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ABSTRACT

Group contribution (GC) methods are widely used for predicting the thermodynamic properties of
mixtures. They divide components into structural groups, which can be combined freely so that the
applicability of a GC method is only limited by the availability of its parameters for the groups of
interest. For describing mixtures, pairwise interaction parameters between the groups are of prime
importance. Finding suitable numbers for these parameters is a demanding task and is often impeded
by the lack of suitable experimental data. We address this problem in the present work by using
matrix completion methods (MCMs) from machine learning to predict missing group-interaction
parameters. This new approach is elaborated by applying it to a practically highly relevant case, the
group contribution method UNIFAC for predicting activity coefficients in mixtures. An MCM is
developed that yields the complete set of parameters for the first 50 main groups of UNIFAC, which
substantially extends the scope and applicability of UNIFAC. The quality of the predicted parameter
set is evaluated using vapor-liquid equilibrium data of binary mixtures from the Dortmund Data Bank:
our approach yields comparable prediction accuracies as UNIFAC for data sets to which UNIFAC
was fitted, and only slightly lower accuracies for data sets to which UNIFAC is not applicable.

1 Introduction

Methods for predicting thermodynamic properties are of paramount importance in chemical engineering, simply because
there are too many relevant substances to study them all in experiments. The scale of this problem soars when going
from pure components to mixtures, for simple combinatorial reasons. Also methodologically, predicting properties of
mixtures is a demanding task. It can be tackled basically from two sides: on the one hand, one can look for similarities
between substances (which is basically a data-driven approach), on the other hand, one can try to base predictions on
physical theory.

The most successful methods in the field combine these two aspects. Among these, methods that rely on the concept of
group contributions (GC) play an important role. They are based on the idea that components can be characterized by
the structural groups they contain and take advantage of the fact that the number of relevant structural groups is many
orders of magnitude smaller than the number of relevant components. As a consequence, GC methods can be used for
describing a very large number of components based on a relatively small number of group-specific parameters: any
component that can be built from groups, for which parameters are available, can be modeled.
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Basically all thermodynamic models of mixtures rely on describing pair interactions. Component-specific models, like
UNIQUAC [1}12] or NRTL [3], thereby describe the pairwise interactions between components using component-specific
pair-interaction parameters, which need to be fitted to experimental data. Usually, data for binary mixtures are used for
this purpose, which means that for modeling multi-component mixtures, binary mixture data are needed for all binary
subsystems of the studied mixture. Unfortunately, due to the combinatorial problem, even data for binary mixtures are
often missing, which strongly limits the applicability of the component-specific models.

GC methods circumvent this problem. By dividing components into structural groups, GC methods only rely on
group-specific pair-interaction parameters, namely group-interaction parameters, which are fitted to experimental
mixture data, whereby the amount of required training data compared to component-specific models is significantly
reduced.

One of the most successful thermodynamic group contribution method for mixtures is UNIFAC, which was first
introduced in 1975 [4] and has been significantly extended and refined since then [} 16, [7} 18} |9} [10]]. Also, several
tailored versions of UNIFAC fitted for specific applications are available [11, 12} [13]]. And there is also a commercial
version of UNIFAC, provided within the UNIFAC-Consortium, which is based on the same model equations as the
public versions of UNIFAC, but whose parameter tables have been revised and extended on a regular basis since
1996 [14]] using both public data and non-public data provided or generated within the consortium. The scope of the
commercial version is therefore larger than that of the public versions of UNIFAC. Since the commercial version is
not freely accessible, we focus here on the most recent public version of UNIFAC [10], to which we refer simply as
UNIFAC in the following for brevity. The authors have also access to the commercial version of UNIFAC, called
UNIFAC-TUC in the following, but this version is used for comparisons only.

UNIFAC was derived from the component-specific lattice model UNIQUAC [1} 2] and describes the molar excess Gibbs
energy g" of a mixture as a function of temperature 7" and composition . Both energetic and entropic contributions
to g¥ are considered in the model. All versions of UNIFAC use geometric parameters for the individual structural
groups, which describe their volume and surface and determine the entropic contribution. Furthermore, parameters
describing the pairwise energetic interactions between the different structural groups in the mixture are used. These
group-interaction parameters play the central role in the model.

From the Gibbs excess energy g, many properties that are essential in chemical engineering can be determined, most
importantly the activity coefficients -y; of the components 7 in the mixture, based on which phase equilibria can be
predicted [[15]. Over the years, many structural groups have been included in the UNIFAC parameter tables, so that
a huge number of components of practical interest can be modeled. UNIFAC presently considers 54 main groups,
which are further divided into 113 sub groups [10]]. The difference between main and sub groups is that each sub group
g has individual geometric parameters, namely the group volume R, and group surface area @, [16]], while all sub
groups that belong to the same main group G share the same group-interaction parameters. There are two distinct
group-interaction parameters for each binary combination of different main groups (G, G'); they are generally labeled
as Agg’ and Agr g, and have, as a result of the fit, usually different values, i.e., Agg’ # A .

While (), and R, are reported for 113 individual sub groups, there are still significant gaps regarding the group-
interaction parameters Agg and A between the 54 main groups: there are 1,431 distinct binary combinations of
unlike main groups (G # G’), for which only for 635 (44%) group-interaction parameters have been reported yet.
Figure[I]schematically shows the publicly available set of group-interaction parameters between the first 50 main groups
of UNIFAC [10]. The first 50 main groups were chosen here since for all of these, group-interaction parameters with at
least five other main groups are publicly available to date. This threshold was chosen since, as described in detail below,
the missing group-interaction parameters were predicted based on information from the available parameters only. For
the sake of completeness, Figure S.1 in the ESI shows for which of the group combinations parameters are available in
the commercial UNIFAC-TUC.

Hence, the availability of the parameters describing the individual groups R, and (), generally poses no problem,
whereas missing group-interaction parameters Agg and Ag g significantly limit the applicability of all versions of
UNIFAC. The main reason why these gaps still persist, after so many years of work on the development of UNIFAC, is
that the data base for their determination is simply too narrow. There are structural groups that occur in many molecules,
such as the methyl group or the hydroxyl group, and there are less common groups. It is particularly these less common
groups for which the parameters are lacking. This is not to say that these groups do not occur in interesting components,
but there are simply less data on binary mixtures containing components with these groups. It is evident that this causes
problems in the parameterization of UNIFAC.

A further drawback is that fitting group-interaction parameters is still not a routine, but rather artwork, in particular
regarding the selection of the considered data sets, including their initial evaluation and consistency checking, and
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Figure 1: Matrix representing the availability of group-interaction parameters of UNIFAC [10] up to main group 50.
Blue: parameters available.

regarding the selection of a suitable objective function to be minimized during the fitting procedure. For a more detailed
description of the fitting procedure of UNIFAC group-interaction parameters, we refer to the literature[ 15, |17, [18}, [19].

In this work, we present a method for the prediction of the complete set of the group-interaction parameters of group
contribution methods based on an existing parameter set, without requiring new experimental data. The basic idea is
to consider the group-interaction parameters as entries of a squared matrix (which is only partially filled, as several
parameters are missing), and to use a matrix completion method (MCM) [20, 21] to estimate the missing entries.
To demonstrate the applicability of our approach, it is applied to UNIFAC [10], for which the complete set of the
group-interaction parameters for the first 50 main groups is predicted. Figure S.2 in the ESI gives an overview of our
approach.

Following an idea developed in a recent paper [22], in which we have applied an MCM for estimating the component-
specific pair-interaction parameters of UNIQUAC, we do not use the asymmetric group-interaction parameters (Aggs #
Agrq) directly, but rather the symmetric group-interaction energies Ugg: = Ugr . The parameters of the two types (A
and U) are connected by:

Acer =Uge —Ugrcr

ey

Acqg =Ugq —Uga

Hence, according to Eq.|l} Agg and Ag/¢ are not independent but correlatedﬂ Despite this, for parameterizing
UNIFAC, Aggr and Agr ¢ are usually considered to be uncorrelated. The fitting then results in a parameter set that
does not comply with Eq.[T} cf. Ref [22]. Our approach overcomes this inconsistency.

In a series of recent papers, we have demonstrated the capabilities of MCMs for predicting different types of ther-
modynamic data of mixtures using various component-based approaches [23) 24, 25| 26] 27, [22]]. However, these
component-based approaches are inherently limited regarding the number of components that are covered; the respective
models complete a matrix spanned by the components that are part of the mixtures in the training set. This is not the
case for the group contribution methods, which we consider in the present work: as the groups form building blocks
from which components can be created flexibly, the scope of the group contribution methods for mixture properties
is inherently extremely large — and it can now be extended substantially by using an MCM to complete the set of
group-interaction parameters.

The approach we propose here should also be applicable to any other version of UNIFAC, and to other group contribution
models for predicting thermodynamic properties of mixtures that are based on pair interactions. One advantage of
our approach is that it can be put into practice, e.g., be integrated into existing process simulators, in a very simple

3For an N-component mixture, there are N2 — N asymmetric pair-interaction parameters of the A-type (the diagonal remains
empty or is filled with zeros), while there are (N — N)/2 4+ N symmetric pair-interaction energies of the U-type (the diagonal is
occupied by the pure-component energies, but only one of the triangular matrices has to be filled due to the symmetry). It is always
possible to determine the A-parameters from the U-parameters, but not vice versa.



and straightforward manner: one only has to replace the existing UNIFAC parameter set of the model implementation
by the predicted one provided with our approach. For other machine-learning approaches, like artificial neural
networks operating on molecular graphs [28) 29] or SMILES representations of the components[30]], this might be
more complicated in practice.

2 Method

We demonstrate the applicability of using MCMs for the prediction of group-interaction parameters of thermodynamic
group contribution methods by applying it to UNIFAC [10]. The resulting new version of UNIFAC (in which the
predicted new parameters are used) is called UNIFAC-MCM in the following.

The MCM that was used in the present work is based on Bayesian matrix factorization [31] and similar to the ones
used in our previous works[23| 24} 25 [2'7, 22]]. In principle, we could have applied the MCM directly to the matrix of
the A-type parameters, i.e., the matrix containing the group-interaction parameters Agg: and Ag. However, this
option was discarded for the following reasons: firstly, the available values for Agg and Agr ¢ are inconsistent with
Eq.[1] Also, fitting Agg' and Ag ¢ to mixture data can give different combinations of these parameters yielding
basically equivalent results for the physical properties to which they were fitted [32]. This hinders an interpretation of
these parameters and makes them poor candidates for applying an MCM. These problems were overcome by working
with the group-interaction energies Ugg as explained below. Furthermore, in applying the MCM to the A matrix,
the target function would have been to achieve an optimal representation of the A-type parameters. However, with
UNIFAC-MCM, we are rather interested in an optimal description of activity coefficients than in a representation of
model parameters. UNIFAC-MCM was therefore trained on pseudo-data for activity coefficients as described in the
next section.

2.1 Training Data

As training data for UNIFAC-MCM, we have generated pseudo-data for the logarithmic activity coefficients In vy in
hypothetical binary mixtures of the "pure main groups’ of UNIFAC (G and G") at different temperatures and group mole
fractions. Here, In ygg represents the logarithmic activity coefficient of G in the binary mixture with G’. For any given
temperature and mole fraction, there are two distinct values In v and In ¢, respectively, which can be represented
in a matrix. The diagonal elements of this matrix are occupied with ones by definition and were not considered here.
For simplicity, we will simply speak of In vz in the following referring to that matrix, which includes the values from
both triangular matrices, In v/ and Inyg/ .

Specifically, we have calculated In vy for all binary combinations of the first 50 main groups of UNIFAC for which
the required parameters were available, which holds for 619 combinations (or 50.5% of all possible binary combinations
of these main groups). The grid was spanned by 7" € {250, 300, 350, 400, 450} K for the temperature, which covers
the temperature of most of the available experimental data, and z¢ € {0.01,0.2,0.4,0.6,0.8,0.99} mol/mol for the
composition.

For generating the pseudo-data for In yg -, the UNIFAC equations (cf. Egs. S.1 - S.11 in the ESI) were used in the
common manner for hypothetical components that were composed of a single main group in all cases. For main groups
G with several sub groups g (with individual geometric parameters (), and R,), the values of ()4 and R, for one of the
respective sub groups were selected, for details see Table S.1 in the ESI. In principle, UNIFAC-MCM could also be
trained on data for the residual part of the activity coefficients alone, which describes the energetic interactions (cf. Eq.
S.7 in the ESI), because the interaction parameters only occur in this term. We have also tested this option and found
the results very similar to those reported here, as expected.

2.2 Matrix Factorization

At its heart, UNIFAC-MCM factorizes the matrix of group-interaction energies U’ between UNIFAC main groups G
and G’. The unlike Ugg' (G # G') are modeled as the sum of two dot products:

Ucgr =Uqg =0 - Ba +ba' - Ba )

where 6 and B¢ as well as 6/ and S+ are vectors of length K containing a-priori unknown (latent) features of the
UNIFAC main groups G and G’, respectively. 0q, B, 0, and B¢ are parameters of UNIFAC-MCM, while K is a
hyperparameter that controls the number of features considered per main group and thereby determines the flexibility
of the model. Based on results of our prior work [22], K was set to ' = 3 here. The form of Eq. [2] was chosen to
ensure that all resulting group-interaction energies are symmetric, as required by the lattice model. Besides the unlike



interaction energies, also like group-interaction energies Ug are needed, cf. Eq.[I] They were not included in the
factorization (Eq. 2) but determined directly in the fit.

For training UNIFAC-MCM on the pseudo-data for Inyg¢s, cf. Section *Training Data’, the matrix factorization
of the group-interaction energies Ugcr, cf. Eq.[2] as well as Eq.[I] which relates the Ug¢- to the group-interaction
parameters Ag s, were embedded in the UNIFAC equations, cf. Eqs. S.1-S.11 in the ESI. This establishes a generative
probabilistic model for the In vy . The training data were hence modeled by:

Invyee (T, xq) = UNIFAC(T, z¢, 8¢, 0c, Ba, Ber s Uca, Uarar) + ecar 3

where cggs is the deviation between the modeled Invyggs and the training data. The model parameters
0c,0¢, Bc, Ba,Uga, and Ugigr were fitted in a Bayesian framework to minimize these deviations. For more
details on the implementation of the model and the training procedure, we refer to the ESI.

2.3 Prediction of UNIFAC Group-Interaction Parameters

UNIFAC-MCM only contains parameters for the *pure’ main groups, namely 0, 8¢, 0¢, Ba’, Uaa, and Ugi g,
which were fitted to the *group-mixture’ data, namely the pseudo-data for In g/, during the training of the model
as described above. Based on the learned parameters, the group-interaction energies Ug of all combinations of the
considered main groups can be calculated based on Eq.[2] from which, in turn, the commonly used group-interaction
parameters of UNIFAC Ag¢ and A/ can be predicted from Eq.[I] Hence, a complete parameterization of UNIFAC
regarding the first 50 main groups is obtained by this procedure, which can be used for predicting temperature- and
concentration-dependent activity coefficients In y; of all components ¢ in any (binary or multi-component) mixture, if
all components that make up the mixture can be segmented using the first 50 main groups of UNIFAC. We report the
predicted complete set of Aggs (and of Ugg-) as .CSV file in the ESI. Note that this set of A is consistent in terms
of fulfilling Eq.|l|as demanded by the lattice theory, which is in contrast to the previously available UNIFAC parameter
tables that were obtained by fitting A individually.

The latter also explains why a direct matrix factorization of the reported Ag- is not expedient, and instead the
pseudo-data for In g+ were used for training UNIFAC-MCM,; the reported A matrix simply lacks structure that
could be exploited by the MCM.

3 Results and Discussion

In the following, we evaluate the quality of UNIFAC-MCM by considering predictions of vapor-liquid equilibria (VLE),
which is probably the most important field in which activity coefficients are applied. As basis for this evaluation, we
have used all VLE data sets for binary mixtures from the Dortmund Data Bank (DDB) [33} 134} [35]] that comply with the
following conditions:

* both components of the mixture can be built from the first 50 main groups of UNIFAC [10];

* the data set contains information on temperature, pressure, and composition of the liquid and vapor phase;

* the data set is labeled as "thermodynamically consistent’ in the DDB, i.e., it fulfills area and point-to-point
test [136, 137, 138];

* Antoine parameters for calculating the pure-component vapor pressure at the temperature of the VLE are
available in the DDB for both components;

* the pressure is not higher than 10 bar to justify the assumption of an ideal gas phase.

In the present version of the DDB, such VLE data are available for 2,246 distinct binary systems. We will call this
complete set of binary systems ’complete horizon’ in the following.

The VLE were predicted using extended Raoult’s law assuming an ideal vapor phase and a pressure independence of
the chemical potentials in the liquid phase:

(1) 2 vi(T, %) = pyi 4)
For the calculations, the mole fractions x; in the liquid phase as well as either the pressure p (for isobaric data sets)
or the temperature 7" (for isothermal data sets) were specified, the pure component vapor pressure p; was calculated
with the Antoine equation using the parameters from the DDB, and the activity coefficients 7; of the components in
the liquid phase were predicted with UNIFAC-MCM. The mole fractions y; in the vapor phase and the pressure p (for
isothermal data sets) or the temperature ' (for isobaric data sets) were then calculated from the system of equations

resulting from applying Eqn. ] to both components. The results were compared to the experimental data from the DDB,
with a focus on the gas phase mole fractions of the low-boiling component.



For comparison, the same calculations were also carried out with UNIFAC [10]; albeit, this is only possible for a
subset of 2,068 systems from the complete horizon ("UNIFAC horizon’). At a first glance, it may look disappointing
that by using UNIFAC-MCM, with its substantially enlarged parameter table, only 178 additional systems for which
data are available can be modeled. However, this is as expected: the lack of data on these systems has hindered the
extension of the UNIFAC parameter table so far. Furthermore, we have also used the commercial version UNIFAC-TUC
for comparison, which enabled predictions of VLE for 2,237 of the studied systems ("UNIFAC-TUC horizon’). We
have included the results from UNIFAC-TUC in the comparison (even though it is not publicly available) for two
reasons: firstly, it is the best available benchmark method and, secondly, it allows to evaluate the predictive performance
UNIFAC-MCM also on systems that can not be modeled by UNIFAC, which is the basis of UNIFAC-MCM.

The results are shown in Figure[2] where the horizons in the three panels differ: in the left panel, it is the complete
horizon, in the middle panel, it is the UNIFAC-TUC horizon, and in the right one, it is the smallest horizon, that of
UNIFAC]10].
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Figure 2: Mean Absolute Percentage Error (MAPE) of the predicted vapor-phase mole fractions of the low-boiling
component in VLE with UNIFAC-MCM for the ’complete horizon’ (2,246 systems, left) and comparison to the
commercial UNIFAC-TUC for the "UNIFAC-TUC horizon’ (2,237 systems, middle), and to the public UNIFAC [10]
for the "UNIFAC horizon’ (2,068 systems, right). Error bars denote standard errors of the means.

The results obtained with UNIFAC-MCM on the complete horizon are shown in Figure [2] (left), where the Mean
Absolute Percentage Error (MAPE) in y; of the low-boiling component of the predictions with UNIFAC-MCM averaged
over all 2,246 systems is plotted, which was calculated by comparing the UNIFAC-MCM predictions system-wise to
the respective experimental data from the DDB. As the results indicate, UNIFAC-MCM predicts the vapor-phase mole
fractions for all 2,246 studied binary systems with an average error of 5.3%, which is not much larger than the typical
uncertainty of experimental data for vapor-phase mole fractions. The MAPE of UNIFAC-MCM in the pressure p,
averaged over all isothermal data sets from the complete horizon, is 5.0£0.2%; the MAPE in the absolute temperature
T in K, averaged over all isobaric data sets from the complete horizon, is 0.48+0.02%.

In the middle panel of Figure[2] the performance of MCM-UNIFAC is compared to that of UNIFAC-TUC, and in the
right panel, it is compared to UNIFAC [10] as well as to UNIFAC-TUC. The highest accuracy among the three models
is found for the commercial UNIFAC-TUC (MAPE of 4.6% on the UNIFAC-TUC horizon, cf. middle panel, and 4.2%
on the UNIFAC horizon, cf. right panel), which is not surprising since a lot of effort has been put into refining its
parameterization during the last decades. However, the scores of UNIFAC-MCM (MAPE of 5.3% on the UNIFAC-TUC
horizon, cf. middle panel, and 4.7% on the UNIFAC horizon, cf. right panel) are only slightly worse than that of
UNIFAC-TUC.

On the UNIFAC horizon, cf. Figure[2](right), the scores of UNIFAC-MCM (MAPE of 4.7%) and of the public UNIFAC
(MAPE of 4.5%) are very similar. This demonstrates two things: first, that the additional flexibility of the UNIFAC
model achieved by the inconsistent individual fitting of group-interaction parameters Aggs and Agrg compared to the
sole physical consideration of group-interaction energies Ui (including the like group-interaction energies Ug g and
U ) is unnecessary; for the complete matrix of the considered 50 main groups of UNIFAC, there are 2,450 distinct
group-interaction parameters Aggs and Ag ¢, but only 1,275 distinct group-interaction energies Ugg- (including 50



like energies Ug ). And second, the MCM, which is at the heart of UNIFAC-MCM, is able to capture the structure
within the unlike group-interaction energies using six latent parameters for each main group.

It is interesting to also study the performance of UNIFAC-MCM and UNIFAC-TUC only for those systems that cannot
be modeled with UNIFAC [10]]; this gives an impression of the performance of UNIFAC-MCM when applied for
true predictions, namely for systems containing combinations of main groups for which no interaction parameters of
UNIFAC are available, as it is unlikely that data on any of these systems were used in the development of UNIFAC [10],
on which UNIFAC-MCM is based. In contrast, it may be assumed that basically all these additional VLE data were
used for the development of UNIFAC-TUC, so that for UNIFAC-TUC, such a comparison shows basically only if
the correlation of these additional data was successful. The respective results are presented in Figure [3] Most of the
systems within the complete horizon can be modeled not only with UNIFAC-MCM but also with UNIFAC-TUC. The
few systems for which this is not the case, are treated separately in Figure [3] (left panel).
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Figure 3: Mean Absolute Percentage Error (MAPE) of the predicted mole fraction of the low-boiling component in the
vapor phase in VLE with UNIFAC-MCM for the systems that can only be modeled by UNIFAC-MCM (left, " MCM
only’, 9 systems), and those systems that can also be predicted with UNIFAC-TUC but not with UNIFAC (middle,
"UNIFAC-TUC only’, 169 systems). Error bars denote standard errors of the means.

The first message from Figure [3]is that the deviations increase compared to the ones shown in Figure 2} which holds
both for UNIFAC-TUC and UNIFAC-MCM. Averaged over all systems that can be modeled by both models (but
not by UNIFAC), cf. Figure [3| (right), the MAPE for UNIFAC-TUC is now 9.0%, that for UNIFAC-MCM is 12.7%.
However, considering that the results from Figure 3] obtained with UNIFAC-MCM are bold predictions, while those
from UNIFAC-TUC are basically only correlations, the difference between both methods is unexpectedly small.

Comparing the results from Figure 3] with those from Figure [2]is most informative when referring to Figure 2] (right),
where the UNIFAC horizon is shown, because it then gives an impression on the changes when carrying out the
comparison for complementary data sets: the UNIFAC horizon, for which the results are shown in Figure [2] (right),
covers all systems that can also be modeled by the public UNIFAC; Figure[3] on the other hand, shows the results for all
remaining systems from our data set, i.e., for the ones that cannot be modeled by the public UNIFAC.

Carrying out this comparison for UNIFAC-TUC (for which the results are correlations in both cases) clearly shows that
the systems studied in Figure [3|are more difficult to describe than those studied in Figure 2] (right). We are not going
into the details of these additional difficulties, which can be related to different factors, including spotty and uncertain
data (cf. also Figure S.3 in the ESI) as well as to the fact that many of the respective systems contain components with
special properties (highly halogenated or reactive components), which substantially complicates the accurate modeling
with UNIFAC.

Hence, the results for UNIFAC-TUC indicate that most of the increase of the MAPE scores observed also for UNIFAC-
MCM when going from Figure 2] (right) to Figure[3]is simply due to the increased difficulties in describing the data
considered in Figure|3| and, thus, cannot be attributed to a lack of predictive power.



We only note here that the scope of the developed UNIFAC-MCM is much larger than we can demonstrate here, simply
due to the fact that for many of the group-interaction parameters that can now be predicted, no experimental data for
testing are available, cf. Figure S.3 in the ESI. An alternative representation of the results of UNIFAC-MCM in the
form of histograms is given in Figure S.4 in the ESI.

In Figure [d we show some typical examples for the prediction of vapor-liquid phase diagrams with UNIFAC-MCM
and compare the results to those obtaiend with UNIFAC-TUC. Only systems that cannot be modeled by the public
UNIFAC version were therefore chosen, such that the results of UNIFAC-MCM are true predictions. This is, again, not
the case for UNIFAC-TUC, as the data shown in Figure 4] were available for the development of the method. In all
cases, UNIFAC-MCM represents the different types of phase behavior well.
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Figure 4: Prediction of vapor-liquid phase diagrams for binary systems with UNIFAC-MCM (solid lines) and UNIFAC-
TUC (dashed lines) and comparison to experimental data from the DDB (symbols). For each system, the MAPE in the
predicted vapor-phase mole fraction of the low-boiling component is given for both models. All shown systems can not
be predicted with the public UNIFAC version. Blue: dew point curves. Red: bubble point curves.

In Figure[5] we show two further examples for the prediction of VLE phase diagrams with UNIFAC-MCM. The chosen
systems can neither be modeled by the public UNIFAC, nor with the commercial UNIFAC-TUC due to missing group-
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Figure 5: Prediction of vapor-liquid phase diagrams for binary systems with UNIFAC-MCM (lines) and comparison to
experimental data from the DDB (symbols). For both system, the MAPE in the predicted vapor-phase mole fraction of
the low-boiling component is given. Both systems can neither be predicted with the public UNIFAC version, nor with
the commercial UNIFAC-TUC. Blue: dew point curves. Red: bubble point curves.

interaction parameters in both models. We observe an almost perfect agreement of the predictions with UNIFAC-MCM
and the experimental data, but note that we also find systems with poorer agreement, cf. Figure S.4 in the ESI.

UNIFAC-MCM should in general be used in cases in which required group-interaction parameters of UNIFAC are
missing, while in cases in which all parameters are available, we recommend using these. The reason is that UNIFAC-
MCM is basically a derivate of UNIFAC, i.e., based on the available parameter tables, and it would only be by chance
were it better than its basis for certain systems. However, we emphasize that the differences between UNIFAC and
UNIFAC-MCM are not expected to be large, as shown in Figure[2]

4 Conclusions

Group contribution methods for the prediction of thermophysical properties are highly important in chemical engineering.
One of the most successful of these methods is UNIFAC. However, the applicability of UNIFAC is still substantially
hampered by missing group-interaction parameters, which is in particular due to the lack of suitable mixture data
for fitting the parameters. As a consequence, there are still significant gaps in the matrix in which these UNIFAC
parameters are usually represented.

In the present work, we present an approach to complete the group-interaction parameter set of UNIFAC using a matrix
completion method (MCM) from machine learning. Our approach, called UNIFAC-MCM, was trained in a purely
data-based manner solely on pseudo-data generated with UNIFAC, and approximately doubles the number of available
group-interaction parameters.

We have evaluated the performance of UNIFAC-MCM for the prediction of vapor-liquid equilibria (VLE) of 2,246
binary systems from the Dortmund Data Bank. This set can be divided into data that can be predicted with the public
UNIFAC (2,068 systems) and data for which this is not the case, but which can be predicted with the developed
UNIFAC-MCM (169 systems). The latter set is comparatively small, as the missing groups in UNIFAC are rather
uncommon ones, i.e., only present in components for which only few data have been measured.

Where a direct comparison is possible, UNIFAC and UNIFAC-MCM show a similar performance. This alone is
astonishing since UNIFAC-MCM is based only on consistent group-interaction energies, whereas in UNIFAC the
number of the parameters to describe the pairwise interactions has almost been doubled, simply to increase the flexibility,
which is, however, not well founded in the physical lattice theory from which UNIFAC was derived. For the systems for
which UNIFAC can not be applied, the performance of UNIFAC-MCM is poorer but still acceptable, especially given
the fact the this set contains basically only demanding systems, as also the commercial version UNIFAC-TUC, which
we used for comparison here, shows significantly larger error scores.

This work has shown that working with consistent group-interaction energies is not only a feasible alternative to the
common procedure of fitting UNIFAC parameters, but also a highly attractive one: a similar quality is obtained by a
significantly smaller (approx. 50%) number of parameters, which promises a higher predictive performance and could



be useful also for the fitting of new UNIFAC parameters in the future. The predicted parameters provided in this work
might in general serve as valuable starting points for the future fitting of UNIFAC parameters to experimental data. In
future work, it will be interesting to include further structural groups in the model, to transfer our approach to other
group contribution methods for mixture properties, and to consider an end-to-end training, directly on experimental
VLE data.
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