
Holography For Satisfiability

Adewale Oluwasanmi
waleoluwasanmi@yahoo.com
Independent Researcher

Abstract

We present a discrete differential Nullstellensatz style result for find-
ing satisfiability/unsatisfiability proofs to any 3SAT formula, along with
novel upper bound results. We begin by defining a notion of holographic
algorithms sourced mainly from Valiant [1] and a topological interpreta-
tion drawn from the holographic principle [2] in physics. In our interpre-
tation, holographic instructions (and their accumulating sequences) live
as points on a differential manifold and are (partial with progression to-
wards totality) solutions to the 3SAT problem expressed in differential
form. These forms can be expressed as (implicit) polynomials generated
from ring expansions of an algebraic identity which Valiant says holo-
graphic algorithms must follow - a definition of algorithms with algorith-
mic identity based on an algebraic quantity (usually as sets of zeroes of
some polynomial), instead of traditionally as a sequence of instructions.
This definitional model which is summarized semantically in the follow-
ing formula for some problem p, forgetting the underlying model used to
obtain the quantity is:

∑
(sets of solutions/zeroes of p)

∏
(functional constraints on p))

Our result is that, if any solutions exist for a formula F recast into an
initial polynomial P (x) in some differential ring PR{x}, defined by the
above identity, then they are multiplicative set extensions of the minimal
solutions that our framework provides (they are values in a differentially
closed field) and that these values are exactly the zeros of ideals in the
ring of differential polynomials generated using P (x) reflexively itself as
a basis.

Restated, our main theorem says that there exists an integration pro-
cedure for computing a differential closure as a prime model M , consisting
of a single ideal, using P (x) as a basis, and when F is satisfiable, M is
either a satisfying saturation model OR there exists satisfying saturation
models derivable from M , where derivations are multiplicative interpre-
tations, that is, for natural numbers i, n and k and a set of inducible
interpretations S where all f are interpretations in S, t is the continuous
time variable and X is the set of all satisfying solutions:

1

∀F,∃M ⇒ ∀f, (n, f) ∈ S∂kf/∂kt : Mk → X,⇒ M =

∫
P (x)∂ix∂it, iff F is satisfiable.

The differential ideal generated, or more specifically, its field of co-
effficients, functions logically as an assignability predicate over solutions
in the original formula, and in line with Tarski, our procedure provides
an implicit model of truth over these predicates not directly expressible
within the logic exposed by the predicates themselves. This procedure
functions to yield an operator valued second order logic in line with Fa-
gin’s theorem, capable of exactly describing the (holographic) algorithms
that prove the 3 SAT formulae and therefore can be extended as an effi-
cient logic over the whole NP class.

1 Introduction

Before examining the details of the differential parts of our theory, it is useful
to first inspect its purely logical and model theoretic aspects.

The 3 Satisfiability problem is a popular problem in the field of computer
science notable for being one of the quintessential problems in theNP−complete
space. The full classification of the NP space as well as the question of whether
P = NP had the earliest developments in the combined works of Cook [3],
Levin [4] and Karp [5].

A brief description of the P vs NP problem is that it asks, if every problem
whose solution can be recognized in polynomial time by a non-deterministic
algorithm can also have the same solution generated in polynomial time (by a
deterministic algorithm).

In [3], solutions are encoded as language statements and generation/recognition
are treated uniformly as co-acceptance procedures (recognizers are information
symmetric to generators). We however propose that the distinction between
generation and recognition highlighted in our definition and in the holographic
literature already gives us a way to represent these 2 acceptance procedures
algebraically in the form of matchgates [6, 7] with language generators nested
on the inside (initial endpoint) of a structure that has language recognizers on
the outside (final endpoints) and a type of cancelation algebra between paths
as we move from the inside to the outside of such a structure (whether such an
algebra be polynomial or non-polynomial being of not much relevance at this
point).

Valiant is then right, in posing what we call the Holographic Conjecture:
That any positive resolution to the P vs NP question would need to address the
issue of asymmetry/limits of symmetry between the generation and recognition

2

procedures for this problem, and why the problem cannot be solved efficiently
using a holographic structure such as a match gate, a conjecture which we also
address here.

In their traditional form, satisfiability clauses take the form of bracketed
disjunctions over some subscripted variables, for example:

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ ∨ xn) up to any number of n variables.

Satisfiability formulae join these clauses by conjunction and allow variables
and their negations to be repeated in separate clauses, up to any number of
clauses, for example:

(x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ ∨ ¬xn)∧

(¬x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ ∨ xn) ∧ ...∧

(¬x1 ∨ x2 ∨ x3 ∨ x4 ∨ ∨ ¬xn)∧

(x1 ∨ x2 ∨ ¬x3 ∨ ¬x4 ∨ ∨ xn)

Satisfiability problems in this form then ask for a satisfying model, in this
case, a set of assignments to the unit variables in the formula’s clauses that
make all the enclosed clauses true. This satisfying assignment can be considered
a “flat” linear model (a model that has a single, completed interpretation).

One natural question to ask at this point is if higher dimensional models may
exist that are asymptotically reducible to flat models via interpretations (strings
of variable assignments) should the formula be satisfiable, and our answer to this
question is yes, a holographic model, which we describe formally. This model
is exactly the prime model, that is, the model detailing the least type, which is
the differential closure of a derivation procedure over some field K.

From a model theoretic perspective then, first, we assume that the Boolean
satisfiability problem has been reduced into its 3−SAT form which is necessary
for our procedure to work.

From this, we reduce the problem into a Holant [1] inspired differential
form, that is, a form that allows a certain holographic counting formulation (in
terms of zeroes of polynomials) as prescribed by Valiant [1] to be applied to the
problem. This form is structured so that:

All possible satisfying solutions, at any point in time, count as (assignable)
solution sets and satisfy this part of the Holant formula:∑

(sets of solutions of p)

3

Actual assignments count as the constraints that “flatten” the higher dimen-
sional model to select out a subset (and eventually just one) of the satisfying
assignments to the CNF formula and satisfy this part of the Holant formula:∏

(functional constraints on p)

It turns out that it is indeed difficult to get directly at this positive model,
where we assign satisfying values directly to variables, that is, we have no con-
cept of what variables are functionally assignable (or if any valid assignments
exist at all) initially. To continue, we have to further borrow from Tarski, the
idea of an inductive schema. This leads us to rephrase Tarski’s idea in terms of
assignability as:

We can obtain a model of assignability if we can obtain a model of unassignabil-
ity

or in more dynamic terms:

A statement is assignable if and only if it is not unassignable at some given
time t

Thus, the notion of unassignability becomes dual and drives the logic for
assignments holographically, and if we are still to adhere to Valiant’s algebraic
intuition on the clausal level, our main task now becomes to construct an algo-
rithm:

That induces a base model of unassignability AS A SUM OF IMPOSSIBLE
SOLUTIONS, dual to a co-induced model of A SUM OF POSSIBLE SOLU-
TIONS, AT ALL TIMES, from which assignments which function as CON-
STRAINTS can be combined to select one of the satisfiable solutions (contained
in the sum of possibilities), where this final selection, considered indexed by the
assignments, is the formal PRODUCT of applying the constraints.

Such an algorithm, if it exists, and we show that it does, would be a meta-
algorithm as per Tarski. Such an algorithm would also be a variety generated by
a second order differential polynomial ideal. The rest of the following sections
will detail the differential aspects of our theory, particularly, how to generate
the ideal if it exists via integration and how to extend the ideal to particular
solutions via differentiation:

2. The Simplest Holography of A Single Witness

3. Towards Complex Topological Union: Bi-Local Linguistic Collisions.

4. The Global Union Operation.

4

5. Putting It All Together- Witness Completion and Algorithmic Analysis.
Concluding sections include:

6. Implications For Theories of Computational Complexity and Com-
putability

7. Implications For Other Mathematical Fields.

8. Conclusions and Future Directions.

2 The Simplest Holography of A Single Witness

2.1 Implicit Differential Polynomials and their Zeroes

We start by describing a simple algorithm that always satisfies a single clause.
Firstly, note that it is a fundamental process axiom that for any standalone
3SAT clause, there are always 7 ways of satisfying such a clause. In fact, for
any standalone k − depth clause, there are exactly 2k − 1 satisfying solutions.
This means that out of the 2k ways of satisfying a clause, one of them is always
initially unassignable.

First assume that assignments take place over the binary field:

[1,−1]

This means functions on the sets of zeroes of an ordinary algebraic polynomial
that satisfy the clause take the form:

[1,−1]k → [1,−1]

Let our test integers come from some set represented by letters, that is,
[a . . . z], so that a positive (+1) truth value assigned to some random sub-
script can be represented by say the letter a and a negative (-1) by an oppositely
signed letter ¬a.

Now assume the set of assignments abc assigns true to all the variable in
some original formula, then the set of assignment -a-b-c assigns false to all the
variables. This statement is unassignable. The singleton set containing just
this one statement is our (starting) model of unassignability for a one clause
formula.

5

Now, consider the below procedure executed against the unassignment model
for the single clause. This procedure incorporates the notion of FREE and
BOUND assignments. Free assignments are those in which at the time when a
value is to be assigned to some unit variable, we have a free choice of assigning
the variable to either a true or false value and a bound variable is exactly the
opposite scenario, where the framework rules force us to assign the variable to
either one of these values:

1. Start by identifying the excluded solution for the given clause. Initially,
this solution is of some length x where x > 1. x = 3 in our case. For an
example, using our generic notation, assume the initial excluded solution
is -a-b-c.

2. Assign values freely to unit variables one by one, in a loop.

3. If the value freely assigned to any variable satisfies the original clause,
STOP. For example, if in our starting example, we assign a value a, b, or c,
we can stop.

4. Otherwise, if the current length of the excluded solution is GREATER
THAN 1, rewrite the excluded solution by requiring that the only combi-
nation of false assignments to the remaining variables be the new excluded
solution, that is, the old, excluded solution with one less integer, the in-
teger representing the unsatisfying assignment received. For example, if
in our starting example, we first assign a value of -a, obviously the un-
derlying clause is still unsatisfiable and so we rewrite the new excluded
solution as -b-c. Consider this a strengthening (old value is added to the
new one). This strengthening is now defined as an explicit SUM over
unassignable statements.

5. Otherwise, if the current length of the excluded solution is EXACTLY
1, we are now CONSTRAINED to change the sign on the excluded
solution and satisfy the underlying clause.

Readers familiar with topology will notice the following:

� The procedure always returns some satisfying solution such that the set
of all possible solutions looks like the closed sets of a connected space.

� The actual steps that select any solution subtracts or more precisely, quo-
tients out the other solutions. This quotienting in a topological definition,
covers the final selection and the subtracted sections together as points
form an open set in relation to the final selection.

Now from the point of view of any final solution, we have a topology:

(X, τ)

6

Where X is the (not directly countable) set of possible solutions and τ is the
dynamic algorithmic topology on X generated by assignments (free and bound).

Now we go back to define SUMS (of solution sets) and PRODUCTS (of
constraints) in the following topological way:

� Sums Of Solution Sets : A topological sum is defined as the disjoint
union of the underlying sets. The sum which we define in the above
procedure (step 4) is such a sum because it includes a union of iso-
lated/partitioned unassignable statements. The final value of this sum
is always the selected solution and can be considered a sum over interval
(unassignable statements) values. It is always dual and additively inverse
to the sum of assignable statements.

� Product of Constraints: A product topology is defined as the coarsest
topology on a space, which is the topology that preserves the fewest open
sets on the space. Since any set of constraints composes a final solution
which excludes all interval values and outputs the selected statement, the
process applying the constraints is the same as taking a product over the
set of intervals (excluding them). Using this perspective, we can consider
the stages before a final selection as computing fractional products. Again,
as above, the final value of this product is always the selected solution
and can be considered a product over interval (unassignable statements)
values.

These two definitions complete our requirements for the algebraic operations
needed in a Holant form for a single clause. Since we formally sum over (frac-
tional) products, we can formally describe the algorithm given above as the
HOLOGRAPHIC SUM OF PRODUCTS RULE for a single clause.

This rule can be interpreted as the application of a derivation rule operator
over some implicit differential polynomial ring G[X] in one variable with opera-
tional coefficients in the rings of plain (algebraic) polynomials (to be satisfied).
Our polynomials would be structured as a product of monomials. Each mono-
mial, mapping exactly to one of the unknowns in the plain polynomil, for some
random variable x, can be written in the form:

(1–x) or (1 + x)

So that polynomials evaluate to zero when satisfied.

A monomial for which either value is unnecessary to the satisfaction of the
clause/enclosing polynomial, takes the form:

(x2)

7

In the following sections, the reader will see how such monomials can be
generated from the group evaluation/integration of all polynomials.

Now if we take it that rewriting is still implicitly taking place all the way until
we get to a final solution, we can order a representation where these rewrites
function as coefficients of our differential operators and the current depth of the
operator functions as its exponent. In a future work in which we formalize the
cohomology of our scheme, we will further describe these coefficient action as
the modification of the time derivative of the differential operator and thus the
function itself (in a reflexive fashion). Our sequences of derivations now form a
differential ring by the following reasoning:

� Solutions form an implicit ring. We can form (polar) pointwise sums and
products of the underlying statements.

� Solutions are one to one with derivations and so derivations also form a
ring of the following type: ∑

i

figi

Where i is an integer, fi functions come from the ring of algebraic polynomials
with monomials of the form (1− x), (1 + x) or (x2),

And gi functions are of the form: ∂ng(x)/∂nt and form the ring of differential
operators, n is the current depth of the rewrite/derivation, and final solutions
are considered flat, that is are constants having zero depth. We can observe that
the time variable t unlike the other variables, does not have a discrete definition
but emerges (pseudo) continuously and in a ”twisted” form from the process
logic. This is what gives this variable the status of a continuous variable and
lends a differential interpretation to our process.

Note that we have just expressed the schema that turns the points in the
space into predicates over solutions like an algebraic scheme. Remember that
schemes are ringed spaces that generalize varieties by introducing multiplicities
and feature a commutative ring for every open set. Here we have a differential
scheme.

2.2 The Fundamental Theorem

Topological algebras, as standardly constructed, define an algebra (a ring
with an operator/ a module/vector space with a bilinear mapping) that is also
topological space, such that the algebra operations defined are continuous func-
tions over the space.

8

This definition requires that the operator on the algebra act like a mul-
tiplication (product) that linearly extends the multiplication operator on the
underlying field, in our case, a ring. For this, the operator on the algebra would
be the sum over unassignable statements, which is linear in both the variable
holding the existing sum as well as in the new constraint and extends the prod-
uct operation on the underlying ring.

We now redefine a discrete multiplicative schema as a topological space with
rings for all open solutions (positive statements), where the solutions can be
considered multiples of each other.

With this additional information, we can now formally describe our sum of
products rule as “a topological algebra acting on a discrete multiplica-
tive schema” and the holographic algorithm for a single clause as simply the
product of this algebra in one multiplicative dimension.

For readers familiar with abstract algebras, one can easily see this is a chi-
ral algebra. Chiral algebras display chirality (handedness – distinction between
directions in spacetime) and are usually implemented in physics as vertex alge-
bras – vertex expansions over an ordered structure (lattice). In our case, the
vertex algebra described is quite similar (with a higher number than 2 of chiral
parts) to the one formally espoused in [8], which formally utilizes an algebra
over boundary modules of rings, as we do here (modules are implied from the
gluing of spectra).

What we have accomplished here is to describe the process of one WITNESS
(associated with a single clause), describing how a single clause may be satisfied
from its (accumulated) statement.

Finally, in the rest of the paper, for purposes of easy separation and discussion
of concepts, we will simply call elements (constraints/unassignable statements
and their sums (of products) of the topology which are not actually satisfying
assignments, ANTI-PRODUCTS. This marks them as elements of a product
space that we are in some sense “multiplying/producing” away from and are
exactly the categorical duals (hyper-duals in some sense) of actual products.

Now we state our first theorem using the language developed here and as-
sumed to be proven:

Theorem 2.1 Any single clause C can be transformed into a differential poly-
nomial D with solutions in a differentially closed field F, where D is an ideal
in the differential polynomial ring K[X] whose elements vanish on the minimal
solution of D and its expansions (subsets).

9

Corollary 2.1 Any single clause C can be transformed into a differential poly-
nomial D with solutions in a differentially closed field F and any polynomial with
a solution in F can be derived from D, that is, all solutions to C are solutions
to some polynomial derivable from D.

2.3 The Global Topological Conjecture

Having defined a holographic algorithm and thus the theorem for a single clause,
we will now attempt to extend our definition to a formula of several clauses,
approaching the definition of a true nullstellensatz.

First, we ask if we can extend the topological algebra of the Sum of Products
rule to include an arbitrary number of clauses (product dimensions), that is,
if we can apply this rule simultaneously to a set of satisfiable solution spaces,
so that their products align over all possible variable assignment sets, for one
or more satisfying solutions (ideally, all solutions), essentially forming a single
coordinated product? If so, we can conjecture the following:

Conjecture 2.1 For any n number of clauses, in a given formula F with n
clauses, if we convert F into holographic form of initial unassignable sums,
there is a procedure P , which turns F into an n dimensional (multiplicative)
schema over the whole formula, if the initial formula is satisfiable, and a zero
schema (no reachable open solutions) when it is not.

Note that this procedure P , is not the (local) topological algebra itself, but
another procedure (considered an extension) over whose output the topological
algebra can be applied. In our case, for those more familiar with topology, P
can easily be shown to be an extended version of the topological algebra which
operates over the exterior of the topology over which our regular topological
algebra operates on the boundary.

Our goal now becomes to find this procedure P , if it exists. If P exists,
we have a traversable topology that encodes satisfying solutions. That P exists
for all satisfiable formula is a conjecture that there exists a globally discrete
multiplicative schema as well as a global solution topology on the associated
formula. If such a P exists, then there must exist witness procedures for verifying
its steps.

The task of proving this conjecture is tantamount to prescribing a process
for topological union between the product spaces of individual clauses as well
as to provide a set of witnesses that can use this process to describe satisfying
holographic algorithms for satisfiable formulae.

10

If we can achieve the above stated goal, then we can achieve the full descrip-
tion [1] of, holography given by Valiant as the “mapping of solution fragments,
many to many, while preserving the patterns of interference among them”. We
are encouraged that this is possible because of 2 reasons:

� We have a sum of products formula which is Holant/Holographic and well
defined in one dimension and in the first order according to [1].

� The String theoretic holographic principle [2] tells us that a description of
interactions between elements on the topological boundary of a region of
interaction should equate to a description in the interior of the same space
for an arbitrary number of elements. Considering the orthogonal single
nature of interacting elements in a single clause, this condition is trivially
satisfied for what one may call, first order interactions. One can imagine
this interaction taking place within a second order across clauses.

The fact that two these theories of holography, developed in two different
contexts, can be made to trivially agree, albeit, on a very restricted case in a
first order sense gives us a hint of possibility that they might be made to agree
over a second order with some careful algebraic analysis.

Achieving the above stated goal would yield the following theorem and its
natural corollary that extend the one clause case.

Theorem 2.2 Any set of clauses CA can be transformed into a differential
polynomial D with solutions in a differentially closed field F , where D is an ideal
in the polynomial ring K[X] whose elements vanish on the minimal solution of
D and its expansions (subsets).

Corollary 2.2 Any set of clauses CA can be transformed into a differential
polynomial D with solutions in a differentially closed field F and any polynomial
with a solution in F can be derived from D, that is, all solutions to the con-
junction of the clauses in CA are solutions to some polynomial derivable from
D.

This is our nullstellensatz and proving this main theorem is the focus of the
following 3 sections.

3 Towards Complex Topological Union: Bi-Local
Linguistic Collisions

Here we attempt to satisfy the global topological conjecture in a limited
way for a formula consisting of just 2 clauses by looking at the logical content
of their underlying linguistic schemes, that is, the set of current unassignable
statements (expressed as sums of products on the purely algebraic side).

11

Our next consideration would be to look at updating information about the
common scheme in order to “unify” their satisfaction algorithms and thus their
topologies. This strategy uses the linguistic structure of the schema to modify
the algebraic ones of the scheme.

Consider the following case:

� We have 2 sums (of unassignable statements), A) of depth m and B of
depth n in a formula F. Assume there is exactly one and only one term
in A that that has the opposite sign of a term in B. Let us call term in
A, x and the term in A, ¬x.

� Now assume, at some time t, we have assigned the underlying clause to
other integers, but we have not assigned a value x or ¬x to either clause,
that is, exactly at time t, the only values we have assigned to each variable
are exactly the unsatisfying values, that is, the exact integers specified in
the unassignable statement

� For example, say A initially (at time a t1 = 0) has value 125 and B has
value 34-5 (at time a t1 = 0) in a formula F and at time t2 (t2 ¿ 0))
we have assigned F to 1234 , reducing A to 5 and B to -5.

� Since the original clauses remain unsatisfied by the current set of assign-
ments and the two remaining terms are conflicting, we cannot satisfy both
clauses at the same time (as required), since by the natural law of assign-
ment, any variable can only either be assigned to an integer or its negation.

� Therefore, the combination of hypothetically assigned terms (as demon-
strated in our example) is GLOBALLY UNASSIGNABLE in any
scheme of satisfaction including both clauses and is a common anti-product
for both clauses.

To prevent the situation above from occurring, we must correct the formula
F at some time t before t1. In fact, we need to correct these sums as soon as
we can compare the two offending sums, that is, at time t = 0 relative to both
sums. We need to combine all the non x terms in both sums into a new sum S
that becomes the unassignable sum for a new induced clause C, which we have
just added to the formula. S now becomes unassignable in our model.

For example, say A initially (at time a t1 = 0) has value 125 and B has
value 34-5 (at time a t1= 0) in a formula F and at time t2 (t2 > 0) we have
to add a new unassignable sum 1234 to our model of unassignable sums. This
is because 1234 does not satisfy either clause because of the conflict on 5 and
-5.

12

Let us further assume that if more than one term in A conflict with (an
equal number of) terms in B, our rule does not apply. This is simply because
we can assume (for now, and to be proven) that no assignment process AT ANY
TIME, would produce a string containing a previous termX and its negation -X
upon arriving at point where we need to assign another variable to another term
(Y or -Y) . If indeed, we never run into this situation (as the reader should
by the end of article, see that we never will), we can assume this assumption
invalid.

This gives us the flowing bi-local process axiom:

Axiom 3.1 Given 2 clauses A of depth m and B of depth n where exactly
one term in A′s anti-product conflicts with one term in B′s anti-product, the
common anti-product is a new term combining the other non-conflicting terms
in both anti-products into a new single anti-product.

One thing to note, is that if A and B are the same depth, and all the other
non-conflicting terms are exactly the same, the resulting anti-product replaces
A and B as a single larger (shorter length) anti-product, otherwise, we will
always get an additional, smaller (longer length) anti-product.

We will henceforth refer to the operation that writes out a new unassignable
model as a result of the assignability evaluation performed, a DIRECT SUM
OPERATOR or simply, a DIRECT SUM of models (viewed as topologies).
This is taken from the direct sum concept in abstract algebra which pairs struc-
tures so that their underlying operations are compatible between pairs (or col-
lections in our more abstract interpretation) of their individual elements. This
direct sum can be considered to be the exact dual of the sum of products rule
for every clause (which we can now interpret as a direct product).

Note: One can also look at this as a DIRECT PRODUCT of algebras,
turning 2 different algebras into the same algebra, similar to group direct prod-
ucts.

This operator can be seen as the integral dual of the differential derivative
that computes actual solutions and is a kind of differential form in the following
way(now with time extending instead of quotienting and without counting the
multiplicities of the derivation operator). y and x are variable with values in
the field of solutions and t is the time variable:∫

F (x)F (y)∂x∂y∂t

The use of the ∂ operator here both indicates a partial differential and is also
meant to suggest that our integration is somewhat infinitesimal and considers
exact values on boundaries. The open integration is similar to the use of the

13

symbol in statistic where the computational semantics of the operator (in our
case, a predicate), confines the values of the integration sample. It should be
apparent that for any two clauses whose topologies are united this way, our
topological conjecture, and thus a version of Theorem 2.2, does indeed hold
for the formula (containing just the 2 clauses). The set of resulting reductions
is indeed a prime model and an ideal in the differential ring. That is, we can
trivially select any and all valid assignment products using the procedure of
assigning values to the enclosing formula. Readers familiar with the Resolution
Principle in Mathematical Logic [9] [10] will notice a distinct similarity to the
Resolution Rue for propositional logic but as will be evident from the ensuing
proof, our application has a different (dynamical) set of semantics.

4 The Global Union Operation

So far, we have shown how the topological conjecture holds in the case of
any two independent clauses by describing how the common anti-product base
of two arbitrary clauses can be schematically unified into a single differential
ideal. That is, the satisfaction of a formula of 2 clauses is completely witnessed
by our model.

This binary bi-local operation described in the previous section will represent
the basic operation of topological union which we REPEAT over all possible,
relevant pairs in some set S (which we allow to grow by addition of new elements
until we reach some exhaustive condition to be defined).

Now since we know S has the ability to grow (from examining the bi-local
operator), we now ask the proper model theoretic question: what controls the
maximal size of S, so that we know when to stop the growth of S so we can
run the sum of products rule to successful completion on every clause, thereby
satisfying it (that is when does S develop stable algebraic identities?) We are
essentially asking for an equivalent of a Gröbner bases that is exact and applies
to a differential instead of just an algebraic ring, which defines an ideal in the
manner that would generalize Theorem 2.2 to an (potentially) infinite number
of clauses, that is, an inductive rule.

The first stage – verifying that S is stable (according to some criteria C)
)and then proceeding to satisfy the formula) is exactly the P procedure we
asked for in our topological conjecture. Proceeding in the second stage towards
successful satisfaction is what we will call a complete random topological walk
(this assumes S has more than one solution, an assumption which makes the
solution easier to demonstrate).

In essence, what we ask is this: What are the walking boundaries of the
assignment operator that we associate with the sum of products rule? We can

14

answer this by asking, what is C, the halting criteria for guaranteeing that the
application of the rule will work when given a satisfiable formula?

We realize that C can be treated as some kind of inductive limit (where we
have accumulated enough observations to deduce a general principle) placed on
some structure and that when this limit is reached successfully, we know the
underlying formula is satisfiable. But what may this structure be?

� The set itself? – This limit can be set by detecting a common condition
among the clauses that indicates that the procedure is now complete.

� The depths of sums (witness statements) in the set? – This assumes that
we will not need more than sums of a certain depth to detect when a
formula is satisfiable.

Now, let us incorporate the idea of such a fixed set and ask the following
question about its computability:

Take some SATISFIABLE arbitrary CNF formula F, with a set of (original)
clauses C. Let CX at all times be the set of sums associated to the original
clauses C, regardless of their current values. Can we compute some fixed set
CP of unassignable sums (anti-products) which extends CX, in which all member
sums have been resolved bi-locally with every other (relevant) member sum, such
that no new sums need to be added to the set, except the modification (expansion)
of existing sums of the subset CX into full products via (all possible satisfying)
sets of assignments, using a unified topology?

We end this section by assuming that such a set, CP , which is a domain
specific differential ideal, can be constructed for any arbitrary satisfiable for-
mula F and in the next section, we “reverse-engineer” this set to discover what
its properties should be through a novel form of algorithmic analysis. In this
reverse-engineered scenario, we must demand that all algorithmic moves be wit-
nessed. Being witnessed implies the following:

� The assignment value is free – at the time just before we make the assign-
ment, it is possible to assign its negation.

� OR The assignment value is bound - An assignment value is bound when-
ever its negation is blocked. We introduced a simple blocked scenario in
our section on the simplest holography where we assigned a variable to
a value when our unassignable statement has reached a depth of 1 and
we are constrained to assign its negation. In the analysis section below,
we introduce additional scenarios in which a variable can become blocked.
Being witnessed now means that we can guarantee that no assignment
procedure P will ever be blocked on both an assignment value and its
negation AND that P will satisfy the underlying formula.

15

5 Putting It All Together- Witness Completion
And Algorithmic Analysis

We concluded the last section by assuming that some stable inductive ideal
set CP exists (generated by CX) and can be computed for every satisfiable
formula F , after which we can successfully generate a successful assignment to
the formula.

Generating a successful assignment to a formula F essentially means the
following:

� At no point during the walk should we be blocked on assignment to a
variable. This means any variable should always be assignable to either
true or false.

� We should include a procedure, that at any point t1, can check if assigning
any variable x to some truth value a would cause a truth assignment to
some other variable y to become blocked/impossible, if so, assign x to ¬a,
we call this UNBLOCK rule. The success of the UNBLOCK rule should
always be guaranteed by the presence of some higher order sum in CP .
Indeed, this is the absolute test of the set CP as a witnessing set. Also,
note that whenever we unblock a variable, the assignment to the variable
(should) always satisfies the underlying clause(s).

� At no point t2, if indeed we have such a set CP , should the procedure
described above indicate that we are blocked on both possible assignments
to some variable z.

In essence, we will eventually describe a procedure P that uses CP to wit-
ness/verify that it can complete a successful assignment to a satisfiable formula
using both free and bound assignments as well as the UNBLOCK rule.

To correctly determine what CP should then be, we first need to identify
every case in which a topological walk can become blocked, then include a
refutation that such a case would never exist if a certain type of CX witness
(thus fixing what properties CX witnesses should have) or that we have a sum
(a supporting witness) included in CP , a CP witness, that can be used to justify
the use of the UNBLOCK rule.

If indeed this procedure exists, which encodes such witnesses, then we can
(must) guarantee that we can generate at least one random satisfying assignment
to any satisfiable F using our proposed algorithm, that is we can verify that CP
is indeed a differential ideal for some satisfiable form of our clause. From then
we can show that CP is indeed a complete/total ideal on which every satisfiable
polynomial vanishes.

16

5.1 Obstruction Analysis

In this section, for ease of initial analysis, we assume that our formula is multiply
satisfiable (by more than one solution) and that we have generated enough
witness sums (in CP) to conclude that this indeed so. Our goal here then is to
analyze ALL potential obstructions to satisfaction procedure, if such a set CP
exists.

The criteria of such a set would then be that for any kind of potential
obstruction to assignment completion that we can think of, we can also provide
a refutation for satisfiable formulae – that either the scenario is impossible or
that there is a witness procedure which ensures that the obstruction can be
remediated according to an unblock procedure which we define. This refutation
squarely rests on the fact that the set CP (contains enough witnesses to verify
that the obstruction is impossible or can be removed) by a procedure compatible
with the topological algebra. Overall, we define 4 distinct types of witnesses to
be identified:

immediate witnesses, of which there are two kinds, direct and indirect.
intermediate witnesses which are always indirect. boundary witnesses
which are always indirect.

The act of analyzing obstructions on a space (manifold – which we have here)
that proceeds linearly can be seen as a type of homological algebra. Here is where
our choice of the use of schemes will be seen as particularly ingenious in the way
it allows us to both blend topology and abstract homology (as cohomology in
our case) in proving our main conjectures.

Remember that our core problem is to prove the satisfiability of the main
formula, that is, the conjunction over the original clauses. Also, remember
that we required our initial problem to be in 3SAT format. This means that
our satisfying procedure can run the SUM OF PRODUCTS rule, that is, the
differential derivation procedure on only sums of depth 3 and smaller to confirm
satisfiability of the main formula F . Higher dimensional sums will only be used
as background witnesses (as we will show) to show that our ideal is sufficient.
In terms of our underlying topological algebra, this means that we can use just
3− depth sums and less as the kernel of sums for our algebraic morphisms.

We break our analyses down by highly structured uses cases organized in or-
der of structural complexity. We determine this complexity first by sum depth,
deeper sums are more complex than shallower sums, as well as structured com-
binatorial complexity. These are organized into 3 main Use Cases (UC) that
cover every abstractly computable satisfying walk pattern and number 29 in
total. These cases will gradually introduce our cast of necessary wit-
nesses, until we have identified every possible type of witness we will need to

17

complete our model. The depth of the sums in each case we will consider will
be assumed to be the depth that they have when we have determined that we
have computed all the initial sums we need in order to start assigning variables
to values. This means that after we obtain these sums, there will be no further,
direct bi-local interactions between unassignable sums – we have a complete
starting holographic algorithm.:

UC 1 - Sums of depth 1

Scenario 5.1 We demonstrate with an example: an original n − depth sum
reduced down to a single unsatisfying variable assignment, whose negation must
be assigned to satisfy the underlying clause. This case is trivial since we can
recognize that these sums indeed would represent the limit of sum taking and
on a propositional algebra level would themselves be unsatisfiable assignments.
That such are not negated by any other sum of depth 1 would represent the
weakest possible preconditions for satisfying the associated formula. This can
be considered an implicit axiom. If no such conflicts occur, the satisfying as-
signments to the individual clauses would be the propositional negation of the
(non-conflicting) derived unsatisfiable sums.

Refutation 5.1 : It is impossible to block on sums of depth1 in a satisfiable
formula. If we get two sums a and ¬a at any point during bi-local compar-
isons, we will regard the formula as unsatisfiable (more on this in our section
on algorithmic analysis).

UC 2 - Sums of depth 2

These can be immediately satisfied or reduced to a sum of depth 1 by some
assignment if the associated assignment does not satisfy the clause.

We can identify 3 scenarios in which a variable assignment would cause the
remaining formula to become unsatisfiable: Take x, y, z and i as integers repres-
nting assignments and −x,−y,−z and −i as the integers representing their
respective negations. The assignment of interest is to x (cancelling out (the
possibility of assignment to) −x). Each presented scenario showing some block-
ing scenario will be followed by a refutation which affirms the impossibility of
its existence from some supposedly complete process of enumerating all needed
sums.

Scenario 5.2 There exists 2 sums xy and x − y. An assignment to x would
leave two conflicting (necessary to the satisfaction of their respective clauses)
sums.

Refutation 5.2 Our bi-local operator would combine both clauses into a single
x sum (making x unassignable) and so any set containing 2 such clauses will
change and so is not complete.

18

Scenario 5.3 There exist 3 sums xy, z − y and x − z. An assignment to x
would leave 2 sums y and −z. We now have to assign −y and z to satisfy
the underlying clauses (first and third). This immediately unsatisfies the second
clause (this is exactly the sum of its unsatisfiable statements).

Refutation 5.3 The DIRECT SUM would combine the first two sums into xz
which will then combine with the third and so make x unassignable. So, the
above set contains a change and cannot be considered to have been complete.

Scenario 5.4 There exist 4 sums x− z, xi, z − y and y− i. An assignment to
x would directly leave 2 sums −z and ; i. We now have to assign z and −i to
satisfy the underlying clauses (first and second). To satisfy the third clause, we
now have to assign y but to satisfy the fourth clause, we must assign −y, which
is a conflict, making both clauses unsatisfiable.

Refutation 5.4 The DIRECT SUM would combine the two sums xi (second)
and y− i (fourth) into xy which will then combine with the third, z− y, to form
xz which will then combine with the first, x − z, to make x unassignable. So,
the above set contains a change and cannot be considered to have been complete.

To see that is the limit for depth2 cases, we note that depth 2 sums can
only relate between two variables and that an assignment to some value would
force by principle, only one bound assignment. Verifying that these bound
assignments do not conflict among any number n (here limited to 4) of related
clauses is exhausted by the scenarios we explored above.

UC 3 - Sums of depth 3

These can be immediately satisfied or reduced to a sum of depth 2 if the
associated assignment does not satisfy the clause.

It can be seen that sums of this depth require slightly more sophisticated
refutation for most cases (except for the very first case presented).

The main refutation strategy used here is to show how we remediate the
situation when we are forced into the 3 scenarios (refuted for that smaller case)
mentioned in the above use case for sums of depth 2, that is, when an assignment
leaves any of the following forms:

� xy, x− y

� xy, x− z, z − y

� x− z, xi, z − y, y − i

As explained previously, assigning the underlying clause to x in any of these
cases will cause the whole formula to become unsatisfiable.

19

Here our scenarios have multiple possibilities (that scale combinatorically),
and we will review all of them in order in order to provide the right refuta-
tion of impossibility and/or point to the right witness that lets us execute the
UNBLOCK rule for that possibility.

Scenario 5.5 We have Scenario−5.2 of the UC−2, (xy, x−y) after assigning
integers a and b. We now identify the possibilities that can lead to this scenario
as well as their refutations.

Possibility 5.1 : The 2 original UC − 2 Scenario− 5.2 sums are of the forms
axy and ax− y (here assignment to b is irrelevant).

Refutation 5.5 : The DIRECT SUM would combine these into Scenario−5.2
of UC − 2 inheriting that refutation So the above set contains a change and
cannot be considered to have been complete.

Possibility 5.2 The 2 original UC−2, SScenario−5.2 sums are of the forms
axy and bx− y, if assigned to x, formula becomes unsatisfiable.

Analysis 5.1 : We have no rule indicating that a and b should not be assigned
together, and in fact, there is the very explicit possibility that they may both be
required as forced arguments withing some assignment block.

If we analyze the DIRECT SUM operation, we see that the following sum
must have been generated: abx

This means that we have an explicit rule/witness saying that if we assign
aandb, we have to assign −x. Since abx is a 3− depth sum, it would be a part
of CX, the set of sums to be satisfied and that it can be satisfied makes it a
direct immediate witness.

But this is only the view we get from looking at the two sums explicitly stated.
If we assume that it is possible that our set CX may contain the cancelling sum,
that is: ab− x (witness cancellation). Then we would have generated ab, so the
premise in our possibility would be cancelled.

Refutation 5.6 : We never need to assign to x, since we can UNBLOCK the
variable by assigning it to −x, using an available witness, otherwise, ab, becomes
unassignable if there is a cancelling sum.

ANALYSIS INTERLUDE: As one can readily observe above, we can
switch the clauses in which aandb appear to include one more test case. But
notice that since we are using anonymous (letter) variables, this would amount
to an abstract repetition of the above scenario.

20

As the following cases get more complex than those we have already looked
at, that is, we have scenarios that involve 2 or more variables spanning 3 or more
clauses, we will adopt an economical approach in listing down the complete list
of applicable scenarios. Our approach would be thus: Where variables appear
just once in a scenario, their positions will not matter, just like above. When a
letter occurs twice or more, say x times, among n number of clauses, we need
to “permute” the appearance of the variable among all possible x positions it
can take in n slots. The reader will see, as we go along, that this will suffice
to abstractly evaluate all the possible obstruction patterns generatable among
2 or more variables.

Scenario 5.6 We have Scenario − 5.3 of the UC − 2, (xy, z − y and x − z)
after assigning integers a, b and c. We now identify the possibilities that can
lead to this scenario as well as their refutations.

Possibility 5.3 : The 3 original UC−2, Scenario−5.3 sums are of the forms
axy, az − y and ax− z.

Refutation 5.7 : The DIRECT SUM would combine axy and az− y into axz
which would then combine with ax−z to give ax and so the original set was not
complete (since we had axy).

Possibility 5.4 : The 3 original UC−2, Scenario−5.3 sums are of the forms
axy, az − y and bx− z (a is in positions 1and 2).

Analysis 5.2 : If we analyze the DIRECT SUM operation, we see that the
following should take place: axy and az−y combine to give axz which combines
with bx − z to give abx (AN UNBLOCK WITNESS). Since this witness must
be satisfiable, this means once we assign a and b, we have to assign −x. If ab-x
(witness cancellation) were also included in the set, we would get ab.

Refutation 5.8 : We would not/cannot need to assign x to the formula (after
assigning a and b), since we can assign to −x (and satisfying the underlying
clauses), otherwise, ab becomes unassignable.

Possibility 5.5 : The 3 UC − 2, Scenario − 5.3 sums are of the forms axy,
bz − y and ax− z (a is in positions 1 and 3).

Analysis 5.3 : The DIRECT SUM combines axy and bz − y into abxz (4 −
depth sum-indirect witness) which combines with ax − z to give abx (witness).
If ab− x were also included in the set, we would get ab.

Refutation 5.9 : We would not need to assign to x, since we can assign to
−x, otherwise, ab becomes unassignable.

Possibility 5.6 : The 3 original UC−2, Scenario−5.3 sums are of the forms
bxy, az − y and ax− z (a is in positions 2 and 3).

21

Analysis 5.4 : The DIRECT SUM combines bxy and az − y into abxz (4 −
depth sum-indirect witness) which combines with ax − z to give abx (witness).
If ab− x were also included in the set, we would get ab.

Refutation 5.10 : We never need to assign to x, since we can assign to −x,
otherwise, ab becomes unassignable.

Possibility 5.7 : The 3 original UC−2, Scenario−5.3 sums are of the forms
axy, bz − y and cx− z (as mentioned earlier, this becomes position agnostic).

Analysis 5.5 : This analyzes the maximal context of 3 spanning assignments.
The operation of the DIRECT SUM yields the sequence: axy combines with
bz − y to give abxz (a 4− depth sum) which combines with cx− z to give abcx.
Here we note that we now have a sum/rule, abcx, that says once we assign abc
we must assign −x. Since this sum has a depth greater than 3, we would not try
to satisfy it directly. However, we still execute it by unblocking the corresponding
variable. For this, we will call abcx an indirect immediate witness and abxzS
an intermediate witness.

If we have a corresponding rule that says abc−x, then we would combine with
abcx to generate abc meaning we could not assign the three variables together.
When we invoke the UNBLOCK rule based on this witness, that is a witness
that does not explicitly get rewritten (since we are only trying to satisfy clauses
of depth 3 or less), how can we know if we have not blocked another variable
somewhere?

Explicitly, there may be a rule like abc − xi if we allow our sum generation
algorithm go up to depths of 5. In this case, we may discover rules like abc−x−i,
which would then give us abc − x which would help us reduce the original sum
down to abc thus barring us from assigning abc together. If abc−xi did exist and
not abc−x− i, abc−x becomes a valid witness to an UNBLOCK rule (because
we have verified it doesn’t block any other variable) and since UNBLOCK rules
would only ever have a maximum of 3 terms in their antecedents (reader should
verify that this is indeed correct), we need not consider the effect of running
more than 4− depth sum product rules as witnessable executions.

Here, 5− depth sum rules are always necessary witnesses to the running of
4 − depth sum witnesses but 5 − depth sum rules themselves are never “run”.
For this we will call 5 − depth sum rules, boundary witnesses, as they witness
the “boundary” of the computation.

Refutation 5.11 : If we allow sums of up to depth 5, we never need to assign
to x, since we can assign to −x, otherwise, abc becomes unassignable.

Scenario 5.7 We have Scenario−5.4 of the UC−2 (x−z, xi, z−y and y− i)
after assigning integers a, b, c and d. We now identify the possibilities that can

22

lead to this scenario as well as their refutations. One can by now hypothesize the
number of possibilities p here to be algebraically related to the maximum number
of assignable integers n. This appears from the above cases to be about p = 2n.
These would be correct as we show below for the 16 possibilities for a maximal
assignment to 4 variables (a, b, c and d).

Possibility 5.8 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax− z, axi, az − y and ay − i.

Refutation 5.12 : The DIRECT SUM would combine ax− z and az − y into
ax − y which would then combine with ay − i to give axi which then combines
with ay − i to give ax and so the original set was not complete (since we have
ax− z, axi).

Possibility 5.9 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax− z, axi, az − y and by − i. (a in positions 1, 2 and 3)

Refutation 5.13 : The DIRECT SUM would combine ax− z and az − y into
ax − y which would then combine with by − i to give abi which then combines
with by − i to give aby so that after assigning ab we must assign −y, breaking
the unsatisfiability condition.

We can also consider a different cancellation path (and indeed we can for
majority of the cases listed):axi combines by − i to give abxy which combines
with az − y to give abxz which combines with ax − z to give abx so that after
assigning ab we must assign −x, breaking the unsatisfiability condition.

This immediately shows us that depending on the order we encounter the
original clauses, we may get different additional rules, giving the idea of a non-
commutative algebra. We will however see that whatever eventual signature we
arrive at for a satisfiable formula, all of its possible signature will be quantita-
tively equivalent, that is, they will preserve the same set of total solutions. This
we will demonstrate in detail when we consider the soundness and completeness
of our final algorithm.

Going forward, we will only consider one of the many inductive paths that
can be used to refute the scenarios we present (just as we have done in earlier
cases).

Possibility 5.10 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax− z, axi, bz − y and ay − i. (a in positions 1, 2 and 4)

Refutation 5.14 : The DIRECT SUM would combine ax− z and bz − y into
abx−y which would then combine with ay−i to give abx−i which then combines
with axi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

Possibility 5.11 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax− z, bxi, az − y and ay − i. (a in positions 1, 3 and 4)

23

Refutation 5.15 : The DIRECT SUM would combine ax− z and az − y into
ax− y which would then combine with ay− i to give ax− i which then combines
with bxi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

Possibility 5.12 : The 4 original UC−2, Scenario−5.4 sums are of the forms
bx− z, axi, az − y and ay − i. (a is in positions 2, 3 and 4)

Refutation 5.16 : The DIRECT SUM would combine bx− z and az − y into
abx−y which would then combine with ay−i to give abx−i which then combines
with axi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

Possibility 5.13 : The 4 original UC − 2,; Scenario − 5.4 sums are of the
forms ax − z, axi, bz − y and by − i. (a (one random letter) is in positions 1
and 2, and b in positions 3 and 4).

Refutation 5.17 : The DIRECT SUM would combine ax− z and bz − y into
abx−y which would then combine with by−i to give abx−i which then combines
with axi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

Possibility 5.14 : The 4 UC−2, Scenario−5.4 sums are of the forms bx−z,
axi, bz − y and ay− i. (a (one random letter) is in positions 2 and 3, and b in
positions 1 and 4).

Refutation 5.18 : The DIRECT SUM would combine bx− z and bz − y into
bx−y which would then combine with ay− i to give abx− i which then combines
with axi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

Possibility 5.15 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax− z, bxi, az − y and by − i. (a (one random letter) is in positions 1 and 3,
and b in positions 2 and 4)

Refutation 5.19 : The DIRECT SUM would combine ax− z and az − y into
ax− y which would then combine with by− i to give ax− i which then combines
with bxi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

Possibility 5.16 : The 4 original UC−2, Scenario−5.4 sums are of the forms
bx− z, axi, az − y and by − i. (a (one random letter) is in positions 2 and 3,
and b in positions 1 and 4)

Refutation 5.20 : The DIRECT SUM would combine bx− z and az − y into
abx−y which would then combine with by−i to give abx−i which then combines
with axi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

24

Possibility 5.17 : The 4 original UC − 2 , Scenario − 5.4 sums are of the
forms ax− z, bxi, bz−y and ay− i (a (one random letter) is in positions 1 and
4, and b in positions 2 and 3).

Refutation 5.21 : The DIRECT SUM would combine ax− z and bz − y into
abx−y which would then combine with ay−i to give abx−i which then combines
with bxi to give abx so that after assigning ab we must assign −x, breaking the
unsatisfiability condition.

Possibility 5.18 : The 4; original UC − 2, Scenario − 5.4 sums are of the
forms ax − z, axi, bz − y and cy − i. (a is in positions 1 and 2, b and c each
occupy just one position (interchangeabe)).

Refutation 5.22 : The DIRECT SUM would combine ax− z and bz − y into
abx−y which would then combine with cy−i to give abcx−i which then combines
with axi to give abcx so that after assigning abc we must assign −x, breaking
the unsatisfiability condition.

Possibility 5.19 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax − z, bxi, az − y and cy − i. (a is in positions 1 and 3, b and c occupy just
one position).

Refutation 5.23 : The DIRECT SUM would combine ax− z and az − y into
ax-y which would then combine with cy− i to give abcx− i which then combines
with bxi to give abcx so that after assigning abc we must assign −x, breaking
the unsatisfiability condition.

Possibility 5.20 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax − z, bxi, cz − y and ay − i. (a is in positions 1 and 4, b and c occupy just
one position).

Refutation 5.24 : The DIRECT SUM would combine ax− z and cz − y into
acx−y which would then combine with ay−i to give acx−i which then combines
with bxi to give abcx so that after assigning abc we must assign −x, breaking
the unsatisfiability condition.

Possibility 5.21 : The 4 original UC−2, Scenario−5.4 sums are of the forms
bx − z, axi, az − y and cy − i. (a is in positions 2 and 3, b and c occupy just
one position).

Refutation 5.25 : The DIRECT SUM would combine bx− z and az − y into
abx−y which would then combine with cy−i to give abcx−i which then combines
with axi to give abcx so that after assigning abc we must assign −x, breaking
the unsatisfiability condition.

Possibility 5.22 : The 4; original UC − 2, Scenario − 5.4 sums are of the
forms bx− z, axi, cz − y and ay − i. (a is in positions 2 and 4, b and c occupy
just one position)

25

Refutation 5.26 : The DIRECT SUM would combine bx− z and cz − y into
bcx−y which would then combine with ay−i to give abcx−i which then combines
with axi to give abcx so that after assigning abc we must assign −x, breaking
the unsatisfiability condition.

Possibility 5.23 : The 4 original UC−2, Scenario−5.4 sums are of the forms
bx − z, cxi, az − y and ay − i. (a is in positions 3 and 4, b and c occupy just
one position)

Refutation 5.27 : The DIRECT SUM would combine bx− z and az − y into
abx−y which would then combine with ay−i to give abx−i which then combines
with cxi to give abcx so that after assigning abc we must assign −x, breaking
the unsatisfiability condition.

Possibility 5.24 : The 4 original UC−2, Scenario−5.4 sums are of the forms
ax−z, bxi, cz−y and dy−i. (all 4 assignments are in a single (interchangeable)
position).

Refutation 5.28 : The DIRECT SUM would combine ax− z and cz − y into
acx − y which would then combine with dy − i to give abcdx − i which then
combines with cxi to give abcdx so that after assigning abcd we must assign −x,
breaking the unsatisfiability condition.

Post-Analysis : We started out by stating that this was a procedure to
provide walking instructions for depth 3 sums and less. From above, we see that
in this one case, we need a 5- depth sum indirect witness. As we stated earlier,
this witness would also need a higher order witness so that if we have two sums,
abcdxk and abcdx − k, we can make abcdx unsatisfiable. Hence we also need
6− depths sums.

Summary: So far it appears that to walk successfully while abiding by our
holographic formula, we only need to provide witnesses of up to sum depth 6.

We can now state the second axiom of our theory:

Axiom 5.1 Computing unsatisfiable sums up to 6 − depth orders gives us the
complete set of 4 and 5 depth implicit rules needed to verify that 3depth rules
and less can be run successfully using the UNBLOCK mandate, for satisfiable
formula.

5.2 Implementation

We are now ready to construct an algorithm that builds on the axiom we just
stated and that is GUARANTEED as we promised, to produce a random satis-
fying assignment to some arbitrary satisfiable formula F when run. The primary
goal of this algorithm would be to produce a satisfying set of assignments to

26

F if it is satisfiable and then OUTPUT YES or indicate that it is not and
OUTPUT NO. We leave the reader to verify that the moves made by the al-
gorithm are indeed permitted based on the body of techniques and refutations
we have stated:

1. Start by assigning an initial unassignable statement to each starting clause.
Label these a starting set of sums, S.

2. Expand S to the limit as follows.

3. For each element currently in the set and that is added to the set, eval-
uate its bi-local union via the DIRECT SUM with every other relevant
sum (sums for which it shares exactly one conflicting integer value). IG-
NORE any generated sums whose is greater than 6 (we will not need these
witnesses).

4. Stop either when no sums can be generated or when we have reduced
two sums to their minimum, but they conflict over this minimum value.
If there is a conflict of this type, the original formula is unsatisfiable,
OUTPUT NO, otherwise:

5. If there are any (non-conflicting) minimum sums, assign their negations.

6. Are all variables assigned (bound)?, if so, OUTPUT YES), otherwise:

7. Start the free assignment of variables to values.

8. After each free assignment, execute the necessary reductions to each rele-
vant unassignable sum (fourth step of the Holographic Sum Of Products
Rule).

9. Examine the field of 2−depth sums. If any variable is blocked as indicated
above (Scenarios 5.2, 5.3 and 5.4 of UC − 2), assign its negation (Using
the UNBLOCK rule as supported by our body of refutations in UC3).

10. Repeat steps 5 through 9 until all variables have been assigned.

11. OUTPUT YES.

5.3 Soundness and Completeness

Now we examine the correctness of our algorithm in terms of the topological
conjecture, and our assumption that the set generated is indeed an ideal in the
way we described, that is, can be extended/expanded to EVERY solution that
satisfies the associated formula, if ANY solutions exist. We justify this notion of
correctness in terms of the following questions, in order of increasing complexity:

� Will the algorithm OUTPUT NO if the formula is not satisfiable (Sound-
ness)? YES.

27

Up to step 4 of the algorithm, all we have computed is the DIRECT
SUM of unassignable statements. Unless we miscategorized some state-
ment as unassignable, which we have not, then this is the correct sum (and
so is its dual) giving our operational definitions. If the algorithm outputs
NO at this point, the formula is not satisfiable.

� Will the algorithm OUTPUT NO if the formula is satisfiable (Soundness)?
NO.

By converse of the argument above, if after we complete step 4, the
program can only output YES because we know the algorithm will proceed
to the end and find a flat model using free assignments and the UNBLOCK
rule.

� Will the algorithm compute an incorrect product, that is, a set of assign-
ments that do not satisfy the formula (Soundness)? NO.

Since every product is a result of the Holographic Sum Of Products
Rule, every product will satisfy each formula.

� Is there some correct product that satisfies some formula that we will be
unable to compute (Completeness)? NO.

– First, assume that up to step 4, such a set has not been eliminated
because we have only computed the correct sum of unassignable state-
ments.

– Now, let us assume that such a set exists, we start at step v, by
assigning some of the variables to the values given in the set until
we get our first blockage. This means that if we assign the supposed
value, we get conflicting values for some other variable.

– But we already have a value for that variable from our example and
so our rule is wrong.

– But if our rule is wrong about this one randomly set, then the induc-
tive process is not sound with regards to the structure of this random
set.

– But we know that it is sound for determining unsatisfiability

– And we know that it is sound for determining satisfiability for in-
stances with exactly one solution. They are not unsatisfiable, and all
assignments will be bound.

– If our algorithm breaks on some random set, then the set must have
some type of extra structure!

– We know we can take any formula with more than one solution and
conjoin it with other clauses in such a way that we reduce the number
of solutions down to 1.

28

– We can take our original formula which contains this problematic so-
lution and modify it so that it has only one solution, the problematic
solution.

– We know that we will now find this solution in the altered formula.
It is the only solution.

– Therefore, we would have found the solution in the original formula
also and so the set could not have induced the blocking rule.

– Therefore, our original answer is right and our algorithm and there-
fore our topological conjecture is proven complete for all possible
products.

The conclusion of this analysis proves Theorem 2.2 (and its corollary) as we
originally stated it.

5.4 Runtime And Optimizability Analysis

The essence of this algorithm essentially compares each member of a set with
every other member of the same set with which it shares a single conflicting
variable. Since we know that the maximal depth of elements cannot exceed
6, the set size cannot exceed the number of ways to choose random 6 digits
from n, which is exactly n6. The maximal running time for our algorithm is
indeed easy to compute. It is the combinatorial time needed to complete the
necessary set of comparisons required, which the maximal size of the set, n6, in
a cartesian product with itself, which yields O(n12). Subsequent steps to assign
n3 number of clauses in exactly that amount of time, O(n3), and to check for
blocked variables requires comparing depth2 sums with each other in a Cartesian
product giving a runtime of O(n4). So, in fact, the worst-case running time for
our algorithm remains O(n12).

It is easy to see algorithms in practice effectively partitioning data so that
elements need only to look at so many elements, indexed by some structure
which looks at their constituent integer values. Thus, for problems already
highly structured (probably where the internal propositions represent rational
terms of some domain of thought), running times may well go below the worst
case pictured here.

Also, the fact that the common number of terms in two elements need not
exceed 5 is potentially a factor that some algorithmically innovative technique
may exploit in a novel way to further constrain running times.

These considerations, along with the fact that the very form of the algorithm
promises to be hardware (hardware meaning even physical systems we do not

29

currently consider as computational) implementable for faster processing of do-
main specific computational problems, makes the optimization of this algorithm
beyond its current form, look promising.

All these possibilities offer hope the algorithm here may indeed be extended
and implemented in practice in its exact form in ways more efficient than pre-
sented here.

One exception we see here may be in the feasibility of constructing increas-
ingly effective prime factoring algorithms. We will show in future work, when
we address the formal cohomology that integer prime factorization may still be
the most naturally difficult problem to crack with our system and may be still
even harder than simply using other known, traditional methods.

6 Implications For Theories of Computational
Complexity and Computability

To the computational complexity theorist, the implications for this algorithm
are easy to see: That the class of NP problems does reduce to the class of P
problems via this approach. To do this, we implicitly followed descriptional
complexity approach of extending unordered (implicit) first order logic by an
induction operator, where order is defined according to some monotone pro-
gression. This has precedence in the complexity literature for example, in the
work of Dawar [11]. In fact, since we are also able to prove unsatisfiable cases,
we really do have an extension of known nullstellensatz styled algebraic proof
systems [12] and indeed have a proof that NP = coNP .

More importantly, by virtue of invoking Tarski’s principle of inductivity,
certain issues of self-reference and the impossibility of computing semantic (sat-
isfiability here is realized as a semantic property of logical formulae) properties
of formulae/programs invoked in the proof of Rice’s theorem, particularly re-
lated to the halting problem, become addressable, as follows:

It is a known fact that any computer program can be represented in circuit
form which can then be converted to CNF form and then to a 3SAT form.
This same construction can also be applied to any type of computable inputs
to some arbitrary program.

Rice’s theorem in terms of the halting procedure states that it is impossible to
know if some arbitrary input will cause a program to terminate. This is simply
because we do not have, nor can we demonstrate a logical model of termination
that can be represented in the first order language normally used to address this
problem.

30

In our model, this is remedied. A termination of a program in holographic
form can simply be interpreted as the holographic reduction to a final product
when the model is fed a series of operations from some input space. This is
possible because our model guarantees that the meta language is responsible for
interfacing between inputs and our program space. In this case, non-termination
can simply be read as a program which hangs because the sequence of input
operations has not yielded a product (the original formula has become unsat-
isfiable OR the set of input operations assigns valid values to only a subset of
the variables.

This description is quite condensed but should be sufficient to show that we
are able to achieve, in what would seem in computational terms, a relative Tur-
ing jump for what may be termed computably enumerable but uncomputable
sets. Instead of working with explicitly defined arithmetic schemes, what we
are able to achieve is what we may call meta-order dualization. In future work,
we will show that the arithmetic scheme used in the syntactic construction of
programs is dual to a higher order scheme used to specify the programs seman-
tically. We hope this is an area in which our findings here may be able to help
invigorate and advance the study of computable functions and computability in
general.

7 Implications For Other Mathematical Fields

Where we seem to have ignored, or not explored in very much detail, the
potentials of many mathematical intricacies inherent in our model in pursuit of
our definition and proof of existence of a product space, a very algebraic object,
it is our hope that working mathematicians may take some of these ideas in a
more fruitful direction.

One apparent type of structural object we are working with is that of a
naturally dual functor that associates an unassignable model to an assignable
one (or more precisely a model and an ideal in a ring) and our unions between
statements are adjunctions between functors with an overall algebraic identity.
In essence, what we have can be seen as a type of abstract definition of self-
adjoined operator.

And what exactly about this manifold (representable as a tuple of algebraic
integers, and thus Euclidean), which we never explicitly construct, makes it
have these special properties from which a highly structured operator can be
defined? We contend there is a property – fibered symmetric categoricity –
which we borrow from category theory and homological algebra, which gives
our manifold these properties.

Symmetric categoricity, informally defined here is the inherent mappability
of an initial power object to all possible final objects via computable morphisms.

31

The anti-product we define is a natural co-product of what we may call fibered
symmetric k − 1 categories, where k is the depth of the clause. If we ask what
the objects that we categorize are, these would be the directed constraints,
that is, the intervals/open sets, and together they constitute topological data
about some closed set, which makes the point over which the topological algebra
induces objects and their morphisms, a sheaf (that is the point being multiplied)
– locally defined data (inductively) attached to the open sets of a topological
space. The category of sheaves on a topological space, generated from a small
category (clause) on a site with a big category (formula) is the definition of topos
found in most literature. Here we seem to have the case of localized, schematic
topos, a discrete analogy that could be of interest to mathematicians that study
these objects. A place to begin investigations into the kind of underlying abelian
categories used, that is additive categories (pre-additive category with all finite
biproducts – product/anti-product pairs), those most alike in structure to the
underlying types of categories implied above would be the essential study of
Grothendieck categories [13].

The full analyses of these methods of investigation lay beyond the scope of
this paper but one can say that all of these readily available mathematical tools
in the field of topology, topological algebra and differential and algebraic topol-
ogy coupled with our initial reference to the holographic principle, does point
strongly to the fact that this theory can be used to model physical processes
and it is itself a kind of abstract physical process.

Another strong indication of the above fact is from the field of logic itself
in the form of linear logic. We recall that essentially, linear logic is an im-
provement to proof and truth-based logics that emphasizes the use of resources.
Our method is indeed a form of complex linear logic in emphasizing satisfia-
bility/assignability as a resource with similar operations for object formation,
introduction and eliminations. Linear logic has since been identified as a very
suitable logic for quantum processes, a thing which is readily seen from the
(implicit Lagrangian) manner in which our theory regulates degrees of freedom
over super-posable probabilistic end states.

Finally, the nature of the manifolds we encounter strongly suggest some
variant of String Theory. Briefly, they seem from a surface inspection to have a
Kähler form, with the following identifiable properties:

� Symplectic (differential) form on unassignable statements.

� Complex form on assignable statements AND

� Riemannian metric over the product space obtained as a positive defi-
nite, continuous expansion mode over the entire manifold, leading up to a
solution (for satisfiable instances).

32

We intend to fully delineate this structure in future work where we consider
the scheme cohomology. We contend that the String/Membrane (with surface
regulation of potential) theory we get from a full pursuit of this analytic method,
beyond what can be easily gleaned as above, also yields a very powerful analytic
form that may be able to shed light not only physical initial conditions (like
the ones suggested by the Big Bang theory) but may well be used to explain
processes (as we have shown directly in the case of 3 satisfiability) as diverse as to
how virtual particles (of information/energy) push/scatter on and around each
other (applying weights via some field law/theory) to acquire mass (permanence)
and become real, relative to each other under the influence of gravity (attraction
to similar regions of space). It can be shown that this explanatory modelling
power can also be applied to the intricacies of other natural processes such as
the evolution of these kind of systems along the lines of intelligent evolution.

In fact, to buttress the point about its evolutionary modelling power, an
algorithm generated the way we described functions as a domain specific evolu-
tionary calculus over combinatorial species according to Joyal [14]. This would
be a calculus with a direct signature of these operations (+, Ö) and their in-
verses as well as indirect operations of function exponentiation and composition.
A full discussion of the physical and evolutionary implications of the results ob-
tained here will be fully addressed in a future work, as they are closely tied
with viewing the process itself as an elementary form of machine reasoning with
shared signal processing.

8 Conclusions and Future Directions

As evident from the set of implications considered above, holography as
elucidated seems to be a promising foundation for the exploration of the solution
spaces to many complex problems as well their model implications. We hope
that the algebraic and algorithmic ideas pursued here can be further developed
by other researchers along these and other promising lines.

The personal interest of the authors is in pursuing this line of reasoning, that
is, in addition to providing computationally satisfying descriptions of natural
processes as explained above, is also to study the form as the building block
of a powerful new form of machine reasoning, as indicated in the closing of the
last section, a topic which in itself demands further in-depth investigation and
research.

It is our belief that the methods explored here can be used and further devel-
oped in the pursuit of the resolution of many important scientific, engineering
and technological problems.

33

References

[1] V aliant, Leslie (17–19 October 2004). Holographic Algorithms (Extended
Abstract). FOCS 2004. Rome, Italy: IEEE Computer Society. pp. 306–315.
doi:10.1109/FOCS.2004.34. ISBN 0-7695-2228-9.

[2] Bousso, Raphael (2002). ”The Holographic Principle”. Reviews
of Modern Physics. 74 (3): 825–874. arXiv:hep-th/0203101. Bib-
code:2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825. S2CID
55096624.

[3] S tephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the 3rd ACM Symposium Theory of Computing, pages 151–158,
Shaker Heights, Ohio, 1971.

[4] Leonid A. Levin. Universal search problems. Problemy Peredachi Informat-
sii, 9(3):265–266, 1973.

[5] Richard M. Karp. Reducibility among combinatorial problems. Complexity
of Computer Computations, (R. Miller, J. Thatcher eds.), pages 85–103,
1972.

[6] L. G. Valiant. Expressiveness of Matchgates. Theoretical Computer Science,
281(1): 457-471 (2002). See also 299: 795 (2003).

[7] J. -Y. Cai, V. Choudhary and P. Lu, ”On the Theory of Matchgate
Computations,” Twenty-Second Annual IEEE Conference on Computa-
tional Complexity (CCC’07), San Diego, CA, USA, 2007, pp. 305-318, doi:
10.1109/CCC.2007.22.

[8] Alexander Beilinson, Vladimir Drinfeld, Chiral Algebras, Colloqium Publi-
cations 51, Amer. Math. Soc. 2004.

[9] ”A Computing Procedure for Quantification Theory”. J. ACM. 7 (3):
201–215. doi:10.1145/321033.321034. S2CID 31888376. p. 210, ”III. Rule
for Eliminating Atomic Formulas”.

[10] Robinson, J. Alan (1965). ”A Machine-Oriented Logic Based on
the Resolution Principle”. Journal of the ACM. 12 (1): 23–41.
doi:10.1145/321250.321253. S2CID 14389185.

[11] Dawar, Anuj (1993). Feasible computation through model theory. Univer-
sity of Pennsylvania ProQuest Dissertations Publishing, 1993. 9321378.

[12] R. Impagliazzo, J. Kraj́ıček, P. Pudlák, A. Razborov and J. Sgall
(1995/1996), Proof Complexity in Algebraic Systems and Constant Depth
Frege Systems with Modular Counting. Computational Complexity 6
(1995/1996) 256-298.

34

[13] Grothendieck, Alexander (1957), ”Sur quelques points d’algèbre ho-
mologique”, Tohoku Mathematical Journal, Second Series, 9: 119–221,
doi:10.2748/tmj/1178244839, ISSN 0040-8735, MR 0102537

[14] Joyal, André (October 1981). ”Une théorie combinatoire des séries
formelles”. Advances in Mathematics. 42 (1): 1–82. doi:10.1016/0001-
8708(81)90052-9.

35

