An Operating Room Germicidal Air Decontamination Technology Does Not Interfere with Return Air Ducts

Gregory T. Carroll*, David L. Kirschman
Aerobiotix, Inc., Scientific Affairs, 444 Alexandersville Road, Miamisburg, OH 45342
*gcarroll@aerobiotix.com

Introduction

The dynamic nature of operating room (OR) environments leads to air contamination from various events that lead to changes in the physical, chemical and biological conditions of the enclosed occupational space. Operating rooms (ORs) have HEPA filtered, unidirectional airflow that is emitted from central overhead vents and is a preventative measure that inhibits surgical site infections. Return air ducts remove the air in the room as fresh air is constantly replenished. Understanding various factors that can potentially affect airflow in the OR environment is an ongoing topic of interest. Improving air quality in ORs requires the adoption of new technologies. Some medical devices recirculate air in local regions of the OR. A UV germicidal air cleaning device, manufactured under the name Illuvia®, has been garnering increasing interest as a potent tool in combating biological and chemical contamination in the operating room. Its demonstrated effectiveness includes the removal of SARS-CoV-2 bioaerosols. When interfaced with a catalytic foam, the device removes formaldehyde from the air. In order to gain a fuller understanding of the relationship between the Illuvia and airflow properties in an OR, we measured the airflow at the return air ducts in a simulated OR with the Illuvia on and off. We found no correlation between the airflow values at each air duct when the device was on or off, indicating that the air recirculation properties of the Illuvia do not interfere with the return airflow ducts.

Methods

Testing was performed with a 50 m³ simulated operating room containing a single entry/exit door that automatically closes. The room included a ceiling mounted 44 ft² array delivering unidirectional HEPA-filtered supply air and four lower wall mounted air return ducts. The system supplied 20 air exchanges per hour (ACH) and 0.03 in. H₂O (7.5 Pa) of positive pressure to the outside environment. The room was equipped with typical OR air flow obstructions including surgical lights, tables and medical equipment. The room also contained healthcare worker manikins. A diagram of the experimental set-up is shown in Figure 1. An Illuvia® air decontamination unit (Aerobiotix, Inc., Miamisburg, OH) was stationed in the corner of the OR, 16 inches from the wall on which duct 3 is mounted. A digital thermo anemometer (471B) (Dwyer, Michigan City, Indiana) was used for airflow measurements. The tip of the measuring probe was placed approximately 1 cm from the face of each return duct. The probe was clamped to a portable ring stand to maintain a steady position. Airflow values were averaged over a 30 s period. Airflow was measured for 1 minute and the final value was recorded. Measurements were performed...
with the Illuvia off and on. The Illuvia was switched on and off consecutively for each measurement. After taking a measurement with the Illuvia on, the Illuvia was then switched off and a new measurement was taken, after which it was turned on for the following measurement. This cycle was repeated so that 20 measurements were taken with the device off, and 20 measurements with the device on. This cycling procedure allows for direct comparison with the values immediately before and after. The difference between the on and off state was calculated for each cycle and averaged. For these calculations, the on value was subtracted from the prior off value. This procedure was performed for each of the four wall mounted return ducts. Airflow values were compared when the device was on and off. The overall average and standard deviation for each condition were calculated and compared.

Figure 1: The configuration of the simulated OR is shown. Downward unidirectional airflow delivers HEPA filtered air at the center of the room. Near each corner of the room are return air ducts. The
Illuvia® air decontamination unit, which takes in air and recirculates it back into the OR, is located near duct 3. The direction of airflow for the ducts and the Illuvia input and output are shown by a series of three arrows. Pictures of the set-up are shown including the position of the Illuvia near duct 3.

Results and Discussion

In order to understand if the Illuvia air recirculating device can interrupt return airflow in an OR environment, airflow readings were recorded in a simulated OR containing an Illuvia. The air cleaning system was positioned in the corner of the room as shown in Figure 1 near air return duct 3. Airflow readings were measured at each of the four return air ducts with the device on and off. Measurements were cycled between on and off states of the Illuvia as shown in Figure 2. The graph shows that the airflow values at the return ducts stay within a narrow range when the air recirculation device is on or off. Switching the device to either an on or off state does not result in significant changes in the measured airflow values, nor does it show a clear directional preference of increased or decreased airflow values. The results for each condition were averaged and compared as shown in Table 1. Duct 1 has an average (standard deviation) airflow of 1.09 (.01) m/s when the Illuvia is off and 1.09 (.01) m/s when the Illuvia is on. The average of the differences calculated for each on/off cycle is 0 (.02) m/s. Duct 2 has an average (standard deviation) airflow of 0.98 (.01) m/s when the Illuvia is off and 0.99 (.02) m/s when the Illuvia is on. The average of the differences calculated for each on/off cycle is 0.00 (.02) m/s. Duct 3 has an average (standard deviation) airflow of 1.01 (.01) m/s when the Illuvia is off and 1.02 (.01) m/s when the Illuvia is on. The average of the differences calculated for each on/off cycle is -.01 (.01) m/s. Duct 4 has an average (standard deviation) airflow of 1.02 (.01) m/s when the Illuvia is off and 1.02 (.02) m/s when the Illuvia is on. The average of the differences calculated for each on/off cycle is 0 (.02) m/s. The average on and off values for each air duct are essentially the same; the average values are either equivalent or within the standard deviation. The largest average difference is 0.01 m/s, which is equal to or less than the standard deviation and equal to the systemic instrumental uncertainty in the measurement, hence no significant difference can be deduced.
Figure 2: Each airflow measurement performed at each return duct is shown. Measurements were performed with the Illuvia® off (red data points) and on (green data points). 20 on/off cycles were performed at each duct. In all cases, the values for the airflow stay in a steady range. A consistent rise or drop corresponding to on and off states of the Illuvia® is not observed.

<table>
<thead>
<tr>
<th>Duct</th>
<th>Illuvia OFF (m/s)</th>
<th>Illuvia ON (m/s)</th>
<th>OFF/ON Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.09 (.01)</td>
<td>1.09 (.01)</td>
<td>0.00 (.02)</td>
</tr>
<tr>
<td>2</td>
<td>0.98 (.01)</td>
<td>0.99 (.02)</td>
<td>0.00 (.02)</td>
</tr>
<tr>
<td>3</td>
<td>1.01 (.01)</td>
<td>1.02 (.01)</td>
<td>-0.01 (.01)</td>
</tr>
<tr>
<td>4</td>
<td>1.02 (.01)</td>
<td>1.02 (.02)</td>
<td>0.00 (.02)</td>
</tr>
</tbody>
</table>

Table 1: For each of the four air ducts, the average (standard deviation) airflow value when the Illuvia® is on and off are shown. The average of the differences for each on/off cycle are also shown.
The Illuvia air cleaning device is stationed in the perimeter of the OR and delivers directed airflow at a rate of 450 cfm. It is of interest to examine whether portable airflow devices interfere with the efficiency of OR ventilation. The results show that there is no significant difference in the detected levels of airflow at each return duct when the Illuvia is on and off. This is expected as the Illuvia recirculates the air that it uptakes back into the room. Operation of the Illuvia does not change the pressure in the room. Entry of air into the Illuvia does not preclude entry of air into the air ducts. Additionally, the room is constantly supplied with fresh air coming from overhead vents in the center of the OR. Recirculation of the air in a localized region of the room does not impact the flow of air into the return duct. Note that the Illuvia was not stationed directly in front of an air duct, but was stationed near duct 3 as shown in Figure 1. The corner of the Illuvia was approximately 17 in. from the nearest corner of the air duct. Given that this close proximity showed no effect, further distances are not expected to produce a difference in airflow at the duct. The germicidal and particle removal benefits of the Illuvia carry no negative side effects in regard to the efficiency of the return air ducts.

Conclusions

Operation of the Illuvia does not reduce airflow at the return air ducts in the OR.

References
