of GOR. Elsharkawy and Alikhan (1999) [29] developed models based on Middle Eastern data points
which are linear in ∆P and polynomial on dead oil viscosity, bubble point viscosity and bubble point
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pressure. More recently, , Dindoruk and Christman (2004) [30] generated a model linear in ∆P with
the slope depending exponentially in ∆P as well. Hossain (2005) [31] used a dataset of heavy oils to
modify Beal’s equation.

The detailed formulas of the correlations discussed are presented in Table 1. Those methods have
been thoroughly reviewed and the comparison of their performance against the dataset utilized in this
work has been carried out in [5]. It is recommended that the reader goes through this reference for a
more comprehensive and quantitative review of the correlation-based methods and to compare against
the data-driven models presented in this paper.
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Table 1: Correlations to predict µob

Beal
(1946)

µo = µob + 10−5 ·
(P − Pb)

(
2.4 · µ1.6

ob + 3.8 · µ0.56
ob

) Kouzel
(1965)

µo = µob · exp(α(P − Pb))
α = 5.50318 · 10−5 + 3.77163 · 10−5µ0.278

ob

Vazquez
and Beggs
(1976)

µo = µob

(
P
Pb

)m

m = C1 · PC2 · exp(C3 + C4P )
C1 = 2.6, C2 = 1.187, C3 = −11.513,
C4 = −8.98 · 10−5

Labedi
(1982
Libya)

µo = µob+
10−2.488 · µ0.9036

od · P 0.6151
b

100.01976·γAPI
(P/Pb−

1)

Labedi
(1982 Nige-
ria)

µo = µob + 0.0483 · µ0.7374
od (P/Pb − 1) Khan

(1987)
µo = µob · exp (9.6 · 10−5 (P − Pb))

Al-Khafaji
(1987)

µo = µob + 10F

F = −0.3806 − 0.1845 · γAPI +
0.004034 · γ2API − 3.716 · 10−5 · γ3API +
1.11 log10(0.07031(P − Pb))

Abdul-
Majeed
(1990)

µo = µob +
10G−5.2106+1.11·log10(6.894757(P−Pb))

G = 1.9311 − 0.89941 ln(Rs) − 0.001194 ·
γ2API + 9.2545 · 10−3 · γAPI · ln(Rs)

Petrosky
(1990)

µo = µob + 1.3449 · 10−3(P − Pb) · 10X2

X1 = log10(µob)
X2 = −1.0146+1.3322 ·X1− 0.4876 ·X2

1 −
1.15036 ·X3

1

Kartoatmodjo
and
Schmidt
(1991)

µo = 1.00081µob + 1.127 · 10−3 · (P − Pb) ·(
−6.517 · 10−3 · µ1.8148

ob + 0.038 · µ1.59
ob

)

Orbey and
Sandler
(1993)

µo = µob · exp(α(P − Pb))

• Parriffinic hydrocarbons

α = 6.76 · 10−5

• Akylbenzes and cyclic hydrocarbons

α = 7.24 · 10−5

• Average

α = 6.89 · 10−5

De Ghetto
(1994)

Extra heavy oil
γAPI ≤ 10:
µo = µob + 10−2.19 · µ1.055

od ·
P 0.3132
b /100.0099·γAPI · (P/Pb − 1)

Heavy oil 10 ≤ γAPI ≤ 22.3 :
µo = −0.9886µob + 2.763 · 10−3 · (P −
Pb)

(
−11.53 · 10−3 · µ1.7933

ob + 0.0316 · µ1.5939
ob

)
Medium oil 22.3 ≤ γAPI ≤ 31.1:
µo = µob + 10−3.8055 · µ1.4131

od ·
P 0.6957
b /100.00288·γAPI · (P/Pb − 1)

Agip:
µo = µob + 10−1.9 · µ0.7423

od ·
P 0.5026
b /100.0243·γAPI · (P/Pb − 1)

Kouzel API
modified
(1997)

α = −2.34864 · 10−5 + 9.30705 · 10−5µ0.181
ob Almehaideb

(1997)
µo = µob

(
P
Pb

)m

m = 0.134819+1.94345 ·10−4 ·Rs−1.93106 ·
10−9 ·R2

s

Elsharkawy
and
Alikhan
(1999)

µo = µob +
10−2.0771(P − Pb)µ

1.19279
od

µ0.40712
ob P 0.7941

b

Dindoruk
and Christ-
man
(2004)

µo = µob + α6(P − Pb)10
A

A = α1 + a2 log10 µob + α3 log10Rs +
α4µob log10Rs + α5(P − Pb)
α1 = 0.776644115, α2 = 0.987658646, α3 =
−0.190564677, α4 = 0.009147711, α5 =
−0.000019111, α6 = 0.00006334

Hossain
(2005)

µo = µob + 0.004481(P − Pb) ·(
0.555955µ1.068099

ob − 0.527737µ1.063547
ob

)
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3 Dataset Quality Control (Q/C) and variables selection

To initiate the development of the data-driven models, viscosity measurements were collected
from a variety of sources, including published literature and in-house measurements. The
dataset comprised of approximately 500 fluids with varying characteristics, ranging from very
light oils to heavy ones, originating from various locations around the world.

During the dataset quality control procedure, no fluid curves with an inconsistent viscos-
ity shape versus pressure (i.e., non-increasing) were identified, as all data points for each fluid
were continuous and smooth. Among the entire dataset, 89% of the fluids had a bubble point
viscosity value of less than 10 cp, 7.8% ranged between 10 and 50 cp and only 3.2% had a
value greater than 50 cp (up to 1,760 cp). As very high viscosity oils tend to behave entirely
differently from regular oils, such datasets were removed to avoid introducing bias into the
models.

While running the Q/C process, only a handful of temperature, GOR and API values were
found to be missing and subsequently, fluids with incomplete measurements were entirely
removed from the dataset. However, the unavailability of dead oil viscosity values (i.e.,
µo @ Patm, Tres) for most of the fluids’ PVT reports was severe as this measurement is of-
ten skipped in a PVT study. To provide such critical information to the ML models, it
was decided to introduce reservoir temperature as a substitute. This is justified by the fact
that temperature is a correlating variable in every dead oil viscosity correlation explored,
in conjunction to other inputs already considered (such as API gravity), including the most
commonly used one by Beggs and Robinson [32]:

µod = 10x − 1

x = 103.0324−0.02023·API · T−1.163

The range spanned by the Q/C’ed dataset’s undersaturated fluids properties is given in Table
2 and their distribution is further illustrated in the histograms in Figure 1 where the vertical
axis corresponds to the percentage of each values bin.

Table 2: Database fluid properties range

Parameter Minimum Maximum

µob (cp) 0.04 48
µo (cp) 0.04 100

GOR (scf/stb) 0 17, 118
API 14 57

T (◦F ) 87 376
Pb (psi) 36 7, 303
P (psi) 36 12, 750

Based on the distribution of Pb values in Figure 1, the utilized fluid database contains
reservoir fluids with saturation pressures ranging from less than 100 psi to as high as 7,300
psi, reflecting the dataset’s fluid types variability. The fluids’ volatility, as represented by
their GOR, ranges from almost zero for fluids dominated by their heavy end fraction to as
high as 17,000 scf/stb for near-critical, highly volatile oils. Similarly, the API gravity values of
the fluids range from 14 to 50+. Furthermore, the reservoir temperature, which significantly
influences viscosity, varies widely from less than 100◦F to over 350◦F .
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Figure 1: Fluid properties values’ probability (in blue) and cumulative histograms (in red)

To facilitate its study, the dataset was further split into four groups based on the bubble-
point viscosity value, as depicted in Figure 2. The first and second ranges (0-1 cp and 1-5
cp) can be classified as low to moderately viscous fluids, while the third and fourth ones
(5-20 cp and 20-50 cp) correspond to highly viscous fluids that are more difficult to flow.
The number of fluids within each range is presented in the histogram at the bottom of the
Figure. The box plots above demonstrate the distribution of each input in each range, with
the red line signifying the average value and the edges of the box representing the 25th and
75th percentiles. The whiskers extending beyond the box denote the minimum and maximum
values of each property. As anticipated, when the bubble-point viscosity increases, API, GOR,
Pb and temperature decrease. The interquartile ranges may sometimes be high, but this is
a common occurrence when dealing with PVT values in real-world reservoir oil datasets of
global origin and various types. The variation in these properties reduces in the high viscosity
ranges, although this might be partially attributed to the smaller number of samples in those
ranges.
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Figure 2: Fluid properties values box plots for four viscosity value ranges

For the ML models input, a fair selection process was used to choose the most appropri-
ate properties out of all available ones. Pressure, GOR, API gravity and temperature were
the properties selected as inputs to the models. Bubble point density, heavy end proper-
ties, molecular weight and composition were deliberately left out, while dead oil viscosity’s
contribution was introduced indirectly, as explained before. The reason for excluding these
properties is twofold. Firstly, composition and heavy end properties are typically obtained
from the compositional analysis as part of a full PVT report for which, it is customary that
the field operator has already asked for several undersaturated oil viscosity measurements
thus relieving the need for estimations by means of numerical models. Therefore, including
detailed information like composition could improve the data-driven models accuracy, but this
would provide no added value to the PVT information. This brings up the second reason
for the exclusion of those properties, which is comparative fairness. One goal of this research
is to demonstrate the ability of ML techniques to automatically capture underlying relations
between the input variables and the predicted output, considering the same inputs utilized in
the correlation-based models. The latter are usually the result of a researcher’s insight when
spotting 2 or 3 dimensional patterns in the dataset and applying regression analysis. In this
work we investigate whether ML methods are as capable or even better in performing this
task using automated, straightforward workflows.

For the ML models output, to avoid introducing bias to the model training process due to
the varying number of pressure steps between Pb and Pi per fluid (which is defined arbitrarily
by the PVT lab client) the available measurements were interpolated with fluid-specific first
order rational functions of pressure. Subsequently, each function was resampled at a fixed
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number of pressure values, equally spaced between Pb and Pi, as shown in Figure 3.

Figure 3: Example of experimental data resampling by means of interpolation (green line)

The Q/C workflow described in this section, entailed tasks that lie within the domain of
reservoir engineering expertise. It has involved choosing appropriate input variables, identi-
fying and removing questionable datasets and resampling the output data, all of which align
with the methodology employed manually by reservoir engineers. Subsequently, data science-
specific techniques will be utilized to further refine the analysis.

4 Development of the ML models

Feature engineering was applied to identify the appropriate combination and form of variables
to be introduced in the algorithms’ training. Rather than predicting oil viscosity directly, it
was decided to train the models to predict the ratio of viscosity to its bubble point value,
thereby avoiding problems that arise when the target values span over several orders of mag-
nitude. Various non-linear transformations were carried out to each input to maximize the
Pearson’s correlation coefficient (discussed in detail below) with the target variable and form
the original feature set. Furthermore, the selected features were combined polynomially up to
quadratic terms to obtain the augmented feature set, in which the total number of features
is n(n+ 3)/2 where n is the number of features. This policy is quite common when building
ML models so as to transfer part of the model function complexity from the model itself to
the input, thus simplifying the learning process and improving the chances to build accurate
predictive models with enhanced generalization capabilities [33]. Regression algorithms were
then applied both to the original feature set and the augmented one.

Conventional correlations involving many parameters usually suffer from overfitting as shown
in [5] especially when they exhibit high locality, thus downgrading their generalization capa-
bility against unseen datasets, such as the ones utilized in this work. On the other hand,
ML methods are much more competent in capturing patterns and generating models with
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many input parameters, but they also tend to overfit. To avoid overfitting, this study followed
a methodical approach of selecting the best models by not only considering their out-of-
sample (data it was not trained on) performance, but also requiring small variance between
out-of-sample and in-sample (data it was trained on) performance. Furthermore, the diverse
sources of the dataset benefit the generalization capabilities of trained models since they don’t
risk overfitting due to the high locality of the data as seen in correlation-based methods [5].
Notable ML techniques, popular in the ML community were applied and optimized. The
selected methods are only briefly presented below and the interested reader may refer to
various sources for detailed information on their development, operation and efficiency (for
example [34], [35], [36], [37], [38], [39], [40], [41], [42])

4.1 Linear and polynomial regression with regularization

Linear regression aims at fitting a linear in its coefficients wi and in its features xi model of
the form µ̂o =

∑
iwixi to minimize the sum of squared residuals between the observed targets

µo and those predicted by the linear model µ̂o. The optimal wi values minimizing the data fit
error, are obtained by a closed-form solution known as the normal equation [34]. Furthermore,
various modifications can be used to introduce regularization and to avoid overfitting. Ridge
Regression [40] adds a regularization term to the cost function, which corresponds to the sum
of the squares of the coefficients

∑
iw

2
i . This penalty term forces the model to not only fit the

data but also keep the coefficients as small as possible, thus reducing the risk of overfitting.
Lasso Regression [41], on the other hand, uses a regularization term that corresponds to
the sum of the absolute values of the coefficients

∑
i |wi| i.e., their first power rather than the

second one. This method is particularly useful when dealing with high-dimensional input data,
as it can perform feature selection and force specific coefficients to zero, effectively removing
them from the model input. The Lasso cost function destroys the closed form solution of the
optimal wi values and the neeed of an iterative optimization method called Stochastic Gradient
Descent [42] arises. The Elastic Net technique is a combination of Ridge and Lasso regression
that introduces weighted versions of both regularization terms to the error function. It can
balance between the two methods and appears to be very effective when multiple features,
highly correlated to each other are used.

4.2 Support Vector Regression (SVR)

Unlike traditional regression algorithms which try to minimize the error between the predicted
and actual values, Support Vector Regression (SVR) [43] aims to find a hyperplane (i.e., a
linear model) which exhibits the maximum possible margin, defined as the distance between
the hyperplane and its closest data points, also known as support vectors. This task translates
to the minimization of the model weights, therefore it acts as a regularization term. The
regression task is accomplished by requiring that the data points beyond the margin lie as
close as possible to the hyperplane. However, unlike regular linear modelling, their distance
is penalized linearly and only beyond an “ϵ-insensitive tube” which inscribes the hyperplane.
This way, SVR ignores points close to the hyperplane while paying (linear) attention only
to the ones lying farther. The SVR training maps into a constrained quadratic optimization
problem that involves minimizing the error subject to a set of inequality constraints. Non-
linear relationships can be handled by transforming the input data into a higher-dimensional
space using kernel functions which map the original input data into a new feature space
where the data may become linearly separable [44]. Kernel functions such as the linear, the
polynomial and the radial basis function (RBF) are the most commonly used [33].
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4.3 Ensemble methods

Ensemble learning methods [38] are powerful techniques in ML which leverage the strengths
of multiple individual models to achieve better predictive performance. By combining the
predictions of several base models, ensemble methods can often achieve superior results com-
pared to a single model alone. The main idea is to exploit the diversity among the base models
to reduce overfitting, improve generalization and to increase the model’s robustness. Three
popular ensemble methods are Random Forest, Gradient Boosting and Adaptive Boosting or
AdaBoost. Random Forests (RF) [45] is an ensemble method based on Decision Tree (DT) [46]
models. It constructs multiple small size DTs during training and combines their predictions
by averaging the output. The trees are typically shallow with just a few layers, which renders
them as weak learners. The key to RF’s success lies in its ability to create diverse trees by
using a random subset of features and bootstrapped samples (sampling with replacement) for
each tree. This randomness ensures that the trees are uncorrelated, which helps to reduce the
overall variance and improve the generalization capability of the model.

Gradient Boosting (GB) [47] is another ensemble method that builds small size DTs sequen-
tially. Unlike RF, each tree focuses on correcting the residual errors of the previous tree rather
than promoting diversity through randomness. At each iteration, a new DT is fitted to the
residual errors of the current ensemble and its output is added to the existing prediction. Just
as in the case of Random Forests, the trees are shallow and considered weak learners. The
final prediction is a weighted sum of the weak learners, where the weights are determined
by a learning rate and the improvement in the loss function. GB is particularly powerful in
handling complex data and often outperforms other algorithms, but it can be more prone to
overfitting if not properly tuned.

Adaptive boosting (AB) [48] is an ensemble method that also trains weak learners sequen-
tially, but with a different approach to weighting and resampling the training data. In each
iteration, AB assigns a weight to each training example based on the previous weak learner’s
performance. Badly predicted examples receive higher weights, which encourages the next
weak learner to focus on the harder to learn examples. The weak learners are then combined
into a final prediction using a weighted majority vote, where the weights are determined by
the weak learner’s accuracy. This adaptive process helps AB to focus on the most challenging
parts of the data and improve the overall performance.

Voting regression [49] is a ML technique that combines the predictions of multiple regres-
sion models to make a final prediction. Each individual model predicts a numeric value and
the final prediction is obtained by averaging the predictions of all the models. This technique
is used in many popular algorithms such as RFs. Generally it is used in ensemble learning to
improve the accuracy and robustness of the prediction. The individual models used in voting
regression can be of different types and may use different algorithms or hyperparameters.

In summary, ensemble methods such as RF, GB and AB are powerful techniques that can
achieve strong predictive performance by combining multiple models and exploiting their di-
versity. They have been shown to perform well in a variety of regression tasks, particularly with
complex data. However, it is essential to understand the underlying principles and strengths
of each method, as well as the importance of proper hyperparameter tuning, to achieve best
results.
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4.4 Neural Networks

Neural Networks (NN) [37] consist of multiple interconnected layers of nodes, where each node
applies a non linear transformation to the input received before passing the result to the next
layer, thus bringing in mind the way the human brain operates. NNs are trained using a
technique called backpropagation, which adjusts the weights of the connections between lay-
ers based on the difference between the predicted output and the actual output. This process
is repeated over a large number of epochs, which is the number of times the algorithm goes
through the entire training dataset, corresponding to the iterations of a minimization process.
The number of layers, nodes and other parameters of the neural network, known as hyperpa-
rameters, can be adjusted to optimize its performance on the specific task.

In this work, the popular Scikit-learn [50] and Tensorflow Keras [51] libraries were utilized to
implement the algorithms [36]. The objective was to determine the models’ optimal param-
eters along with the hyperparameter values, for each regression algorithm while preventing
overfitting. The dataset was split into ten folds of equal size, followed by resampling, for
training and testing purposes. It was crucial for practical purposes to ensure that all pressure
points belonging to a certain fluid remained in the same fold. The 10-fold cross-validation
procedure was used on those folds with the help of a grid search library to select the best
hyperparameters for each model [52].

For every set of hyperparameters considered, the regression models were trained 10 times
using a different fold as the test set in each iteration. The subsequent section presents the
results derived from out-of-sample evaluations. These evaluations assessed the models using
all available data, with the reported outcomes originating exclusively from their out-of-sample
performance.

5 Results and Discussion

The evaluation and comparison of the generated models’ performance is discussed in this
Section and results are presented according to the range split defined in Section 3. The
typical metrics utilized in the evaluation process are the Average Relative Error (ARE) as a
measure of bias and Absolute Average Relative Error (AARE) as a measure of variance, both
defined on a percentage basis as follows:

ARE % = 100 · e = 100

N

N∑
i=1

ei =
100

N

N∑
i=1

(µ̂o)i − (µo)i
(µo)i

AARE % = 100 · |e| = 100

N

N∑
i=1

|ei| =
100

N

N∑
i=1

∣∣∣∣(µ̂o)i − (µo)i
(µo)i

∣∣∣∣
where µ̂o is the predicted viscosity value and µo is the lab measured target value, N is the
number of data points considered and ei is the prediction error on every point. The bar
operator denotes the average value. To evaluate how widely ARE and AARE values are
distributed around their means, their standard deviation, SDRE and SDARE respectively
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defined by

SDRE % = σe =

√∑N
i=1 (ei − e)2

N − 1

SDARE % = σ|e| =

√√√√∑N
i=1

(
|ei| − |e|

)2

N − 1

is provided as well. Lastly, Pearson’s correlation coefficient (R2) is used as a metric of the
match between measured and predicted viscosity values, which however considers only error
variance, not their bias, defined by

R2
X,Y =

(µo − µo)(µ̂o − µ̂o)

σµoσµ̂o

where σµo =

√∑N
i=1 ((µo)i − µo)

2

N − 1
, σµ̂o =

√∑N
i=1

(
(µ̂o)i − µ̂o

)2
N − 1

The full set of all five metrics values is given in Appendix A, Tables 5, 6, 7, 8 for the four
distinct viscosity values ranges discussed above, following the policy of similar publications [4].
In Appendix B, the measured viscosity values are shown in parity plots vs the model predicted
ones in Figures 8, 9, 10.

To enhance readability and to facilitate straightforward model comparison, the results are
split in three distinct groups. Group 1 was selected to allow the side by side comparison of
the performance of the most popular ML techniques on the original features set. It contains
the hyperparameter optimized models of an SVM, four Ensembles and a Neural Network.
Group 2 was formed to evaluate the linear in the weights models alongside regularization
techniques on the augmented feature set and contains 4 models. Finally, Group 3 shares same
models as in Group 1, this time utilizing the augmented feature set. All three Groups along
with their models are presented in Table 3. Table 4 illustrates the settings and optimized
hyperparameters values selected.
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Table 3: Grouping of models

Group Model Model type

Group 1 - Non linear mod-
els

Model 1.1 SVR

(original feature set) Model 1.2 Random Forest
Model 1.3 Gradient Boosting with Deci-

sion Trees
Model 1.4 Neural Network
Model 1.5 Adaptive Boosting with Deci-

sion Trees
Model 1.6 Voting with Random Forest and

SVR

Group 2 - Linear models Model 2.1 SGD with Elastic Net
(augmented feature set) Model 2.2 Ridge regularized

Model 2.3 Lasso regularized
Model 2.4 Elastic net regularized

Group 3 - Non linear mod-
els

Model 3.1 SVR

(augmented feature set) Model 3.2 Random Forest
Model 3.3 Gradient Boosting with Deci-

sion Trees
Model 3.4 Neural Network
Model 3.5 Adaptive Boosting with Deci-

sion Trees
Model 3.6 Voting with Random Forest and

SVR
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Table 4: Model hyperparameter selection

Model Hyperparameters selected

Model 1.1 {’C’: 0.1, ’epsilon’: 0.01, ’kernel’: ’rbf’}
Model 1.2 {’criterion’: ’friedman mse’, ’max depth’: 6, ’estimators’: 200}
Model 1.3 {’Base estimator’: ’Decision Tree’, ’learning rate’: 0.01, ’max

depth’: 6, ’estimators’: 500, ’subsample’: 1}
Model 1.4 {’activation’: ’relu’, ’batch size’: 64, ’epochs’: 10, ’layers’: 1,

’neurons’: 64,’optimizer’: ’adam’}
Model 1.5 {Base estimator’: ’Decision Tree’, ’learning rate’: 0.01, ’loss’:

’exponential’, ’estimators’: 100}
Model 1.6 {’Base estimator 1’: ’Random Forest’, ’Base estimator 2’: ’SVR’

}
Model 2.1 {’alpha’: 0.001, ’learning rate’: ’constant’, ’loss’: ’huber’,

’penalty’: ’elastic net’}
Model 2.2 {’alpha’: 1.0, ’solver’: ’cholesky’}
Model 2.3 {’alpha’: 1e-05, ’selection’: ’cyclic’}
Model 2.4 {’alpha’: 0.0001, ’l1 ratio’: 0.7, ’selection’: ’cyclic’}
Model 3.1 {’C’: 1.0, ’epsilon’: 0.001, ’kernel’: ’rbf’}
Model 3.2 {’criterion’: ’squared error’, ’max depth’: 6, ’estimators’: 100}
Model 3.3 {Base estimator’: ’Decision Tree’, ’learning rate’: 0.01, ’max

depth’: 3, ’estimators’: 300, ’subsample’: 1}
Model 3.4 {’activation’: ’relu’, ’batch size’: 64, ’epochs’: 10, ’layers’: 1,

’neurons’: 64,’optimizer’: ’adam’}
Model 3.5 {Base estimator’: ’Decision Tree’, ’learning rate’: 0.01, ’loss’:

’exponential’, ’estimators’: 100}
Model 3.6 {’estimator 1’: ’Random Forest’, ’estimator 2’: ’SVR’ }

The visual representation of the results is given in Figures 4 to 7 where the average relative
error (ARE) and the average absolute relative error (AARE) are plotted for each model, as
well as for each viscosity value range. This allows the evaluation of how well the ML models
perform on different types of oil. To facilitate the comparison, the data series illustrating the
performance of each model in the group are slightly shifted to the right to avoid overlapping.
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Figure 4: Evaluation of the models in Group 1

Across all four viscosity value ranges in Group 1, Model 1.1 (SVR) systematically underes-
timates viscosity by 1% on average whereas, Model 1.4 (ANN) appears to be the least biased
among the six models in the group, barely surpassing 0.2% at the last viscosity range. En-
semble models exhibit a slight increase in bias when tested against heavier fluids, with the
most pronounced case being that of Model 1.5 (AB/DT) which exceeds 3% in the last range,
except Model 1.3 (GB/DT), which remains unbiased throughout the tested ranges. As far as
the AARE performance is concerned, the reducing number of high viscosity data combined to
the increasing span of the high viscosity range explains the poor performance of all six models
against very viscous fluids. Side by side comparison of the first (light) and last (heavy) fluid
ranges indicates an AARE increase of more than 3%. Similar behavior had been observed
when this dataset was used for the evaluation of correlation-based models [5].

The results of the linear in the weights models in Group 2 are presented in Figure 5. Model 2.1
(SGD/EN) demonstrates enhanced capability to avoid bias when tested against volatile oils,
however, the other methods outperform it when it comes to heavy oils (around 2% for Models
2.2, 2.3 and 2.4 vs 4% for Model 2.1). Models 2.2 (Ridge) and 2.3 (Lasso) exhibit similar
performance, therefore this is also observed with Model 2.4 (Elastic Net), which is a linear
combination of the two. When it comes to variance however, AARE values for all four models
vary between 4% for the first range and more than 7% in the last one. Clearly, limiting the
models to be linear in the weights, drastically reduces their ability to adapt to the irregular
highly viscous data points of the dataset, thus ending up with significantly worse statistics in
the low volatility range, compared to the models in Group 1.
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Figure 5: Evaluation of the models in Group 2

For Group 3 (Figure 6), model 3.4 (NN) once again outperforms in terms of bias, this time
however it is closely matched by 3.6 (Vote/RF/SVR), both of them not getting over 0.5% for
all four ranges. Overall, in terms of variance, the voting model is clearly the best performer of
the group in each range, with Model 3.3 (GB/DT) standing out as the less optimal choice with
an AARE value close to 5% even at the first range. Models in Group 3, do not outperform
those in Group 1 despite the utilization of the augmented feature set on the same models.
This must be attributed to the fact that although no new information was introduced to
the input by combining the features polynomially, their possibly increased correlation to the
output had already been identified by the models training in Group 1. Notably, the majority
of the ensemble methods and neural networks used in this study are unbiased, while the
support vector machines tend to underestimate their predictions as shown in the performance
of models 1.1 and 3.1.
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Figure 6: Evaluation of the models in Group 3

Radar charts depicting all correlations AARE have been generated in Figure 7, to enable
a more concise comparison of all models. It is worth noting that despite the significant differ-
ences in the structure and logic of the tested algorithms, the results are remarkably similar in
terms of AARE, except Model 3.3 (GB/DT) which underperforms in the medium volatility oil
range as well. The similarity in the results among the tested algorithms could be attributed
to the feature transformation process. This process was designed to create features that are
highly correlated with the transformed output, which in turn has led to a regularization of
the models. Although this regularization helped in achieving optimal results, it may have also
limited the ability of the models to capture more complex relationships present in the data.

The scatter (parity) plots constitute a graphical error analysis method. Every point’s co-
ordinates in this plot are its experimentally measured value on the horizontal axis and its
predicted value on the vertical one. Correlations can be compared on parity plots based on
how points are concentrated close to the diagonal. Parity plots to demonstrate the perfor-
mance of each method are given in Figures 8, 9, 10. The clustering order is followed as in the
previous sections. Due to the very wide range of the bubble point viscosity values, the axes are
plotted in logarithmic scale. There seem to be some fluids in the µob range of (0.01-0.1) that
are severely underestimated by many of the models, even the best performing ones. On one
hand this can be attributed to the logarithmic scaling of the axes which enhances errors in such
values scale, but on the other this range is not within the design area of any of the correlations.

The presented results provide a clear understanding of the benefit of using ML methods to
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predict the viscosity of oils, as well as their limitations. The large amount of data available
for high and medium volatility oils enables the models to achieve high accuracy in that range.
However, for heavy oils, some manually developed correlations in the literature exhibit similar
behavior or even perform slightly better than the models generated in this study, as expected
when data-driven models with no physics guidance are trained on limited data. In the present
case, the learner’s training is dominated by the low viscosity data points, thus putting less
attention to the highly viscous fluids due to their reduced contribution to the error function.
This is further demonstrated by the similarity of the AARE plots in all three groups which
share various models and features but same training dataset. Nevertheless, the results also
demonstrate that some of the algorithms used, combined with feature transformation tech-
niques, can bridge this performance gap to some extent.

Apart from the methods examined in this work, additional techniques mostly based on the
generation of synthetic data to densify the sparsely populated areas, may also be used to im-
prove the lack of uniformity in the dataset [53]. New datapoints can be generated by sampling
from the estimated probability density function of the sparse data only. As it is risky, due to
the increased dimensionality of the input space, it has to be applied with caution. Alterna-
tively, the Synthetic Minority Oversampling with Gaussian Noise (SMOGN) [54] method can
be utilized which provides new datapoints by interpolating between pairs of close points in
the poorly populated areas. The very wide viscosity range in those areas renders difficult the
task of applying that method without risking the introduction of bias to the enhanced dataset,
hence to the developed models. Additionally, synthetic data generation in the undersaturated
viscosity context, can be risky, due to the high lab error associated with very viscous fluids.
Nevertheless, an engineer could choose any of the methods presented in this study to train
a model and it would still perform reasonably well, unlike most of the literature correlations
which have limited only applicability.
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Figure 7: AARE radar charts of all three groups

6 Conclusions

This study presents a comprehensive workflow for a complete ML project aiming at predicting
the viscosity of undersaturated oil, followed by a comparison process to ensure that the mod-
els were appropriately built and evaluated. Two distinct yet equally important aspects were
combined in this study. The first one requires that the expertise of the research team in the
field of reservoir and fluid engineering must be recruited, enabling thus critical decisions to be
taken. These include the identification of irregular, noisy or problematic data, the selection
of related variables from a large set of candidates, the transformation of features and target
variables and the appropriate data splitting for training and testing to ensure the integrity of
the model training process.

The second aspect involves typical data engineering practices, sometimes called ”blind”, as
they are not taylored to the specific nature of the modeling problem under study. Feature se-
lection and transformation were optimized, the data was scaled and polynomial features were
created. Standard data engineering processes were followed and algorithms were carefully
selected and tested against a range of hyperparameters to obtain the best possible versions
of the selected methods. All in all, the workflow followed is considered a balanced practice
regarding both approaches.

Apart from simply building ML models to provide undersaturated oil viscosity trained against
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a new dataset, the results of this study demonstrate the effectiveness of combining the two
approaches. Deep fluid engineering knowledge needs to be combined to generic-purpose ML
models building libraries by incorporating all physical evidence into the developed models.
The comparison process used in the study revealed that the tested algorithms produced sim-
ilar results with only a few exceptions. This suggests that the comprehensive workflow and
careful selection of variables, feature transformation and algorithm optimization were success-
ful in producing models that can generalize well to new data. Although we are living in an era
where ML is part of everyday life, ML should not be used in a black box fashion. Transparency
and interpretability are critical for understanding how ML models make predictions, identify-
ing potential biases or errors and gaining insights into the underlying data and processes.
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Table 5: Detailed metrics values for all models (µob = 0-1 cp).

Model ARE % SDRE % AARE % SDARE % R2

Model 1.1 -0.502 5.363 3.255 4.291 0.993
Model 1.2 0.155 5.486 3.388 4.317 0.993
Model 1.3 0.434 5.255 3.347 4.075 0.993
Model 1.4 0.100 5.019 3.140 3.916 0.993
Model 1.5 0.259 5.774 3.657 4.476 0.993
Model 1.6 -0.176 5.401 3.294 4.283 0.993

Model 2.1 -0.105 5.738 3.639 4.437 0.993
Model 2.2 0.208 5.461 3.543 4.160 0.993
Model 2.3 0.222 5.441 3.532 4.145 0.993
Model 2.4 0.233 5.521 3.529 4.252 0.993

Model 3.1 -0.451 5.591 3.258 4.566 0.992
Model 3.2 0.193 5.523 3.422 4.340 0.993
Model 3.3 2.162 5.763 4.578 4.115 0.993
Model 3.4 0.403 5.697 3.533 4.487 0.992
Model 3.5 0.271 5.753 3.640 4.463 0.993
Model 3.6 -0.142 5.447 3.268 4.360 0.993

Table 6: Detailed metrics values for all models (µob = 1-5 cp).

Model ARE % SDRE % AARE % SDARE % R2

Model 1.1 -0.375 5.484 3.508 4.230 0.982
Model 1.2 0.564 5.618 3.691 4.272 0.982
Model 1.3 0.662 5.606 3.695 4.267 0.981
Model 1.4 0.178 5.558 3.721 4.132 0.983
Model 1.5 1.096 5.876 3.969 4.468 0.982
Model 1.6 0.094 5.484 3.555 4.176 0.982

Model 2.1 0.122 5.501 3.613 4.150 0.982
Model 2.2 0.709 6.016 3.933 4.607 0.981
Model 2.3 0.729 5.900 3.840 4.537 0.981
Model 2.4 0.689 5.709 3.787 4.327 0.981

Model 3.1 -0.555 5.738 3.632 4.476 0.982
Model 3.2 0.671 5.652 3.736 4.293 0.982
Model 3.3 2.770 5.696 4.779 4.155 0.982
Model 3.4 0.558 5.844 3.905 4.383 0.982
Model 3.5 1.059 5.742 3.928 4.320 0.982
Model 3.6 0.044 5.515 3.561 4.210 0.983
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Table 7: Detailed metrics values for all models (µob = 5-20 cp).

Model ARE % SDRE % AARE % SDARE % R2

Model 1.1 -1.375 5.894 3.985 4.554 0.988
Model 1.2 -0.375 6.392 4.269 4.771 0.987
Model 1.3 -0.115 6.441 4.280 4.813 0.986
Model 1.4 0.032 6.665 4.595 4.827 0.986
Model 1.5 -0.425 6.280 4.383 4.515 0.987
Model 1.6 -0.897 6.002 4.025 4.540 0.988

Model 2.1 -1.725 6.482 4.540 4.937 0.984
Model 2.2 -0.209 6.855 4.599 5.086 0.986
Model 2.3 -0.290 6.563 4.570 4.718 0.986
Model 2.4 -0.308 6.549 4.509 4.759 0.986

Model 3.1 -0.976 7.004 4.311 5.604 0.985
Model 3.2 -0.259 6.430 4.311 4.776 0.987
Model 3.3 1.005 6.306 4.772 4.241 0.988
Model 3.4 -0.046 6.469 4.520 4.627 0.986
Model 3.5 -0.527 6.263 4.382 4.504 0.987
Model 3.6 -0.661 6.505 4.138 5.062 0.987

Table 8: Detailed metrics values for all models (µob = 20-50 cp).

Model ARE % SDRE % AARE % SDARE % R2

Model 1.1 -0.914 8.650 5.764 6.508 0.956
Model 1.2 -1.406 8.243 6.012 5.804 0.961
Model 1.3 0.156 9.154 6.146 6.779 0.955
Model 1.4 -0.239 8.228 5.587 6.040 0.961
Model 1.5 -3.057 8.247 6.440 5.985 0.960
Model 1.6 -1.181 8.186 5.758 5.931 0.960

Model 2.1 -4.678 10.755 7.805 8.749 0.913
Model 2.2 -2.125 10.709 7.507 7.919 0.928
Model 2.3 -2.379 10.156 7.307 7.436 0.936
Model 2.4 -2.164 10.261 7.086 7.723 0.936

Model 3.1 0.537 10.522 6.984 7.881 0.929
Model 3.2 -0.906 9.949 6.832 7.282 0.949
Model 3.3 -1.888 8.812 6.548 6.184 0.957
Model 3.4 0.430 11.631 7.404 8.973 0.929
Model 3.5 -3.478 7.938 6.475 5.754 0.960
Model 3.6 -0.226 9.482 6.432 6.963 0.945
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Figure 8: Parity plots of models in Group 1
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Figure 9: Parity plots of models in Group 2
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Figure 10: Parity plots of models in Group 3
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