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ABSTRACT: Boosted by additive manufacturing, architected materials have opened new opportunities to extend the perfor-
mance of engineering materials. Yet, their development is held back by the intense efforts required to understand their com-
plex property-structure-process-performance relationship. Therefore, data-driven biomimetic approaches are becoming in-
creasingly popular to unveil such relationships. Here we mimic the functionally graded structures found in Coscinodiscus sp. 
diatom to understand the role of their shapes and define new guidelines for the design of novel architected honeycombs with 
tunable mechanical properties. Finite element simulations, validated on the outcome of a testing campaign performed on 3D-
printed elastomeric samples, are used to build a dataset for machine learning algorithm training. Different machine learning 
techniques are used to link the geometric features of the designed biomimetic structures to their energy absorption proper-
ties and, in particular, to the specific absorbed energy divided by the peak force, here used as the performance index. The 
proposed approach leads to a novel design, which features a performance increase of 250% w.r.t. conventional honeycombs. 

 
 
Architected materials are a class of materials in which 

chemical and geometrical features are carefully controlled 
on different length scales to ensure the optimal accomplish-
ment of specific tasks. Typical examples are honeycombs, 
strut-based lattices, and triply periodic minimal surface lat-
tices1,2. Their power lies in the ability to tune their perfor-
mance by acting on the hierarchical and mutual interplay 
between material and structure. Thus, they find application 
in a multitude of fields, such as lightweight structures, wave 
propagation control, bio-scaffolds, and sensing2–4. 

Advances related to architected materials have been 
mainly driven by the mimicry of natural materials like bone, 
wood, nacre, and diatoms5–11, whose remarkable capabili-
ties and multifunctionality are mainly attributed to the so-
phisticated multiscale hierarchical structure12,13, despite 
the limited palette of building blocks they are made of. In 
Nature, a few universal building blocks, combined into com-
mon structural arrangements, functional gradients, and in-
terfaces with recurring patterns over multiple length 
scales5,14–20 lead to a wide diversity of structures and 

materials, able to meet different functions and needs. To-
day, thanks to imaging techniques, numerical simulations, 
and additive manufacturing (AM), the application of the 
“universality-diversity” paradigm found in Nature21–23 to 
the design of architected materials has turned out to be a 
very fruitful guide23–27. Yet, unraveling the property-struc-
ture-process-performance relationship28 and transferring it 
to a man-made material is generally a non-straightforward 
highly resource-intensive process. In recent years, data-
driven approaches, especially machine learning (ML), have 
proven to be valuable methods to overcome this issue29–34. 
ML algorithms have been successfully used for the data-
driven design of new materials by: (i) replacing constitutive 
equations for the analysis of new material properties, (ii) 
identifying new material architectures, (iii) guiding the 
choice of process parameters, and (iv) improving perfor-
mance such as fatigue life, buckling resistance, and fracture 
toughness29–34. Latest cutting-edge research has demon-
strated that Materials Informatics tools at the forefront, 
such as attention-based diffusion models35 and multi-modal 



 2 

language models36, are capable of both providing forward 
predictions (i.e., obtaining nonlinear structural behaviors as 
a function of material hierarchical structure) and effectively 
solving inverse design problems (i.e., discover new architec-
tures that have specified response curves), giving increas-
ing room for customization of material representations and 
offering ever-expanding generalization capabilities (i.e., the 
same models can be applied to different materials, dimen-
sional scales, and design tasks). While biomimicry has been 
successfully used to provide design solutions for materials 
with superior mechanical properties, ML-based methods 
have further accelerated the design process and the discov-
ery of new materials37. 

Inspired by the fascinating diatom morphology38–42, in 
this research we propose a biomimetic data-driven ap-
proach for the design of novel architected honeycombs with 
tunable energy absorption performances. What caught our 
attention on these aquatic algae is the organization of the 
amorphous biosilica that forms the exoskeleton, aka frus-
tule. The frustule of Coscinodiscus sp. diatoms exhibits a hi-
erarchical architected design, consisting of three main lay-
ers: (i) cribrum, (ii) areolae, and (iii) foramen (Figure 1). 
From a structural point of view, this protective shell is de-
signed to withstand predatory attacks that result in 

compressive loads. It provides both lightness and mechani-
cal protection at the same time, and the central honeycomb-
like layer is the one that affects such performance the 
most41,43–49. Previous AI diatom-based designs focused on a 
publicly available diatom dataset to translate their intri-
guing structural features into 3D printable material models, 
showing the great potential offered by the intersection of 
human and artificial intelligence to generate innovative bi-
ologically inspired design solutions50. Here, we start from 
solutions offered by Nature and investigate the relationship 
between their shapes and mechanical properties. Specifi-
cally, an intriguing feature of Coscinodiscus diatoms is the 
cell wall profile of the areolae, which shows varying thick-
ness gradients (Figure 1 (b)), not observed in other natural 
and synthetic honeycombs. This research work arises from 
the need to answer the following questions: what role does 
it play in determining the overall properties of the frustule? 
Can we tune the shape of the cell walls to improve the me-
chanical performance of bioinspired architected materials? 
The deformation of honeycombs under out-of-plane com-
pression is mainly governed by buckling-induced collapse. 
Thus, this failure mode, typically detrimental, could be har-
nessed to adapt the material’s energy absorption properties 
according to the specific application of interest.  

 

 

Figure 1. Hierarchical architecture of the studied diatom frustule, schematization, geometric, and numerical model. 
(a) Hierarchical architecture of the Coscinodiscus sp. diatom frustule with its four different levels: “Petri dish” con-
figuration shared by all diatoms (modified from39, CC BY 4.0); sandwich-like structure distinctive for this family of 
diatoms (modified from51); intricate porous network of amorphous silica that covers the entire outer surface of the 
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frustule (modified from51); building blocks that make up the frustule (modified from52, CC BY 4.0). (b) Cross-section 
of the Coscinodiscus sp. diatom multilayer exoskeleton: view of the thickness gradient present in the cell walls of its 
honeycomb substructure (modified from39, CC BY 4.0). (c) Simplified geometric model of the sandwich-like structure 
of the Coscinodiscus sp. frustule with its three layers: cribrum, areolae, and foramen. (d) Schematic representation 
of the thickness gradient in the analyzed honeycomb-like structures (e) Example of the stress-strain response curve 
of elastomeric honeycombs under out-of-plane compression. 

 

 
Before the advent of AM, it was impossible to fabricate 

structures with such a level of complexity, so the effect of 
functional gradients in honeycomb walls has not been fully 
investigated yet. Previous studies have highlighted that the 
spatial tailoring of honeycomb geometry can substantially 
enhance their performance and be exploited for fine-tuning 
their properties. Regarding the in-plane mechanics of hon-
eycombs, in particular, the use of deep learning models has 
enabled control over the material distribution in their cellu-
lar walls through encoded patterns to generate innovative 
designs that provide designer-specified nonlinear constitu-
tive relationships35,36. The out-of-plane behavior has been 
partially analyzed, focusing on simple material distribution 
laws 53,54.  

In this study, we leverage ML techniques, finite element 
analysis (FEA), and AM to deeply delve into the effect of 
thickness gradients on the out-of-plane honeycomb me-
chanical performance. Given the diversity of shapes and 
gradients occurring in the Coscinodiscus sp. diatom frus-
tule38,40,41, we focus the study on a single hexagonal pris-
matic cell. A large dataset of bioinspired digital models of 
diatom geometry is created. A subset is adopted to generate 
a numerical dataset describing the relationship between the 
cell shape and its mechanical performance (i.e., the out-of-
plane compression properties calculated by FEA). Based on 
simulation outcomes, supervised learning algorithms are 
trained for regression and the design space is extensively 
explored by using the best metamodel. A comprehensive 
parameter, based on critical load, absorbed energy, and 
density of each bioinspired honeycomb cell, is used for per-
formance analysis and topology ranking. Finally, AM and 
testing are exploited for the validation of the proposed data-
driven designs. This bioinspired ML-driven approach al-
lows one to identify an ideal structure for protective gear 
applications, featuring a 250% boost in energy absorption 
capability compared to a classic honeycomb unit cell with 
constant wall thickness. Moreover, the proposed frame-
work, based on ML and AM, represents a versatile, powerful, 
and sustainable approach, which accelerates the design 
phase and expands the design space by orders of magnitude 
compared to conventional methods, considerably reducing 
the resources, time, and costs involved in simulations, man-
ufacturing, and testing. 

 
Numerical model validation. Driven by the growing in-

terest in “multi-hit” devices for mechanical energy 

absorption55, we focus on the geometry of the honeycomb-
like architectures found in Coscinodiscus sp. diatoms and 
use a thermoplastic polyurethane (TPU), instead of the nat-
ural biosilica, as parent material. This choice is driven by the 
fact that (i) elastomeric materials are typically used in en-
ergy absorption applications, (ii) TPU is easily available for 
AM technology. To have a reliable dataset for the ML algo-
rithm training, the finite element (FE) model, used to gener-
ate the synthetic data, is validated analytically and experi-
mentally. The analytical formulae based on honeycomb me-
chanics give us a first approximation, and then the numeri-
cal model is validated on a single honeycomb unit cell with 
constant wall thickness taken as a benchmark. According to 
experimental test results of 3D-printed samples, the Blatz-
Ko hyperelastic model is calibrated to replicate the non-lin-
ear behavior of the material.  

Figure 2 (a) shows the comparison among data obtained 
from the three approaches used. The unit cell is analyzed 
without considering the periodicity of the architected mate-
rial. Figure 2 (b-d) depicts the theoretical, simulated, and 
physically observed deformation modes. In the elastic re-
gion there is an optimal match between the numerical and 
experimental curves, with a difference of 11.3% in terms of 
compression modulus. The experimental test results are 
very similar to the one predicted by the FEA and the analyt-
ical formulae, showing an error of 2.1% and 0.8% on the 
maximum stress, respectively. In general, there is a good 
comparison in terms of elastic modulus of compression, 
peak stress, and absorbed energy. A more quantitative com-
parison is provided in Table 1.   

It should be noted that the calculation of elastic moduli is 
very sensitive to the selected strain range, so the errors re-
lated to it are less meaningful than those associated with the 
other mechanical properties evaluated. Beyond the maxi-
mum stress, the finite element model becomes stiffer and 
deviates from what is measured experimentally. This differ-
ence is primarily due to the anisotropies and imperfections 
introduced by the AM process in the testing specimens, and 
it also affects the structure deformation mode. The height of 
the benchmark cell is twice its side. From the theory of elas-
tic stability we expect, in each of its walls, two whole defor-
mational half-waves in the vertical direction and only one in 
the direction perpendicular to it56. The 3D printed cell 
(Figure 2 (d)) shows a shift of such deformation waves and 
shapes that are not perfectly harmonic w.r.t. the theoretical 
and numerical counterparts. 
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Figure 2. Finite element model validation. (a) Analytical, numerical, and experimental comparison of the response 
curve of the benchmark honeycomb cell with constant-thickness walls in out-of-plane compression. Cell deformation 
modes according to (b) honeycomb mechanics, (c) numerical simulations based on FEA, and (d) experimental com-
pression test. 

 

Table 1. Mechanical properties of the honeycomb cell with a constant-thickness wall calculated analytically, numer-
ically, and experimentally. Elastic modulus is calculated between 0.01 and 0.03 strain. Percent errors are calculated 
with respect to experimental results (“ground truth”).  

Parameter Unit Experimental Numerical err % Analytical err % 

Elastic Modulus MPa 33.27 29.50 11.3% 24.74 25.7% 

Maximum stress MPa 2.42 2.37 2.1% 2.40 0.8% 

Specific absorbed energy J/mm3 0.432 0.45 3.6% 0.49 12.2% 

 

 
Metamodel Selection. After the FE model validation, a 

numerical dataset is built. This dataset, which includes 
about one tenth of all the generated structures populating 
the design space, is solved numerically via FEA to determine 
the mechanical behavior of such structures. This dataset is 
used for training, tuning, and testing three different super-
vised machine learning algorithms to determine an optimal 
metamodel capable of predicting the maximum force Fmax 
(i.e., the critical load) and absorbed energy, EA, of each cell 
model within the design space, based on knowledge of the 
material distribution along their walls. Specifically, a Linear 
Ridge Regression (LRR), a Kernel Ridge Regression (KRR), 
and a Deep Neural Network (DNN) are used. Figure 3 shows 
the comparison between the distributions of the target me-
chanical properties calculated numerically and predicted 
using ML for all the structures present in the test set. LRR is 
too simple to capture the nonlinear phenomena involved in 
the out-of-plane compression of elastomeric honeycomb 
cells. Better results are achieved with KRR and DNN with R2 
scores of 0.964 and 0.981, respectively (see Table 2). Fur-
thermore, it is worth noting that both KRR and DNN predict 
the same best-performing structure on the validation and 
test sets. Although the prediction accuracy for KRR and DNN 
are similar, with KRR being 250 times faster than DNN in 
terms of training time (0.3 seconds compared to 75 sec-
onds), the DNN is selected to explore the remaining portion 
of the design space (i.e., predicting the performance of 

structures not included in the dataset). This decision is mo-
tivated by the DNN’s stronger correlation in distribution 
tails, meaning its ability to confidently predict the outliers. 
Furthermore, once trained, it is ~105 faster than FEA in cal-
culating the honeycomb cell mechanical properties, thus it 
significantly facilitates the design space exploration pro-
cess. Details regarding its tuning, performance, and the 
hardware resources employed for its utilization are de-
scribed in the Supporting Information (SI). 

 
Effect of thickness gradients on energy absorption 

properties. In energy absorption applications the choice of 
material is usually guided by (i) the amount of energy to be 
dissipated, (ii) the maximum stress associated with it, and 
(iii) the weight limits imposed by the product design57. To 
rank the analyzed structures, a performance parameter, 
based on the energy absorbed divided by the maximum 
force of each cell and by the relative density ρ

rel
, is used. Fig-

ure 4 (a) shows the results obtained for our design space. A 
significant variability in mechanical properties is observed 
from the graph. From the theory of constant-wall honey-
combs, we expect an increase of the critical load according 
to the mass of the cell walls, thus their stiffness. Intuitively 
one might assume a monotonic trend between EA/Fmax and 
ρ

rel
. However, such trend cannot be found in the results be-

cause the shape variations, featured in the bioinspired cells, 
significantly affect both the buckling load and the energy 
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absorption mode following the collapse of the cell due to in-
stability (i.e., the post-buckling behavior). 

To understand the effect of thickness gradients, three 
structures, representative of this variability, are selected 
and compared with the benchmark model. Specifically, the 
honeycomb cell models with geometric tailoring are charac-
terized by: (i) the best mechanical performance, (ii) the 
worst mechanical performance, and (iii) an average struc-
ture representing the 50th percentile of the overall dataset. 
Figure 4 (b) depicts the wall shape of these models. Table 3 
shows a quantitative comparison of their performance. For 
a detailed understanding of the energy absorption mode re-
lated to the selected geometries, FEA and experiments are 
performed on them. Figure 4 (c-d) shows a comparison be-
tween the stress-strain response curves of the best-per-
forming and worst-performing cell and the stress-strain 
curve of the benchmark model. The stresses are normalized 
to the absolute maximum value.  

Comparing the numerical results with the experimental 
ones, their similarity first emerges, confirming the effective-
ness of the approach used. On the other hand, analyzing the 
differences between the mechanical response of the indi-
vidual structures, it can be seen that the honeycomb cell 
with the best performance is characterized by a low peak 
stress and a post-buckling deformation, which is almost 
perfectly plastic, ensuring energy absorption at a constant 
force. The worst honeycomb structure maximizes energy 
storage predominantly in the linear elastic regime and ex-
hibits a noticeable drop after buckling. These results are in 

line with our expectation. In fact, to efficiently absorb a 
given amount of energy, the maximum force must be mini-
mized, and the behavior of the honeycomb cell must be as 
close as possible to an elastic-perfectly plastic behavior57. 
The outcome of the proposed framework shows how this 
can be effectively achieved through the honeycomb cell wall 
shape tailoring.  

 
Remarks. In this study, a data-driven biomimetic ap-

proach is proposed to customize the mechanical properties 
of architected materials by controlling buckling and post-
critical behavior. Inspired by honeycomb-like structures 
found in diatom exoskeletons, which exhibit variable mate-
rial distributions along the out-of-plane direction, we ana-
lyze the effect of their functional gradients on the energy ab-
sorption properties of millimeter-sized elastomeric struc-
tures that can be 3D printed. Despite the limited range of 
thickness distributions examined, by tailoring the shape of 
honeycomb cell walls, a performance increase of 250%, 
compared to the benchmark model with a constant wall 
thickness, is achieved. In contrast to most numerical data-
driven approaches, which typically require significant com-
putational power for both dataset creation and metamodel-
ing training, this result is obtained using a standard implicit 
numerical solver and a commercial laptop. Therefore, the 
adopted framework shows great potential for the rapid and 
cost-effective design of innovative structures and materials 
for energy-absorbing applications such as helmets, sports 
impact protection, and packaging.  
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Figure 3. Absorbed energy and peak force distributions obtained from FEA analysis and predicted by three different 
machine learning algorithms on the test set. (a) Comparison between FEA and Linear Ridge Regression (LRR). (b) 
Comparison between FEA and Kernel Ridge Regression (KRR). (c) Comparison between FEA and Deep Neural Net-
work (DNN). 

 
Table 2. R2 score of the Kernel Ridge Regression (KRR) and the Deep Neural Network (DNN). The table includes the 
overall R2 calculated considering both the absorbed energy EA and the peak load Fmax, the R2 on the single metric on 
the 90th and 95th percentile to show the better tail reconstruction of the DNN in distribution tails. 

ML algorithm 

R2 score 

Overall 
90th percentile 95th percentile 

EA Fmax EA Fmax 

KRR 0.964 0.770 0.572 0.711 0.519 

DNN 0.981 0.842 0.762 0.700 0.653 
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Figure 4. Predictions of the Deep Neural Network (DNN) and comparison with the benchmark solution. (a) Mechani-
cal performance of bioinspired structures contained in the design space predicted by the DNN. Highlighted in the 
diagram: the benchmark model and three structures representative of the property variability induced by thickness 
gradients. (b) Representation of the geometry of the analyzed models with a focus on their cell wall thickness pro-
files. (c) Numerical and (d) experimental stress-strain curves of out-of-plane compression loading for the best, worst, 
and benchmark honeycomb cells. 

 
Table 3. DNN prediction of absorbed energy, critical load, and performance parameter EA/(ρrelFmax) of the bench-
mark, best, average, and worst honeycomb cell; performance gain with respect to the benchmark structure. 

Honeycomb ρrel (-) EA (J) Fmax (N) EA/(ρrelFmax) (J/N) Performance gain 

Benchmark 0.33 7.88 1099.3 0.022 --- 

Best 0.19 1.56 149.5 0.055 254% 

Average 0.29 2.37 303.4 0.027 122% 

Worst 0.45 9.99 1697 0.013 60% 

 

 
Although there is no doubt that geometric gradients in di-

atom exoskeletons are responsible for mechanical protec-
tion, this approach does not identify a match between the 
profile of the optimized cell and that of the algae. This mis-
match can be mainly associated with the following reasons: 
(i) we focus only on the thickness gradient effect, neglecting 
other morphological aspects and using TPU as base material 
while diatom frustule is composed of amorphous biosilica; 
(ii) the frustule shapes are extremely complex and require 
a more sophisticated approach to be represented; (iii) the 
diatom exoskeleton is optimized to perform multiple func-
tions at the same time and not only to absorb mechanical 
energy. 

To generalize this study, the base material can be as-
sumed as a design variable and tailored according to the 
specific application requirements (e.g., biocompatible met-
als for biomedicine, biodegradable polymers for sustainable 
design, nanocomposites for smart capabilities) or to further 
understand the biological role of the frustule (i.e., assuming 
silica-based ceramics). The interplay between different ma-
terial failure modes and thickness gradients could provide 
additional insights to enhance honeycomb structural per-
formance and broaden the range of functions they can fulfill. 
Also, alternative ways to describe the natural thickness gra-
dients should be investigated. Since the problem of honey-
comb out-of-plane elastic instability can be traced back to 
harmonic-type solutions56,58, a promising idea is to assume 
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a space of parametric functions (e.g., using Fourier series) 
to represent the functional gradients and build an AI model 
that can fit them to a set of diatom images to: (i) discover 
the most recurrent material distribution patterns, (ii) build 
a thickness profile generator that faithfully represents bio-
logical designs, and (iii) investigate the shape-property re-
lationship in more detail. However, the success of such ap-
proach is highly dependent on the availability and quality of 
diatom data, which is very limited to date. A more versatile 
solution, on the other hand, is offered by language-based 
representations, as they apply to a variety of high-dimen-
sional data and are independent of a priori knowledge of 
material design logic36.  

Nevertheless, we can still conclude that the thickness gra-
dients featured in diatom cell walls allow one to improve 
the structural performance of the biological material. In-
deed, one can notice the similarity of the natural cell shape 
with the shape of the average cell predicted by our frame-
work, which already shows a 122% performance gain w.r.t. 
the benchmark honeycomb. It should also be noticed that 
periodic boundary conditions (PBCs) are not applied to the 
vertical edges of the honeycomb cells. Their absence does 
not allow us to recreate the mechanical behavior of the pe-
riodic material from a single cell analysis. Yet, it allows the 
study to be generalized in that: (i) by optimizing the perfor-
mance of the single cell, a global improvement in the perfor-
mance of the corresponding architected material can also 
be expected; (ii) the results obtained, besides being exploit-
able for the class of materials mentioned, can also be ex-
tended for modeling columns and rods designed against 
buckling. 

There are several examples in the engineering field where 
a pointwise material design would improve dramatically 
the performance. A common example is given by prosthe-
ses, where a local material tuning is crucial to provide a 
more homogenous stress and strain distribution, reducing 
local concentrations. Another example is provided by sports 
protective equipment, such as helmets, pads, and other in-
jury prevention devices (e.g., body armor), where protec-
tion and lightness must coexist. These generally mutually 
exclusive characteristics can be combined by a targeted op-
timization of the structure, to have a mechanical response 
that at the same time limits the peak load and absorbs as 
much energy as possible to avoid severe injuries. Similar 
needs are encountered in the field of soft robotics. Espe-
cially when dealing with fragile objects it is fundamental 
that grippers do not exceed certain load limits. This can be 
achieved by implementing optimized architected materials 
that can significantly deform after reaching the critical load 
but, thanks to the use of elastomeric polymers, recover their 
shape when the load is removed. 

To fully understand the shape-performance relationship 
in diatoms, a multidisciplinary approach is needed. As fu-
ture developments we plan to expand the study by evaluat-
ing the multifunctionality of diatom-inspired architected 
materials, including fluid dynamical and optical perfor-
mances in a multi-objective optimization framework.  

EXPERIMENTAL SECTION 

Biomimetic Design. We focus on the structural arrange-
ment of the diatom exoskeleton frustule characteristic of 
the micrometer scale (Figure 1) and reminiscent of 

sandwich panels. To characterize the effect of shape heter-
ogeneities occurring within the areolae on the out-of-plane 
compression loading scenario, different geometries of unit 
cells are studied: (i) a geometric benchmark model with 
constant-thickness walls and (ii) ~18000 models with var-
ying wall thickness gradients. The former provides a bench-
mark with known mechanical behavior58,59 for comparison 
with the geometrically tailored structures. The dimensions 
are defined on the millimeter scale, while maintaining the 
same proportions as the natural structure. Specifically, the 
edge length side of the mean perimeter defining the section 
of the hexagonal prismatic cell, the height of the latter, and 
the thickness of its walls are 14 mm, 28 mm, and 2 mm, re-
spectively. This scale-up is necessary to cope with the limi-
tations imposed by the AM technology used. From this 
model, we derive the other bioinspired structures through 
an algorithm that randomly defines the material distribu-
tions in the honeycomb walls, keeping the other geometric 
features unchanged (Figure 1 (d)). To limit the number of 
possible design solutions, we divide the benchmark unit cell 
into seven equal partitions along its height, then assign each 
one a thickness value belonging to the following vector 
t = [1.0 1.5 2.0 2.5 3.0] mm. This range of variation has been 
chosen so that the benchmark model represents an average 
configuration. We also impose a constraint on the gradient 
to avoid unphysical configuration. This is achieved by limit-
ing to two steps the possible increments between two adja-
cent partitions. More details are available in the Supporting 
Information (SI) file. 

 
Analytical Modeling. Honeycombs mechanical response 

under out-of-plane compression is characterized by three 
different stages (see Figure 1 (e)): (i) a first linear elastic re-
gime; (ii) a region characterized by constant stresses known 
as the “plateau”, triggered by buckling cell failure; and (iii) 
a densification phase in which the material becomes in-
creasingly stiff due to the filling of voids contained within it 
associated with cell failure58,59. In the case of an elastomeric 
material, this mechanical behavior is also influenced by vis-
coelastic effects, thus on the loading rate. This study is lim-
ited to a quasi-static loading scenario. The honeycomb unit 
cell is assumed to have an elastic-perfectly plastic behavior; 
thus, it is described by the elastic modulus and the maxi-
mum force Fmax estimated from the linearized buckling the-
ory58,59. The honeycomb out-of-plane elastic properties are 
functions of its relative density ρ

rel
58,59: 

 
ρ

rel
=

Ahoney

Aapp

≅
2

√3

𝑇

𝐿
=

Ehoney

Ebulk

 (1) 

where T and L represent the values of the wall thickness 
and the edge length, respectively, Ehoney and Ebulk are the 

Young’s moduli of the unit cell and of the bulk material, 
Ahoney and Aapp are the effective and the apparent cross-sec-

tional area of the honeycomb cell. Fmax can be calculated as: 
 

𝐹𝑚𝑎𝑥  =3K 
Ebulk

(1-νbulk
2 )

 
𝑇2

𝐿
 (2) 

where K is a constraint factor dependent on the boundary 
conditions applied to the plates constituting the honeycomb 
cell walls56 and νbulk is the Poisson’s coefficient of the parent 
material. The value of the maximum stress is derived from 
Fmax using the Aapp section. 

 



 9 

Finite Element Analysis (FEA). All the modeled cells 
have the same average surface area. To minimize the com-
putational effort, this area is discretized through four-node 
shell elements with an average size of 0.5 mm, then the 
thickness associated with each element is locally adapted 
through a custom macro. The Blatz-Ko60 hyperelastic mate-
rial model, calibrated on the outcome of uniaxial tensile and 
compressive tests performed on 3D-printed samples, is 
adopted to describe the behavior of the TPU. The calibration 
phase is carried out using the commercial software 
PolymerFEM. Simulations are performed using an implicit 
approach, based on the Newton-Raphson method for calcu-
lating the nonlinear solution. The bottom and top bases of 
each cell are placed in contact with two rigid surfaces (rep-
resenting the compression plates of the testing machine). 
The top surface is moved axially at a slow speed to induce 
quasi-static compression, while the bottom surface is kept 
fixed. Contact interactions are modeled using a pair-based 
definition using target segment and line-to-surface ele-
ments in ANSYS. A friction coefficient of 1.2 is used to simu-
late sliding between the rigid surfaces and the FE mesh. For 
each cell, a single load step is applied, and the vertical dis-
placement of the upper base is calculated at each substep, 
obtaining the force-displacement curve for large displace-
ments. From the latter, the stress-strain relationship is de-
rived, and the energy absorption properties are calculated. 
The number of substeps is adjusted by the program accord-
ing to the solution gradient. 

 
Supervised Learning. The numerical dataset used for 

the ML algorithm tuning is divided into three parts: (i) train-
ing set (1000 data), (ii) validation set (500 data), and (iii) 
test set (500 data). The training set is used to make the ML 
algorithms learn the parameters that define the regression 
models (i.e., the link between the input thickness distribu-
tion, xi, and the output mechanical properties, yi). The vali-
dation and the test set are used to tune their hyperparame-
ters and evaluate their goodness of approximation, respec-
tively. The optimal metamodel is defined and then used to 
calculate the mechanical properties of the non-simulated 
geometric models (about 16000). Figure 5 depicts the 
adopted workflow. To enhance the performance of ML algo-
rithms, both the labels and features are normalized and cen-
tered. These transformations ensure that all data points 
have a mean value of zero and are normalized to one. Also, 
the 2000 structures are selected randomly to avoid any 
bias. Three different supervised learning approaches are 
used and compared: 
• Linear Ridge Regression (LRR). Thanks to its simplicity 

and computational efficiency, a linear regression is 
adopted as initial approximation tool. For its imple-
mentation, we use the related Scikit-learn package 
choosing a regularization parameter α=0.1 to prevent 
underfitting. 

• Kernel Ridge Regression (KRR). Nonlinear kernel algo-
rithms allow capturing complex input-output relation-
ships while maintaining high computational efficiency. 

Here we define a kernel regression model based on ra-
dial basis functions by exploiting Scikit-learn. In this 
case, the regularization-related hyperparameter is op-
timized by cross-validation, varying it on a logarithmic 
scale in the interval [10−6, 101] and choosing the opti-
mal one (Figure S3).  

• Deep Neural Network (DNN). DNNs have no limits in 
terms of capability to approximate functions61, how-
ever, compared to previous approaches they require 
significantly more computational effort for training and 
hyperparameters selection, due to the large number of 
parameters and hyperparameters to be tuned. We cre-
ate our own DNN using Keras, a user-friendly front-end 
API for TensorFlow. About fifty different DNN architec-
tures are analyzed, with different combinations of hy-
perparameters (i.e., number of hidden layers, number 
of neurons in each hidden layer, dropout fraction for 
each layer) to maximize the fitting. Detailed infor-
mation is reported in the SI file. The selected DNN ar-
chitecture consists of an input layer with seven neu-
rons (one for each thickness partition), an output layer 
with two neurons (one for each label: EA and Fmax), and 
five fully connected hidden layers. The first and last 
hidden layers have 32 and 128 neurons, respectively, 
while the three central layers have 256 neurons. We 
use the ReLU activation function for all the layers ex-
cept for the output one, where we implement the ‘lin-
ear’ activation function commonly employed for re-
gression tasks. Finally, to minimize the loss function, 
we utilize the Adam optimization algorithm. Training 
the DNN and its parameters involves running a total of 
50 epochs with a batch size of 200. 

For all three ML models, we evaluate the goodness of the 
fit using the R2 score, which represents the fraction of infor-
mation reconstructed by the model. The algorithms are run 
using Google Colab. 

 
3D Printing and Testing. The Fused Filament Fabrica-

tion (FFF) technology 3D printer Original Prusa i3 MK2s is 
used to manufacture both the specimens needed for TPU 
mechanical characterization and the honeycomb cell sam-
ples with geometric and non-geometric tailoring. A mini-
mum number of three samples per test and geometry is con-
sidered, to ensure repeatability of results. The process pa-
rameters are provided in SI. For all the samples, the com-
mercial filament FILOALFA® ALFA TPU hard is used. To cal-
ibrate the hyperelastic model of TPU, both tensile and com-
pression tests are carried out, according to ASTM D412 and 
ASTM D575 standards62,63, respectively. To experimentally 
assess the behavior of honeycomb cells, we carry out quasi-
static compression tests in displacement control (with a 
crosshead speed v=2mm/min), using a ZwickRoell ProLine 
universal testing machine endowed with a 10 kN load cell.  
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Figure 5. Schematic of the workflow used to build the numerical dataset, train the machine learning algorithms, and 
predict the behavior of geometrically tailored honeycomb cells. The design space, consisting of approximately eight-
een thousand different structures, is defined by creating seven-component vectors, xi, describing the wall thickness 
distribution. Two thousand structures are randomly selected and analyzed by FEA to obtain the 2D vector, yi, char-
acterizing the energy absorption capacity of the structure: energy absorbed (EA) and peak load (Fmax). The meta-
model built by supervised learning algorithms is trained, tuned, and tested on the dataset. The mechanical proper-
ties of the geometric models, not included in the dataset, are predicted, and those with the optimal performance 
identified. 
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