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Abstract 

Spurred on by additive manufacturing, architected materials have opened up new opportunities to overcome the 

performance and functionality limitations of commercially available materials. Yet, the development and 

optimization of this new class of multiscale materials are held back by the intense analytical, computational, and 

experimental efforts required to understand their complex property-structure-process-performance relationship. 

To speed up the design process and solve this issue, data-driven approaches are becoming increasingly popular. 

To demonstrate the potential of metamodeling techniques in materials science, in this study we analyze the 

mechanical energy absorption properties of honeycombs inspired by diatom frustules. We first generate a dataset 

through finite element simulations. Then we build regression models that allow us to predict and customize 

honeycomb features, while minimizing the use of numerical analysis. The combination of Nature's design 

principles, used to shape biological materials, and metamodeling techniques, applied to in silico testing, represents 

a powerful opportunity to increase the efficiency and performance of man-made materials, and this research is 

proof of that. 
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Introduction 

Architected materials are multiphase lattice materials [1] in which phase connectivity and/or 

lattice features are carefully controlled on different length scales, through functional gradients 

and heterogeneities, to ensure the optimal accomplishment of specific functions or properties. 

Their power lies in the ability to tailor their performance by acting on the interplay between 

material properties and geometry. Thanks to the many design degrees of freedom they offer, 

such materials find applications in a multitude of fields such as lightweight structures, wave 

propagation control, bio-scaffolds, and metamaterials [2]–[4]. Recently, the development of 

this new class of materials has been mainly driven by the desire to achieve–through engineering 

processes–the remarkable capabilities observed in biological materials, and composites in 

particular [5], e.g., the optimal combination of mechanical properties and their amplification 

with respect to those of the constituent building blocks. Classic examples are bone, wood, and 

nacre [6]–[11]. 

 

The unique performance and multifunctionality of biological materials are attributed to the way 

natural processes of self-assembly and growth of biomolecules and biominerals (i.e., the 

biological building blocks [12], [13]) optimize their structures over multiple length scales. 

Despite the diversity of forms, functions, and properties of materials that can be observed in 

Nature, they all exhibit common traits. These traits result from the masterful combination of 

functional regions adapted to local conditions, substructures consisting of subunits with 

universal chemical constituents/compositions, structural features, gradients, and interfaces [5], 
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[14]–[19]. The application of this “universality-diversity” paradigm [20]–[22] to the design of 

architected materials has turned out to be a very promising guide to improve their performances 

[22]–[26]. In this context, additive manufacturing (AM), thanks to the geometric freedom it 

provides and to the increasingly wide range of length scales it can cover, is playing a key role 

on the development of new bioinspired architected materials [2], [3], [26], [27]. Along with 

AM, advances in imaging, and nanotechnology, combined with developments in computational 

modeling, have enabled the design of materials with hierarchical structures and complex 

chemical compositions optimized for specific applications [28], [29]. Besides, structural 

optimization techniques, well-known to optimize the size, shape, and topology of structures at 

the macro scale [30], have now become must-use strategies to achieve optimized architectures 

from the material on. 

 

The intricate property-structure-process-performance relationship (PSPP) of architected 

materials [31] introduces many complexities that make the multi-scale design and fabrication 

of architected materials not a straightforward process. Indeed, the development of new 

architected materials generally involves a trial-and-error approach based on the synergistic use 

of numerical simulations and experimental tests at different length scales. Given the wide-

ranging design degrees of freedom and nonlinearities that characterize these materials, their 

design development and optimization are highly resource-intensive. In recent years, machine 

learning (ML), i.e., the use of computer systems that learn to accomplish a given task from data 

(i.e., to build an analytical model) without being explicitly programmed, has proven to be a 

valuable method to overcome this issue. Indeed, ML algorithms have been successfully used 

for the data-driven design of new materials by: (i) guiding the choice of process parameters, (ii) 

identifying new hierarchical structures, (iii) replacing constitutive equations for the analysis of 

new material properties, and (iv) improving performance such as fatigue life, buckling 

resistance, and fracture toughness [32]–[37]. While biomimicry has been successfully used to 

provide design solutions for materials with superior mechanical properties, ML-based methods 

have further accelerated the design process and the discovery of new materials.  

 

In this study, we combine Nature design principles with an ML-based material modeling 

approach to accelerate the design process of new diatom-inspired architected materials with 

optimized mechanical energy absorption capabilities. Optimized by Nature to survive in very 

challenging environments, diatoms (i.e., single-celled microalgae widespread in all aquatic 

environments) represent an impressive model of multifunctionality. Their external siliceous 

shell, which provides protection from predators’ attacks, while controlling nutrient acquisition, 

diatom sinking rate, light absorption, and acting as a filter against viruses, represents a 

distinguishing trait that characterizes all observed species. Over the years, what has made 

diatoms increasingly attractive from a biomimicry perspective is the bio-siliceous exoskeleton 

that covers them, known as frustule, whose mechanical properties are still poorly understood. 

 

Here, to study the link between the frustule geometry and its energy absorption capabilities, 

diatom-inspired geometric models are built. Mechanical properties are first calculated through 

finite element analyses (FEA). Data from FEA is first used to train and validate three common 

ML regression algorithms, then to build analytical models (i.e., metamodels or surrogate 

models) that approximate the PSPP relationship of the bioinspired material (predictive 

analysis). Finally, these metamodels are used to guide the shape optimization of the bioinspired 

material in order to maximize its energy absorption capacity (prescriptive analysis). This study 

shows how the joint use of ML algorithms and bio-inspiration significantly accelerates the 

design process of architected materials, providing a fast and accurate prediction of the FEA 

outcome.  
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Materials and Methods 

 

 

Figure 1 - (a) Hierarchical architecture of the Coscinodiscus diatom frustule with its four 

different level: "Petri dish" configuration shared by all diatoms (modified from [39], CC BY 

4.0); sandwich like structure distinctive for this family of diatoms (modified from [40]); 

intricate porous network of amorphous silica that covers the entire outer surface of the frustule 

(modified from [40]); building blocks that make up the frustule (modified from [41], CC BY 

4.0). (b) Cross-section of the diatom frustule: view of the thickness gradient present in the 

areolae cell walls (modified from [39], CC BY 4.0).(c) Simplified geometric model of the 

sandwich like structure of the Coscinodiscus frustule with its three layers: cribrum, areolae, 

and foramen. (d) Schematic representation of the analyzed honeycomb like structure with the 

random thickness distribution. (e) Qualitative representation of the force-displacement 

diagram of honeycomb structures under out of plane compression. 

 

Biomimetic design approach description 

In our work we consider the most widespread species of diatom: the Coscinodiscus. We first 

perform a geometric analysis, which highlights four different organization levels, depending on 

the considered length scale (see Figure 1a). Level 2 is the most interesting one from a structural 

point of view, with its architecture resembling that of sandwich structures. Here we can 

distinguish three main structural layers (Figure 1b): i) cribrum, a first thin layer characterized 
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by small porosity, ii) areole, an intermediate layer with a honeycomb-like topology, and iii) 

foramen, a third layer characterized by the presence of larger holes with respect to those present 

in the cribrum. We focus our study on the central layer of level 2, the areolae. In fact, it is well 

known that honeycomb like-structures have been already successfully used in structural as well 

as in energy absorption application. Thanks to their out-of-plane stiffness and buckling load 

resistance combined with its lightweight design honeycombs are extremely efficient, especially 

where weight saving is critical. Diatoms areolae in addition the hexagonal cross section, show 

different morphological features that positively affect the mechanical properties of the whole 

structure. More precisely, the areolae layer shows a functional gradient in the wall thickness 

distribution (Figure 1c). To investigate how the thickness gradient affects the energy absorption 

capability of the structure, we design a bioinspired model of the diatom honeycomb layer, 

analyze its behavior under out-of-plane compression, and measure the energy it can absorb. 

 

 

Figure 2 – Representation of the workflow used to train the machine learning algorithms and 

predicts new structures. The design space was defined by creating seven-components vectors 

defining the wall thickness distribution. The wall profiles are generated via a Matlab script. 

Some of the structures are randomly selected and solved via FE analysis to obtain the 2D vector 

characterizing the absorbed energy: critical buckling load (Pcr) and structure stiffness (K). The 

solved structures are then divided into the training, validation and test set in order to train the 

ML algorithms. The rest of the structures are used to predict the optimal structure.  
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Starting from the diatom areolae we create a regular honeycomb structure and, we partition the 

honeycomb walls into seven segments along the vertical (out-of-plane) axis. Then we assign to 

each segment a different thickness value in order to replicate the diatom gradient distribution. 

We choose the thickness values and the hexagon edge length in order to respect the proportions 

of the natural structure [42]. To limit the number of possible solutions and respect the geometric 

limitations, each wall partition can be assigned a certain thickness value, selected among five 

different possible values, which are fixed a priori. This assignment is done through an algorithm 

that generates a random seven-component vector, where each component represents the 

thickness value of the hexagonal cell partition. Specific constraints are applied in order to avoid 

the generation of repetitive structures or unphysical thickness distribution (i.e., zero-thickness). 

Similar approaches have been already used in literature to address similar problems. To avoid 

any bias, we also shuffle the order of the generated vectors to have a more homogeneous data 

set for the ML algorithm training. A schematic representation of the partitioning is depicted in 

Figure 1d. All the geometries are generated via ANSYS APDL solid modeler. In total, we build 

2000 different geometries to be analyzed with the FE software, with the final goal of generating 

the dataset for the ML algorithms training and validation. The model size is then scaled up with 

respect to the natural structure, in order to cope with the 3D-printing limitation/accuracy. The 

geometric size is provided in the Supplementary Information file. Due to the complexity of the 

problem, to find the optimal thickness distribution within the structure we use an approach that 

combines FE analysis and ML algorithms. Figure 2 provides a schematic representation of the 

workflow, which includes four main steps: (i) geometry and parameters definition, (ii) data 

generation, (iii) ML algorithm definition and training, and (iv) optimal solution prediction. 

 

 

Finite Element Analysis 

The numerical simulations are performed using ANSYS Mechanical APDL. This is crucial for 

the formulation of customized macros that automatically define the different geometries, 

material properties and boundary conditions, and analyze the structural behavior. More 

precisely, the geometry of the bioinspired models is built parametrically, using first-order 3D 

FE shell-type elements with a mapped mesh. Once the geometry and the partition are defined, 

an iterative cycle is used to automatically assign the thickness values to each partition, compute 

the analysis, and save the results into an external data file. We study a total of 2000 different 

geometries. The honeycomb cells are simulated under uniaxial compressive loading condition. 

We performed two types of simulations: a linear elastic one, for the evaluation of the structure 

stiffness (E*), and a linearized buckling analysis, for the evaluation of the critical buckling load 

(Pcr). The combination of E* and Pcr provides an estimation of the energy absorption capacity 

of the structure. Similar approach was also used in previous studies. In fact, the typical response 

of cellular materials in compression shows an approximate behavior characterized by 3 zones 

(see Figure1e): (i) linear elastic, (ii) plateau, and (iii) densification. The plateau stress can be 

approximated with the critical stress, so the dashed area of the plot, representing the absorbed 

energy, can be seen as a function of E* and Pcr. For our purposes, we neglect the densification 

phase, which has a lower contribution. As boundary conditions, all the lower edge nodes are 

fixed by constraining their x-, y-, z-displacements, while the upper edge is free. A linear-elastic 

compression analysis is performed in displacement control, assigning a negative displacement 

of 0.3 mm to the nodes on the upper edge. For the buckling model the same boundary conditions 

are adopted but, instead of a displacement, a unitary force is applied.  Also, given the large 

number of simulations, we exploit geometrical symmetry and periodic boundary conditions to 

limit the computational effort. The material adopted for our simulations is a commercial TPU 

(Thermoplastic polyurethane), whose mechanical properties are experimentally derived from 

mechanical testing performed on 3D printed samples. For all the simulations, the material is 
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considered homogeneous and isotropic. The minimum size of the finite element mesh is defined 

according to convergence analysis. Before proceeding with all the analysis, an initial validation 

of the FE model is performed by comparing the results (i.e., E* and Pcr) of the constant wall 

thickness honeycomb with the analytical solution for the honeycomb unit cell, finding a good 

agreement corresponding to an error between the analytical and numerical results lower than 

5%. 

 

 

Supervised learning 

The first step in preparing the metamodels is the definition of the features (i.e., thickness vector) 

and the definition of the labels. In our case, the labels are the structure stiffness E* and the 

critical stress Pcr, corresponding to critical buckling load Pcr, of the analyzed structure. From 

the whole set of defined geometries, we select 1000 as training set, and 500 as validation set. 

The training set is used to determine the optimal model parameters while the validation set, 

which is not used for training, is necessary to estimate the unbiased error of the model, which 

is fundamental for choosing the optimal model hyperparameters. The remaining data are used 

as a test set, to assess the error of the optimized model, thus its accuracy [43]. To improve the 

performances of the meta-models, the labels and features are normalized and centered. This is 

done because some ML algorithms have a bias on the modulus of the training points. These 

transformations ensure that all data points are normalized to 1 and have zero mean values, 

respectively. In this study, we use three different supervised ML approaches to make the 

regression and find the one that best fits our problem: 

 

1. A linear ridge regression (LRR). Thanks to its high computational efficiency it is always 

desirable to implement a linear regression as a first approximation [43]. For this meta-

model, we use the kernel ridge package from Scikit-learn, with a linear kernel and a 

value of the regularization parameter alpha=0.1 in order to avoid eventual underfitting, 

while overfitting is not a big concern with a low dimensional linear model. 

2. A kernel algorithm, in particular the Kernel Ridge Regression (KRR). With Kernel it is 

possible to capture eventual nonlinearities by maintaining still a good computational 

efficiency. Thanks to the kernel trick the complexity of the problem is reduced by 

transforming the data into higher dimensions [44]. Again, we use the kernel package 

from Scikit-learn, choosing this time an rbf (radial basis function) kernel. We use the 

regularized loss and we also perform cross validation to tune the hyperparameter alpha 

that maximizes the bias-variance trade-off, which is more relevant in this case, owing 

to the higher descriptive power of the model. 

3. A deep neural network (DNN). Thanks to the consistent number of free parameters, 

DNN is capable of detecting eventual huge non linearities and hidden patterns between 

the input data and the labels present in the physical problem. The advantages of 

implementing a DNN come at the expense of a much higher computational effort, 

necessary for training the DNN itself. To create our DNN we use Keras, a user-friendly 

front-end API for TensorFlow. The architecture of our DNN consists of an input layer 

with seven neurons (one for each thickness partition), an output layer with two neurons 

(one for each label: E* and Pcr), and five fully connected hidden layers. The first and 

last hidden layer has 32 neurons, while the three central layers have 64 neurons. For the 

activation function, we use the relu function for all the layers except the output one, 

where we implemented a linear activation function, commonly used in regression tasks. 

To minimize the loss function, we exploited the Adam optimization algorithm. To 
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properly train the DNN and its parameters, we run a total of 100 epochs with a batch 

size of 10.  

For all three models the goodness of the fitting is evaluated with the R2 score, which expresses 

the fraction of information reconstructed by the model. The three ML models analyzed in this 

study are built and run using Google Colab. 

 

 

Results 

 
Figure 3 - Results of the three metamodels implemented: (a) Linear Ridge Regression, (b) 

Kernel Ridge Regression and (c) Deep Neural Network. In the figures are reported the 

distribution of the structure stiffness and critical buckling load together with the R2 and the 

optimal structure predicted by the algorithm. It has to be noticed that the y-axis has logarithmic 

scale to highlight the differences between the calculated and predicted structures on the tails 

of the distribution. 
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Figure 3 shows the outcomes of our metamodels. The plots show the results in terms of structure 

stiffness and critical buckling load for the three adopted ML algorithms, together with the R2 

score. Note that the R2 is calculated on the output vector, so it takes into account both the 

structure stiffness and the buckling load. Figure 3b,c also displays the optimal thickness 

distribution along the honeycomb cell wall predicted by the KRR and the DNN. The outcome 

of the simulations shows the potential of ML algorithms in terms of computational time with 

respect to the classic FE analysis approach. Computing 1000 different geometries in ANSYS 

takes approximately 3 hours of computational time, while to run the DNN, which is the most 

time-demanding implemented algorithm, it takes 75 seconds for the training and approximately 

one-tenth of a second to predict the behavior of 500 new structures; the same calculation by 

classic FE analysis requires 2 hours of CPU time, while using a ML approach the computational 

time was approximately 0.1 s, making ML algorithms ~105 faster than the FE method. This 

result is in line with previous studies, where different problems were addressed with a similar 

methodology. As we said before the FE simulations are run on a workstation, while the ML 

algorithms are run on Google Colab. However, even though we used different machines the 

computational time can be compared. In fact, from the author’s experience Google Colab 

provides computing power similar to the workstation used for the FE simulations. This was 

assessed running the same script on both and comparing the computational time.  

The plots in Figure 3a-c represent the number of different structures, of the validation test set, 

that have a specific value of K and Pcr. The grey shadow refers to the structure calculated via 

FE analysis while the blue shadow represents the structure predicted by the different ML 

algorithms. Note that all plot y-axes are in logarithmic scale. This makes it easier to see eventual 

differences on the tails, that with a linear scale will not be seen graphically. 

 

Figure 3a shows the results for the linear regression model. As we can see the LRR has very 

poor performance. The LRR can only predict structures within a very narrow range of stiffness 

and critical stress that does not match the numerical simulations, meaning that the model is too 

simple to grasp the complexity of the analyzed phenomenon, where several non-linearities are 

present. Better results are obtained with the KRR(Figure 3b); the FE simulations and ML 

prediction distributions are much more overlapped, meaning that the metamodel predicts well 

the behavior of the simulated structure. Also, the R2 score is good (R2=0.963). However, the 

tails of the distributions are not well reconstructed, meaning that outlier’s point can experience 

a distortion in their prediction, leading the algorithm not to being able to grasp their qualities. 

This is a crucial aspect in our study since we are particularly interested in the correct prediction 

of outliers. Indeed, our goal is to find structures that exhibit optimal physical properties, and 

such structures are far away from the mean of the labels’ distribution. For this reason, it is 

mandatory for us that the algorithm, besides accurately predicting the overall behavior, is also 

able to precisely reconstruct the tails distribution. With DNN we are able to reach a very good 

representation of both the overall behavior and the tails (Figure 3c). This result can be inferred 

both graphically and from the R2 value (R2=0.983). Comparing the results of the KRR and the 

DNN they seem very similar in terms of accurate reconstruction of the overall behavior of the 

different structures; the R2 scores are also very close, which further supports this outcome. 

However, the 2% increase in the R2 score of the DNN is crucial. On the hand, this improvement 

leads to a better representation of the outliers, which are the best performing structures. On the 

other hand, it comes at the expense of a higher computational time required for the algorithm 

training. Due to its more complex architecture, DNN training time is 250 times higher than the 

KRR (ttrain,DNN = 75 s ttrain,KRR = 0.3 s). In our study, since the variables are few and the model 

is not extremely complex, this higher computational effort is justified by the fact that we are 

better at predicting the best-performing structures. However, this is an aspect that has to be 

evaluated when scaling to bigger datasets.  
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Comparing the performances of the optimal structures predicted by the DNN (Figure 3c) with 

those of the reference structure (i.e., the constant-thickness honeycomb), we can see that with 

our approach we reach a three-fold improvement in the structure stiffness (the analytical out of 

plane stiffness is about 23 MPa) and a four-fold improvement of the critical buckling stress (the 

analytical critical buckling stress is 2.6 MPa). Additional details are provided in the 

Supplementary Information. 

 

 

 

Figure 4 – Specific energy absorption distribution of structures calculated via FE analysis 

(grey) and the DDN ML algorithm (blue).  

Also, as we would have expected, optimal honeycomb cells have a variable wall thickness along 

the out-of-plane direction. Similar results are reported in [ref], in which the authors 

demonstrated that tapered wall thickness honeycomb outperforms flat wall thickness 

honeycomb in energy absorption applications.  

 

Figure 4 displays the results in terms of energy absorption, which is considered the parameter 

that combines the structure stiffness and critical buckling load, allowing a direct comparison 

among different structures. The results reported here are those obtained with the DNN. Again 

the y-axis is in logarithmic scale, and as we can see there is an extremely good prediction also 

on the tails. In the case of the absorbed energy, we get a 20-fold improvement with respect to 

the reference geometry (constant-thickness honeycomb).  

 

Figure 5 shows the comparison between the natural structure thickness distribution and that 

predicted by the DNN. The structure predicted by the DNN shows a similar trend to the natural 

one: both structures show a thinner and cross-section in the central region and a thicker section 

at the top and the bottom. Clearly, the natural thickness distribution is much smoother, but this 

issue can be easily overcome by increasing the number of partitions in the honeycomb wall. 

This result is in line with what we were expecting, considering the theoretical behavior of thin 

structures under compression. 
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From the presented results we can clearly see the potential of the ML approach instead of the 

classic FE analysis. In fact, starting from a relatively small number of analyzed geometry we 

were able to exponentially expand the design space, finding the optimal thickness distribution 

that maximize the energy absorption capacity. Another important aspect is that the ML model 

takes into consideration not only the absorbed energy, but also the structure stiffness and the 

critical buckling load. This is important for two reasons: (i) forcing the model to fit also K and 

Pcr and not only the absorbed energy, we are forcing it create a function between the input and 

the output that try to describe the physical phenomenon; (ii) having as output from the FE and 

the ML algorithm K and Pcr we can have an immediate comparison with the analytical models, 

at least for the simpler geometries (i.e., the constant thickness wall unit cell). Also this approach 

demonstrated to be extremely flexible and modular, being adaptable at different and geometries, 

with different control parameters (i.e., stiffness, buckling load, absorbed energy, strength, etc), 

allowing the optimization of countless structures with respect to different parameters. 

 

 

Figure 5 - Natural structure vs optimal predicted structure. Images modified from [39] (CC 

BY 4.0). 

 

Conclusion 

 

 

In this paper, we have developed an approach to design improved honeycomb structures for 

energy absorption application using an ML-based optimization technique. Three different ML 

algorithms, with different approaches are used: Linear Ridge Regression, Kernel Ridge 

Regression and Deep Neural Network. First of all, we create the geometries by defining a seven-

dimensional vector describing the wall thickness distribution, while the 2D output vector 

describing the honeycomb performance in terms of structure stiffness and critical buckling load 

is calculated via FE simulation. The KRR and the DNN show good fitting on the data and are 

able to capture the non-linear behavior of the structure, while the linear model is too simple to 

describe the phenomenon. Indeed, the data regression-based metamodels allow one to: i) deepen 

the knowledge of the material design space, ii) find the optimum condition for a given 

application, and iii) tailor its properties to meet specific requirements for a chosen application, 

all in a fraction of time with respect to the classic FE analysis. To conclude the approach 

proposed in this work for the prediction of optimized energy absorption structures seems to be 

very promising for the definition of improved structure design with reduced computational 

effort, making ML algorithm more appealing for advanced material design than classical FE 

approaches. 
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