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ABSTRACT: We present a discrete differential Nullstellensatz style result for finding 
satisfiability/unsatisfiability proofs to any 3 SAT formula, along with novel upper bound results. 
We begin by defining a notion of holographic algorithms sourced mainly from Valiant [1] and a 
topological interpretation drawn from the holographic principle [2] in physics. In our 
interpretation, holographic instructions (and their accumulating sequences) live as points  on a 
differential manifold and are (partial with progression towards totality) solutions to the 3 SAT 
problem expressed in differential form. These forms can be expressed as (implicit) polynomials 
generated from ring expansions of an algebraic identity which Valiant says holographic 
algorithms must follow - a definition of algorithms with algorithmic identity based on an algebraic 
quantity (usually as sets of zeroes of some polynomial), instead of traditionally as a sequence of 
instructions. This definitional model which is summarized semantically in the following formula 
for some problem p, forgetting the underlying model used to obtain the quantity is: 
 

∑(sets of solutions/zeroes of p) ∏(functional constraints on p) 

 

Our result is that, if any solutions exist for a formula F recast into an initial polynomial P(x) in 

some differential ring PR{x}, defined by the above identity, then they are multiplicative set 
extensions of the minimal solutions that our framework provides (they are values in a 
differentially closed field)  and that these values are exactly the zeros of ideals in the ring of 

differential polynomials generated using P(x) reflexively itself as a basis. 
 
Restated, our main theorem says that there exists an integration procedure for computing a 

differential closure as a prime model M, consisting of a single ideal, using P(x) as a basis, and 

when F is satisfiable, M is either a satisfying saturation model OR there exists satisfying 
saturation models derivable from M, where derivations are multiplicative interpretations, that is 

for natural numbers i, n and k and a set of inducible interpretations S where all f  are 

interpretations in S, t is the continuous time variable and X is the set of all satisfying solutions: 
           

           ∀F, ∃M ⇒ ∀f, (n, f) ∈ S ∧ ∂kf/ ∂kt: Mk → X, ⇒ M = ∫P(x)∂ix∂it, iff F is satisfiable. 

 
 The differential ideal generated, or more specifically, its field of coeffficients, functions logically 
as an assignability predicate over solutions in the original formula, and in line with Tarski, our 
procedure provides an implicit model of truth over these predicates not directly expressible 
within the logic exposed by the predicates themselves. This procedure functions to yield an 
operator valued second order logic in line with Fagin’s theorem, capable of exactly describing the 
(holographic) algorithms that prove the 3 SAT formulae and therefore can be extended as an 
efficient logic over the whole NP class.  



 

1. Introduction 
 

             Before looking in detail at the differential parts of our theory, it is useful to first examine 
its purely logical and model theoretic aspects.  
          The 3 Satisfiability problem is a popular problem in the field of computer science notable 
for being one of the quintessential problems in the NP complete space. The full classification of 
the NP space as well as the question of whether P = NP had the earliest developments in the 
combined works of Cook [3], Levin [4] and Karp [5]. 

A brief description of the P vs NP problem is that it asks, if every problem whose solution 
can be recognized in polynomial time by a non-deterministic algorithm can also have the same 
solution generated in polynomial time (by a deterministic algorithm). 

 In [3], solutions are encoded as language statements and generation/recognition are 
treated uniformly as co-acceptance procedures (recognizers are information symmetric to 
generators). We however propose that the distinction between generation and recognition 
highlighted in our definition and in the holographic literature already gives us a way to represent 
these 2 acceptance procedures algebraically in the form of matchgates [6, 7] with language 
generators nested on the inside (initial endpoint) of a structure that has language recognizers on 
the outside (final endpoints) and a type of cancelation algebra between paths as we move from 
the inside to the outside of such a structure (whether such an algebra be polynomial or non-
polynomial being of not much relevance at this point).  

Valiant is then right, in posing what we call the Holographic Conjecture: That any positive 
resolution to the P vs NP question would need to address the issue of asymmetry/limits of 
symmetry between the generation and recognition procedures for this problem, and why the 
problem cannot be solved efficiently using a holographic structure such as a match gate, a 
conjecture which we also address here.  

In their traditional form, satisfiability clauses take the form of bracketed disjunctions over 
some subscripted variables, for example: 

 

(x1 ∨ x2 ∨ x3  ∨ x4 ∨ .... ∨ xn) 

up to any number of n variables. 

 

Satisfiability formulae join these clauses by conjunction and allow variables and their 
negations to be repeated in separate clauses, up to any number of clauses, for example: 

 
(x1 ∨¬x2 ∨ ¬x3  ∨ x4 ∨ .... ∨ ¬xn) ∧ (¬x1 ∨ x2 ∨ ¬x3  ∨ x4 ∨ .... ∨ xn) ∧ ... 

∧ (¬x1 ∨ x2 ∨ x3  ∨ x4 ∨ .... ∨ ¬xn) ∧  (x1 ∨ x2 ∨ ¬x3  ∨ ¬x4 ∨ .... ∨ xn) 

Satisfiability problems in this form then ask for a satisfying model, in this case, a set of 
assignments to the unit variables in the formula’s clauses that make all the enclosed clauses true. 
This satisfying assignment can be considered a “flat” linear model (a model that has a single,  
completed interpretation).  



One natural question to ask at this point is if higher dimensional models may exist that 
are asymptotically reducible to flat models via interpretations (strings of variable assignments) 
should the formula be satisfiable, and our answer to this question is yes, a holographic model, 
which we describe formally. This model is exactly the prime model, that is, the model detailing 
the least type, which is the differential closure of a derivation procedure over some field K. 

From a model theoretic perspective then, first, we assume that the Boolean satisfiability 
problem has been reduced into its 3-SAT form which is necessary for our procedure to work.  

From this, we reduce the problem into a Holant[1] inspired differential form, that is, a 
form that allows a certain holographic counting formulation (in terms of zeroes of polynomials) 
as prescribed by Valiant [1] to be applied to the problem. This form is structured so that: 

All possible satisfying solutions, at any point in time, count as (assignable) solution sets 
and satisfy this part of the Holant formula: 

 

∑(sets of solutions of p)  

 
Actual assignments count as the constraints that “flatten” the higher dimensional model 

to select out a subset (and eventually just one) of the satisfying assignments to the CNF formula 
and satisfy this part of the Holant formula: 

 

∏(functional constraints on p) 

 
It turns out that it is indeed difficult to get directly at this positive model, where we assign 

satisfying values directly to variables, that is, we have no concept of what variables are 
functionally assignable (or if any valid assignments exist at all) initially. To continue, we have to 
further borrow from Tarski, the idea of an inductive schema. This leads us to rephrase Tarski’s 
idea in terms of assignability as:  

 
“We can obtain a model of assignability if we can obtain a model of unassignability”  
 
or in more dynamic terms,  
 
“A statement is assignable if and only if it is not unassignable at some given time t” 
 
Thus, the notion of unassignability becomes dual and drives the logic for assignments 

holographically, and if we are still to adhere to Valiant’s algebraic intuition on the clausal level, 
our main task now becomes to construct an algorithm: 

 
“that induces a base model of unassignability AS A SUM OF IMPOSSIBLE SOLUTIONS, dual 

to a co-induced model of A SUM OF POSSIBLE SOLUTIONS, AT ALL TIMES, from which assignments 
which function as CONSTRAINTS can be combined to select one of the satisfiable solutions 
(contained in the sum of possibilities), where this final selection, considered indexed by the 
assignments, is the formal PRODUCT of applying the constraints.” 

 



            Such an algorithm, if it exists, and we show that it does, would be a meta-algorithm as per 
Tarski. Such an algorithm would also be a variety generated by a second order differential 
polynomial ideal. The rest of the following sections will detail the differential aspects of our 
theory, particularly, how to generate the ideal if it exists via integration and how to extend the 
ideal to particular solutions via differentiation: 
 

2. The Simplest Holography of A Single Witness 
3. Towards Complex Topological Union: Bi-Local Linguistic Collisions. 
4. The Global Union Operation. 
5. Putting It All Together- Witness Completion and Algorithmic Analysis. 
Concluding sections include: 
6. Implications For Theories of Computational Complexity and Computability 
7. Implications For Other Mathematical Fields. 
8. Conclusions and Future Directions. 

 

2. The Simplest Holography of A Single Witness. 
 
2.1   Implicit Differential Polynomials and their Zeroes: We start by describing a simple algorithm 
that always satisfies a single clause. Firstly, note that it is a fundamental process axiom that for 
any standalone 3 SAT clause, there are always 7 ways of satisfying such a clause. In fact, for any 
standalone k-depth clause, there are exactly 2k  - 1 satisfying solutions. This means that out of 
the 2k ways of satisfying a clause, one of them is always initially unassignable.  

First assume that assignments take place over the binary field: 
 
  [1, -1]. 

 
This means functions on the sets of zeroes of an ordinary algebraic polynomial  that satisfy 

the clause take the form: 
 
[1, -1]  [1, -1]k 

 
Let our test integers come from some set represented by letters, that is, [a … z], so that a 

positive (+1) truth value assigned to some random subscript can be represented by say the letter 
a and a negative (-1) by an oppositely signed letter -a. 

Now assume the set of assignments abc assigns true to all the variable in some original 
formula, then the set of assignment -a-b-c assigns false to all the variables. This statement is 
unassignable. The singleton set containing just this one statement is our (starting) model of 
unassignability for a one clause formula.  

Now, consider the below procedure executed against the unassignment model for the 
single clause. This procedure incorporates the notion of FREE and BOUND assignments. Free 
assignments are those in which at the time when a value is to be assigned to some unit variable, 
we have a free choice of assigning the variable to either a true or false value and a bound variable 
is exactly the opposite scenario, where the framework rules force us to assign the variable to 
either one of these values: 



 
i. Start by identifying the excluded solution for the given clause. Initially, this 

solution is of some length x where x > 1. x = 3 in our case. For an example, 

using our generic notation, assume the initial excluded solution is -a-b-c. 

ii. Assign values freely to unit variables one by one, in a loop. 

iii. If the value freely assigned to any variable satisfies the original clause, STOP. 

For example, if in our starting example, we assign a value a, b, or c, we can 

stop. 

iv. Otherwise, if the current length of the excluded solution is GREATER THAN 

1, rewrite the excluded solution by requiring that the only combination of 

false assignments to the remaining variables be the new excluded solution, 

that is, the old, excluded solution with one less integer, the integer 

representing the unsatisfying assignment received. For example, if in our 

starting example, we first assign a value of -a, obviously the underlying 

clause is still unsatisfiable and so we rewrite the new excluded solution as -

b-c. Consider this a strengthening (old value is added to the new one). This 

strengthening is now defined as an explicit SUM over unassignable 

statements. 

v. Otherwise, if the current length of the excluded solution is EXACTLY 1, we 

are now CONSTRAINED to change the sign on the excluded solution and 

satisfy the underlying clause.  

Readers familiar with topology will notice the following: 
 

i. The procedure always returns some satisfying solution such that the set of all 

possible solutions looks like the closed sets of a connected space. 

ii. The actual steps that select any solution subtracts or more precisely, 

quotients out the other solutions. This quotienting in a topological definition, 

covers the final selection and the subtracted sections together as points form 

an open set in relation to the final selection.  

Now from the point of view of any final solution, we have a topology: 
 
(X, τ) 

 
Where X is the (not directly countable) set of possible solutions and τ is the dynamic 

algorithmic topology on X generated by assignments (free and bound). 
Now we go back to define SUMS (of solution sets) and PRODUCTS (of constraints) in the 

following topological way: 
 

i. Sums Of Solution Sets: A topological sum is defined as the disjoint union of 

the underlying sets. The sum which we define in the above procedure (step 



iv) is such a sum because it includes a union of isolated/partitioned 

unassignable statements. The final value of this sum is always the selected 

solution and can be considered a sum over interval (unassignable 

statements) values. It is always dual and additively inverse to the sum of 

assignable statements. 

ii. Product of Constraints: A product topology is defined as the coarsest 

topology on a space, which is the topology that preserves the fewest open 

sets on the space. Since any set of constraints composes a final solution 

which excludes all interval values and outputs the selected statement, the 

process applying the constraints is the same as taking a product over the set 

of intervals (excluding them). Using this perspective, we can consider the 

stages before a final selection as computing fractional products. Again, as 

above, the final value of this product is always the selected solution and can 

be considered a product over interval (unassignable statements) values. 

These two definitions complete our requirements for the algebraic operations needed in 
a Holant form for a single clause. Since we formally sum over (fractional) products, we can 
formally describe the algorithm given above as the HOLOGRAPHIC SUM OF PRODUCTS RULE for 
a single clause. 

 This rule can be interpreted as the application of a derivation rule operator over some 
implicit differential polynomial ring G[X] in one variable with operational coefficients in the rings 
of plain polynomials (to be satisfied). Our polynomials would be structured as a product of 
monomials. Each  monomial, mapping exactly to one of the unknowns, for some random variable 
x,  can be written in the form: 

 
(1 – x) or (1 + x)  

 
So that polynomials evaluate to zero when satisfied.  
A monomial for which either value is unnecessary to the satisfaction of the 

clause/enclosing polynomial, takes the form: 
 
(x2) 

 
In the following sections, the reader will see how such monomials can be generated from 

the group evaluation/integration of all polynomials.  
Now if we take it that rewriting is still implicitly taking place all the way until we get to a 

final solution, we can order a representation where these rewrites function as coefficients of our 
differential operators and the current depth of the operator functions as its exponent. In a future 
work in which we formalize the cohomology of our sheme, we will further describe these 
coefficient action as the modification of the time derivative of the differential operator and thus 
the function itself (in a reflexive fashion).  Our sequences of derivations now form a differential 
ring by the following reasoning: 
 



i. Solutions form an implicit ring. We can form (polar) pointwise sums and products of the 
underlying statements.  

ii. Solutions are one to one with derivations and so derivations also form a ring of the 

following type:  ∑figi 
 

Where i is an integer, fi functions come from the ring of algebraic polynomials with 
monomials of the form (1 - x), (1 + x) or (x2), 

 

And gi  functions are of the form: ∂n g(x) / ∂nt and form the ring of differential operators,  
n is the current depth of the rewrite, and final solutions are considered flat, that is are constants 
having zero depth. We can observe that the time variable t unlike the other variables, does not 
have a discrete definition but emerges (pseudo) continuously from the process logic. This is what 
gives this variable the status of a continuous variable and lends a differential interpretation to 
our process. 
             Note that we have just expressed the schema that turns the points in the space into 
predicates over solutions like an algebraic scheme. Remember that schemes are ringed spaces 
that generalize varieties by introducing multiplicities and feature a commutative ring for every 
open set. Here we have a differential scheme. 

 
2.2   The Fundamental Theorem: Topological algebras, as standardly constructed, define an 
algebra (a ring with an operator/ a module/vector space with a bilinear mapping) that is also 
topological space, such that the algebra operations defined are continuous functions over the 
space. 

This definition requires that the operator on the algebra act like a multiplication (product) 
that linearly extends the multiplication operator on the underlying field, in our case, a ring. For 
this, the operator on the algebra would be the sum over unassignable statements, which is linear 
in both the variable holding the existing sum as well as in the new constraint and extends the 
product operation on the underlying ring. 

We now redefine a discrete multiplicative schema as a topological space with rings for all 
open solutions (positive statements), where the solutions can be considered multiples of each 
other.  

With this additional information, we can now formally describe our sum of products rule 
as “a topological algebra acting on a discrete multiplicative schema” and the holographic 
algorithm for a single clause as simply the product of this algebra in one multiplicative dimension.  

For readers familiar with abstract algebras, one can easily see this is a chiral algebra. Chiral 
algebras display chirality (handedness – distinction between directions in spacetime) and are 
usually implemented in physics as vertex algebras – vertex expansions over an ordered structure 
(lattice). In our case, the vertex algebra described is quite similar (with a higher number than 2 
of chiral parts) to the one formally espoused in [7], which formally utilizes an algebra over 
boundary modules of rings, as we do here (modules are implied from the gluing of spectra). 

What we have accomplished here is to describe the process of one WITNESS (associated 
with a single clause), describing how a single clause may be satisfied from its (accumulated) 
statement.  



Finally, in the rest of the paper, for purposes of easy separation and discussion of 
concepts, we will simply call elements (constraints/unassignable statements and their sums (of 
products) of the topology which are not actually satisfying assignments, ANTI-PRODUCTS. This 
marks them as elements of a product space that we are in some sense “multiplying/producing” 
away from and are exactly the categorical duals (hyper-duals in some sense) of actual products. 

Now we state our first theorem using the language developed here and assumed to be 
proven: 

 

Theorem 1: Any single clause C can be transformed into a differential polynomial D with solutions 

in a differentially closed field F, where D is an ideal in the differential polynomial ring K[X] whose 

elements vanish on the minimal solution of D and its expansions (subsets). 
 

Corollary 1: Any single clause C can be transformed into a differential polynomial D with 

solutions in a differentially closed field F and any polynomial with a solution in F can be derived 

from D, that is, all solutions to C are solutions to some polynomial derivable from D. 
 

 
2.3 The Global Topological Conjecture: Having defined a holographic algorithm and thus the 
theorem  for a single clause, we will now attempt to extend our definition to a formula of several 
clauses, approaching the definition of a true nullstellensatz. 

First, we ask if we can extend the topological algebra of the Sum of Products rule to 
include an arbitrary number of clauses (product dimensions), that is, if we can apply this rule 
simultaneously to a set of satisfiable solution spaces, so that their products align over all possible 
variable assignment sets, for one or more satisfying solutions (ideally, all solutions), essentially 
forming a single coordinated product? If so, we can conjecture the following: 

 
“For any n number of clauses, in a given formula F with n clauses, if we convert F into 

holographic form of initial unassignable sums, there is a procedure P, which turns F into an n 
dimensional (multiplicative) schema over the whole formula, if the initial formula is satisfiable, 
and a zero schema (no reachable open solutions) when it is not”. 

 
Note that this procedure P, is not the (local) topological algebra itself, but another 

procedure (considered an extension) over whose output the topological algebra can be applied. 
In our case, for those more familiar with topology, P can easily be shown to be an extended 
version of the topological algebra which operates over the exterior of the topology over which 
our regular topological algebra operates on the boundary. 

Our goal now becomes to find this procedure P, if it exists. If P exists, we have a 
traversable topology that encodes satisfying solutions. That P exists for all satisfiable formula is 
a conjecture that there exists a globally discrete multiplicative schema as well as a global solution 
topology on the associated formula. If such a P exists, then there must exist witness procedures 
for verifying its steps. 

The task of proving this conjecture is tantamount to prescribing a process for topological 
union between the product spaces of individual clauses as well as to provide a set of witnesses 
that can use this process to describe satisfying holographic algorithms for satisfiable formulae. 



If we can achieve the above stated goal, then we can achieve the full description [1] of, 
holography given by Valiant as the “mapping of solution fragments, many to many, while 
preserving the patterns of interference among them”. We are encouraged that this is possible 
because of 2 reasons: 

 
i. We have a sum of products formula which is Holant/Holographic and well defined 

in one dimension and in the first order according to [1]. 
ii. The String theoretic holographic principle [2] tells us that a description of 

interactions between elements on the topological boundary of a region of 
interaction should equate to a description in the interior of the same space for an 
arbitrary number of elements. Considering the orthogonal single nature of 
interacting elements in a single clause, this condition is trivially satisfied for what 
one may call, first order interactions. One can imagine this interaction taking place 
within a second order across clauses. 
 

The fact that two these theories of holography, developed in two different contexts, can 
be made to trivially agree, albeit, on a very restricted case in a first order sense gives us a hint of 
possibility that they might be made to agree over a second order with some careful algebraic 
analysis. 

Achieving the above stated goal would yield the following theorem and its natural 
corollary that extend the one clause case. 

 

Theorem 2: Any set of clauses CA can be transformed into a differential polynomial D with 
solutions in a differentially closed field F, where D is an ideal in the polynomial ring K[X] whose 

elements vanish on the minimal solution of D and its expansions (subsets). 
 

Corollary 2: Any set of clauses CA can be transformed into a differential polynomial D with 

solutions in a differentially closed field F and any polynomial with a solution in F can be derived 
from D, that is, all solutions to the conjunction of the clauses in CA are solutions to some 

polynomial derivable from D. 
 

This is our nullstellensatz and proving this main theorem is the focus of the following 3 sections. 
 

3. Towards Complex Topological Union: Bi-Local Linguistic Collisions: 
 
Here we attempt to satisfy the global topological conjecture in a limited way for a formula 

consisting of just 2 clauses by looking at the logical content of their underlying linguistic schemes, 
that is, the set of current unassignable statements (expressed as sums of products on the purely 
algebraic side). 

Our next consideration would be to look at updating information about the common 
scheme in order to “unify” their satisfaction algorithms and thus their topologies. This strategy 
uses the linguistic structure of the schema to modify the algebraic ones of the scheme. 

Consider the following case: 



 
We have 2 sums (of unassignable statements), A of depth m and B of depth n in a 

formula F. Assume there is exactly one and only one term in A that that has the opposite 

sign of a term in B. Let us call term in A, x and the term in B, -x. 

 

Now assume, at some time t, we have assigned the underlying clause to other integers, 

but we have not assigned a value x or -x to either clause, that is, exactly at time t, the 

only values we have assigned to each variable are exactly the unsatisfying values, that is, 

the exact integers specified in the unassignable statement 

 

For example, say A initially (at time a t1 = 0) has value 125 and B has value 34-5 (at time 

a t1 = 0) in a formula F and at time t2 (t2 > 0) we have assigned F to 1234, reducing A to 

5 and B to -5. 

 

Since the original clauses remain unsatisfied by the current set of assignments and the 

two remaining terms are conflicting, we cannot satisfy both clauses at the same time (as 

required), since by the natural law of assignment, any variable can only either be 

assigned to an integer or its negation.  

Therefore, the combination of hypothetically assigned terms (as demonstrated in our 

example) is GLOBALLY UNASSIGNABLE in any scheme of satisfaction including both 

clauses and is a common anti-product for both clauses. 

 
To prevent the situation above from occurring, we must correct the formula F at some 

time t before t1. In fact, we need to correct these sums as soon as we can compare the two 
offending sums, that is, at time t = 0 relative to both sums. We need to combine all the non x 
terms in both sums into a new sum S that becomes the unassignable sum for a new induced 
clause C, which we have just added to the formula. S now becomes unassignable in our model. 

       
For example, say A initially (at time a t1 = 0) has value 125 and B has value 34-5 (at time 

a t1 = 0) in a formula F and at time t2 (t2 > 0) we have to add a new unassignable sum 

1234 to our model of unassignable sums. This is because 1234 does not satisfy either 

clause because of the conflict on 5 and -5. 

 

Let us further assume that if more than one term in A conflict with (an equal number of) 

terms in B, our rule does not apply. This is simply because we can assume (for now, and 

to be proven) that no assignment process AT ANY TIME, would produce a string 

containing a previous term X and its negation -X upon arriving at point where we need 

to assign another variable to another term (Y or -Y). If indeed, we never run into this 

situation (as the reader should by the end of article, see that we never will), we can 

assume this assumption invalid. 



 
This gives us the flowing bi-local process axiom: 
 

Axiom 1:  Given 2 clauses A of depth m and B of depth n where exactly one term in A’s 

anti-product conflicts with one term in B’s anti-product, the common anti-product is a 

new term combining the other non-conflicting terms in both anti-products into a new 

single anti-product. 

 

One thing to note, is that if A and B are the same depth, and all the other non-

conflicting terms are exactly the same, the resulting anti-product replaces the A and B 

as a single larger (shorter length) anti-product, otherwise, we will always get an 

additional, smaller (longer length) anti-product. 

 
We will henceforth refer to the operation that writes out a new unassignable model as a 

result of the assignability evaluation performed, a DIRECT SUM OPERATOR or simply, a DIRECT 
SUM of models (viewed as topologies). This is taken from the direct sum concept in abstract 
algebra which pairs structures so that their underlying operations are compatible between pairs 
(or collections in our more abstract interpretation) of their individual elements. This direct sum 
can be considered to be the exact dual of the sum of products rule for every clause (which we 
can now interpret as a direct product). 

Note: One can also look at this as a DIRECT PRODUCT of algebras, turning 2 different 
algebras into the same algebra, similar to group direct products. 

This operator can be seen as the integral dual of the differential derivative that computes 
actual solutions and is a kind of differential form in the following way(now with time extending 
instead of quotienting and without counting the multiplicities of the derivation operator). y and 
x are variable with values in the field of solutions and t is the time variable: 

 

∫F(x)F(y)∂x∂y∂t 

 
The use of the Dolbeault operator here suggests that our integration is somewhat 

infinitesimal and considers exact values on boundaries. The open integration is similar to the use 
of the symbol in statistic where the computational semantics of the operator (in our case, a 
predicate), confines the values of the integration sample. It should be apparent that for any two 
clauses whose topologies are united this way, our topological conjecture, and thus a version of 
theorem 2, does indeed hold for the formula (containing just the 2 clauses). The set of resulting 
reductions is indeed a prime model and an ideal in the differential ring. That is, we can trivially 
select any and all valid assignment products using the procedure of assigning values to the 
enclosing formula.  

 

4. The Global Union Operation. 
 



So far, we have shown how the topological conjecture holds in the case of any two 
independent clauses by describing how the common anti-product base of two arbitrary clauses 
can be schematically unified into a single differential ideal. That is, the satisfaction of a formula 
of 2 clauses is completely witnessed by our model. 

This binary bi-local operation described in the above section will represent the basic 
operation of topological union which we REPEAT over all possible, relevant pairs in some set S 
(which we allow to grow by addition of new elements until we reach some exhaustive condition 
to be defined). 

Now since we know S has the ability to grow (from examining the bi-local operator), we 
now ask the proper model theoretic question: what controls the maximal size of S, so that we 
know when to stop the growth of S so we can run the sum of products rule to successful 
completion on every clause, thereby satisfying it (that is when does S develop stable algebraic 
identities)?  We are essentially asking for an equivalent of a Grobner bases that is exact and 
applies to a differential instead of just an algebraic ring, which defines an ideal in the manner 
that would generalize Theorem 2 to an (potentially) infinite number of clauses, that is, an 
inductive rule. 

The first stage – verifying that S is stable (according to some criteria C) )and then 
proceeding to satisfy the formula) is exactly the P procedure we asked for in our topological 
conjecture.  

Proceeding in the second stage towards successful satisfaction is what we will call a 
complete random topological walk (this assumes S has more than one solution, an assumption 
which makes the solution easier to demonstrate).  

In essence, what we ask is this: What are the walking boundaries of the assignment 
operator that we associate with the sum of products rule? We can answer this by asking, what is 
C, the halting criteria for guaranteeing that the application of the rule will work when given a 
satisfiable formula?  

We realize that C can be treated as some kind of inductive limit (where we have 
accumulated enough observations to deduce a general principle) placed on some structure and 
that when this limit is reached successfully, we know the underlying formula is satisfiable. But 
what may this structure be? 

 
i. The set itself? – This limit can be set by detecting a common condition among 

the clauses that indicates that the procedure is now complete. 

ii. The depths of sums (witness statements) in the set? – This assumes that we will 

not need more than sums of a certain depth to detect when a formula is 

satisfiable.  

Now, let us incorporate the idea of such a fixed set and ask the following question about 
its computability: 

 
“Take some SATISFIABLE arbitrary CNF formula F, with a set of (original) clauses C. Let 

CX at all times be the set of sums associated to the original clauses C, regardless of their 

current values. Can we compute some fixed set CP of unassignable sums (anti-products) 

which extends CX, in which all member sums have been resolved bi-locally with every 



other (relevant) member sum, such that no new sums need to be added to the set, 

except the modification (expansion) of existing sums of the subset CX into full products 

via (all possible satisfying) sets of assignments, using a unified topology?” 

            We end this section by assuming that such a set, CP, which is a domain specific 
differential ideal, can be constructed for any arbitrary satisfiable formula F and in the next 
section, we “reverse-engineer” this set to discover what its properties should be through a novel 
form of algorithmic analysis. In this reverse-engineered scenario, we must demand that all 
algorithmic moves be witnessed. Being witnessed implies the following: 

 
i. The assignment value is free – at the time just before we make the assignment, 

it is possible to assign its negation. 
ii. OR The assignment value is bound - An assignment value is bound whenever 

its negation is blocked. We introduced a simple blocked scenario in our section 
on the simplest holography where we assigned a variable to a value when our 
unassignable statement has reached a depth of 1 and we are constrained to 
assign its negation. In the analysis section below, we introduce additional 
scenarios in which a variable can become blocked. Being witnessed now 
means that we can guarantee that no assignment procedure P will ever be 
blocked on both an assignment value and its negation AND that P. will satisfy 
the underlying formula. 

 

5. Putting It All Together- Witness Completion And Algorithmic Analysis. 
 

We concluded the last section by assuming that some stable inductive ideal set CP exists 
(generated by CX) and can be computed for every satisfiable formula F, after which we can 
successfully generate a successful assignment to the formula. 

Generating a successful assignment to a formula F essentially means the following: 
 
i. At no point during the walk should we be blocked on assignment to a variable. 

This means any variable should always be assignable to either true or false. 

ii. We should include a procedure, that at any point t1, can check if assigning any 

variable x to some truth value a would cause some other variable y to become 

blocked, if so, assign x to -a, we call this UNBLOCK rule. The success of the 

UNBLOCK rule should always be guaranteed by the presence of some higher 

order sum in CP. Indeed, this is the absolute test of the set CP as a witnessing 

set. Also, note that whenever we unblock a variable, the assignment to the 

variable always satisfies the underlying clause(s). 

iii. At no point t2, if indeed we have such a set CP, should the procedure in ii 

indicate that we are blocked on both possible assignments to the variable x. 

 



In essence, we will eventually describe a procedure P that uses CP to witness/verify that 
it can complete a successful assignment to a satisfiable formula using both free and bound 
assignments as well as the UNBLOCK rule.  

To correctly determine what CP should then be, we first need to identify every case in 
which a topological walk can become blocked, then include a refutation that such a case would 
never exist if a certain type of CX witness (thus fixing what properties CX witnesses should have) 
or that we have a sum (a supporting witness) included in CP, a CP witness,  that can be used to 
justify the use of the UNBLOCK rule. 

If indeed this procedure exists, which encodes such witnesses, then we can guarantee 
that we can generate at least one random satisfying assignment to any satisfiable F using our 
proposed algorithm, that is we can verify that CP is indeed a differential ideal for some satisfiable 
form of our clause. From then we can show that CP is indeed a complete/total ideal on which 
every satisfiable polynomial vanishes. 

 
5. 1  Obstruction Analysis In this section, for ease of initial analysis, we assume that our formula 
is multiply satisfiable (by more than one solution) and that we have generated enough witness 
sums (in CP) to conclude that this indeed so. Our goal here then is to analyze ALL potential 
obstructions to satisfaction procedure, if such a set CP exists. The criteria of such a set would 
then be that for any kind of potential obstruction to assignment completion that we can think of, 
we can also provide a refutation for satisfiable formulae – that either the scenario is impossible 
or that there is a witness procedure which ensures that the obstruction can be remediated 
according to an unblock procedure which we define. This refutation squarely rests on the fact 
that the set CP contains enough witnesses to verify that the obstruction is impossible or can be 
removed by a procedure compatible with the topological algebra. Overall, we define 4 distinct 
types of witnesses to be identified: 
 
          immediate witnesses, of which there are two kinds, direct and indirect. 
          intermediate witnesses which are always indirect. 
          boundary witnesses which are always indirect. 
 

The act of analyzing obstructions on a space (manifold – which we have here) that 
proceeds linearly can be seen as a type of homological algebra for mathematically inclined 
readers. Here is where our choice of the use of schemes will be seen as particularly ingenious in 
the way it allows us to both blend topology and abstract homology (as cohomology in our case) 
in proving our main conjectures. 

 Remember that our core problem is to prove the satisfiability of the main formula, that 
is, the conjunction over the original clauses. Also, remember that we required our initial problem 
to be in 3 SAT format. This means that our satisfying procedure can run the SUM OF PRODUCTS,  
rule, that is, the differential derivation procedure on only sums of depth 3 and smaller to confirm 
satisfiability of the main formula F. Higher dimensional sums will only be used as background 
witnesses (as we will show) to show that our ideal is sufficient. In terms of our underlying 
topological algebra, this means that we can use just 3- depth sums and less as the kernel of sums 
for our algebraic morphisms.  



We break our analyses down by highly structured uses cases organized in order of 
structural complexity. We determine this complexity first by sum depth, deeper sums are more 
complex than shallower sums, as well as structured combinatorial complexity. These are 
organized into 3 main Use Cases (UC) that cover every abstractly computable satisfying walk 
pattern and number 29 in total. These cases will gradually introduce our cast of necessary 
witnesses, until we have identified every possible type of witness we will need to complete our 
model. The depth of the sums in each case  we will consider will be assumed to be the depth that 
they have when we have determined that we have computed all the initial sums we need in order 
to start assigning variables to values. This means that after we obtain these sums, there will be 
no further, direct bi-local interactions between unassignable sums – we have a complete starting 
holographic algorithm.: 

 
i. UC 1 - Sums of depth 1 

 

For example, an original n-depth sum reduced down to a single unsatisfying 

variable assignment, whose negation must be assigned to satisfy the underlying 

clause. This case is trivial since we can recognize that these sums indeed would 

represent the limit of sum taking and on a propositional algebra level would 

themselves be unsatisfiable assignments. That such are not negated by any other 

sum of depth 1 would represent the weakest possible preconditions for 

satisfying the associated formula. This can be considered an implicit axiom. If no 

such conflicts occur, the satisfying assignments to the individual clauses would 

be the propositional negation of the (non-conflicting) unsatisfiable sums.  

Refutation: It is impossible to block on sums of depth 1 in a satisfiable formula. If 

we get two sums a and -a at any point during bi-local comparisons, we will 

regard the formula as unsatisfiable (more on this in our section on algorithmic 

analysis). 

 

ii. UC 2 - Sums of depth 2 

 

 These can be immediately satisfied or reduced to a sum of depth 1 by some 

assignment if the associated assignment does not satisfy the clause. 

 

We can identify 3 scenarios in which a variable assignment would cause the 

remaining formula to become unsatisfiable: Take x, y, z and i as integers and -x, -

y, -z and i as their respective negations. The assignment of interest is to x 

(cancelling out -x). Each scenario will be followed by a refutation which affirms 

the impossibility of its existence from some supposedly complete process of 

enumerating the sums. 

 



Scenario 1: There exists 2 sums xy and x-y. An assignment to x would leave two 

conflicting sums. 

Refutation: Our bi-local operator would combine both clauses into a single x sum 

(making x unassignable) and so any set containing 2 such clauses will change and 

so is not complete. 

 

Scenario 2: There exist 3 sums xy, z-y and x-z. An assignment to x would leave 2 

sums y and -z. We now have to assign -y and z to satisfy the underlying clauses 

(first and third). This immediately unsatisfies the second clause (this is exactly 

the sum of its unsatisfiable statements). 

Refutation: The DIRECT SUM would combine the first two sums into xz which 

will then combine with the third and so make x unassignable. So, the above set 

contains a change and cannot be considered to have been complete. 

 

Scenario 3: There exist 4 sums x-z, xi, z-y and y-i. An assignment to x would 

directly leave 2 sums -z and i. We now have to assign z and -i to satisfy the 

underlying clauses (first and second). To satisfy the third clause, we now have to 

assign y but to satisfy the fourth clause, we must assign -y, which conflict, 

making both clauses unsatisfiable. 

Refutation: The DIRECT SUM would combine the two sums xi (second) and y-i 

(fourth) into xy which will then combine with the third, z-y, to form xz which will 

then combine with the first, x-z, to make x unassignable. So, the above set 

contains a change and cannot be considered to have been complete. 

 

 

To see that is the limit for depth 2 cases, we note that depth 2 sums can only 

relate between two variables and that an assignment to some value would force 

by principle, only one bound assignment. Verifying that these bound 

assignments do not conflict among any number n (here limited to 4) of related 

clauses is exhausted by the scenarios we explored above. 

 

iii. UC3 - Sums of depth 3: These can be immediately satisfied or reduced to a sum 

of depth 2 if the associated assignment does not satisfy the clause. 

It can be seen that sums of this depth require slightly more sophisticated 

refutation for most cases (except for the very first case presented).  

The main refutation strategy used here is to show how we remediate the 

situation when we are forced into the 3 scenarios (refuted for that smaller case) 

mentioned in the above use case for sums of depth 2, that is, when an 

assignment leaves any of the following forms: 



1. xy, x-y 

2. xy, x-z, z-y 

3. x-z, xi, z-y, y-i 

 

As explained previously, assigning the underlying clause to x in any of these 

cases will cause the whole formula to become unsatisfiable.  

 

Here our scenarios have multiple possibilities (that scale combinatorically), and 

we will review all of them in order in order to provide the right refutation of 

impossibility and/or point to the right witness that lets us execute the UNBLOCK 

rule for that possibility. 

 

Scenario 1: We have scenario 1 of the UC 2 (xy, x-y) after assigning some 

integers a and b. We now identify the possibilities that can lead to this scenario 

as well as their refutations. 

Possibility 1: The 2 original UC -2, Scenario 1 sums were of the forms axy and ax-

y (here assignment to b is irrelevant). 

Refutation:  The DIRECT SUM would combine these into scenario 1 of UC 2 

inheriting that refutation So the above set contains a change and cannot be 

considered to have been complete. 

 

Possibility 2: The 2 original UC -2, Scenario 1 sums were of the forms axy and bx-

y, if assigned to x, formula becomes unsatisfiable. 

Analysis: We have no rule indicating that a and b should not be assigned 

together, and in fact, there is the very explicit possibility that they may both be 

required as forced arguments withing some assignment block. 

 

If we analyze the DIRECT SUM operation, we see that the following sum must 

have been generated: abx 

 

This means that we have an explicit rule/witness saying that if we assign a and b, 

we have to assign -x. Since abx is a 3- depth sum, it would be a part of CX, the set 

of sums to be satisfied and that it can be satisfied makes it a direct immediate 

witness. 

 

But this is only the view we get from looking at the two sums explicitly stated. If 

we assume that it is possible for our set CX may contain the cancelling sum, that 

is: ab-x (witness cancellation).  

Then we would have generated ab, so the premise in our possibility would be 

cancelled. 



Refutation:  We never need to assign to x, since we can UNBLOCK the variable 

by assigning it to -x, using an available witness, otherwise, ab becomes 

unassignable if there is a cancelling sum. 

 

ANALYSIS INTERLUDE: As one can readily observe above, we can switch the 

clauses in which a and b appear to include one more test case. But notice that 

since we are using anonymous (letter) variables, this would amount to an 

abstract repetition of the above scenario. 

 

As the following cases get more complex than those we have already looked at, 

that is, we have scenarios that involve 2 or more variables spanning 3 or more 

clauses, we will adopt an economical approach in listing down the complete list 

of applicable scenarios. Our approach would be thus: Where variables appear 

just once in a scenario, their positions will not matter, just like above. When a 

letter occurs twice or more, say x times,  among n number of clauses, we need to 

“permute” the appearance of the variable among all possible x positions it can 

take in n slots. The reader will see, as we go along, that this will suffice to 

abstractly evaluate all the possible obstruction patterns generatable among 2 or 

more variables. 

 

Scenario 2: We have scenario 2 of the UC 2 (xy, z-y and x-z) after assigning some 

integers a, b and c. We now identify the possibilities that can lead to this 

scenario as well as their refutations. 

 

Possibility 1: The 3 original UC -2, Scenario 2 sums were of the forms axy, az-y 

and ax-z. 

Refutation:  The DIRECT SUM would combine axy and az-y into axz which would 

then combine with ax-z to give ax and so the original set was not complete (since 

we had axy). 

 

Possibility 2: The 3 original UC -2, Scenario 2 sums were of the forms axy, az-y 

and bx-z. (a is in positions 1 and 2) 

Analysis:  If we analyze the DIRECT SUM operation, we see that the following 

should take place: axy and az-y combine to give axz which combines with bx-z to 

give abx (AN UNBLOCK WITNESS). Since this witness must be satisfiable, this 

means once we assign a and b, we have to assign -x. If ab-x (witness 

cancellation) were also included in the set, we would get ab. 

Refutation:  We would not need to assign x to the formula (after assigning a and 

b), since we can assign to -x (and satisfying the underlying clauses), otherwise, 

ab becomes unassignable. 



 

Possibility 3: The 3 original UC -2, Scenario 2 sums were of the forms axy, bz-y 

and ax-z (a is in positions 1 and 3). 

Analysis: The DIRECT SUM combines axy and bz-y into abxz (4- depth sum-

indirect witness) which combines with ax-z to give abx (witness). If ab-x were 

also included in the set, we would get ab. 

Refutation:  We would not need to assign to x, since we can assign to -x, 

otherwise, ab becomes unassignable. 

 

Possibility 4: The 3 original UC -2, Scenario 2 sums were of the forms bxy, az-y 

and ax-z (a is in positions 2 and 3). 

Analysis: The DIRECT SUM combines bxy and az-y into abxz (4- depth sum-

indirect witness) which combines with ax-z to give abx (witness). If ab-x were 

also included in the set, we would get ab. 

Refutation:  We never need to assign to x, since we can assign to -x, otherwise, 

ab becomes unassignable. 

 

 

Possibility 5: The 3 original UC -2, Scenario 2 sums were of the forms axy, bz-y 

and cx-z (as mentioned earlier, this becomes position agnostic). 

Analysis: This analyzes the maximal context of 3 spanning assignments. The 

operation of the DIRECT SUM yields the sequence: axy combines with bz-y to 

give abxz (a 4- depth sum) which combines with cx-z to give abcx. 

Here we note that we now have a rule, abcx, that says once we assign abc we 

must assign -x. Since this sum has a depth greater than 3, we would not try to 

satisfy it directly. However, we still execute it by unblocking the corresponding 

variable. For this, we will call abcx an indirect immediate witness and abxz an 

intermediate witness. 

If we have a corresponding rule that says abc-x, then we would combine with 

abcx to generate abc meaning we could not assign the three variables together. 

When we invoke the UNBLOCK rule based on this witness, that is a witness that 

does not explicitly get rewritten (since we are only trying to satisfy clauses of 

depth 3 or less), how can we know if we have not blocked another variable 

somewhere? 

Explicitly, there may be a rule like abc-xi if we allow our sum generation 

algorithm go up to depths of 5. In this case, we may discover rules like abc-x-i, 

which would then give us abc-x which would help us reduce the original sum 

down to abc thus barring us from assigning abc together. 

If abc-xi did exist and not abc-x-i, abc-x becomes a valid witness to an UNBLOCK 

rule (because we have verified it doesn’t block any other variable) and since 



UNBLOCK rules would only ever have a maximum of 3 terms in their antecedents 

(reader should verify that this is indeed correct), we need not consider the effect 

of running more than 4- depth sum product rules as witnessable executions. 

Here, 5- depth sum rules are always necessary witnesses to the running of 4= 

depth sum witnesses but 5- depth sum rules themselves are never “run”. For this 

we will call 5-depth sum rules, boundary witnesses, as they witness the 

“boundary” of the computation. 

Refutation:  If we allow sums of up to depth 5, from Axiom 2, we never need to 

assign to x, since we can assign to -x, otherwise, abc becomes unassignable. 

 

Scenario 3: We have scenario 3 of the UC 2 (x-z, xi, z-y and y-i) after assigning 

some integers a, b, c and d. We now identify the possibilities that can lead to this 

scenario as well as their refutations. One can by now hypothesize the number of 

possibilities p here to be algebraically related to the maximum number of 

assignable integers n. This appears from the above cases to be about p = 2n-1 

These would be correct as we show below for the 16 possibilities for a maximal 

assignment to 4 variables (a, b, c and d). 

 

Possibility 1: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, axi, 

az-y and ay-i. 

Refutation:  The DIRECT SUM would combine ax-z and az-y into ax-y which 

would then combine with ay-i to give axi which then combines with ay-i to give 

ax and so the original set was not complete (since we ax-z, axi). 

 

Possibility 2: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, axi, 

az-y and by-i. (a in positions 1, 2 and 3) 

Refutation:  The DIRECT SUM would combine ax-z and az-y into ax-y which 

would then combine with by-i to give abi which then combines with by-i to give 

aby so that after assigning ab we must assign -y, breaking the unsatisfiability 

condition.  

 

We can also consider a different cancelation path (and indeed we can for 

majority of the cases listed): axi combines by-i to give  abxy which combines with 

az-y to give abxz which combines with ax-z to give abx so that after assigning ab 

we must assign -x, breaking the unsatisfiability condition.  

 

This immediately shows us that depending on the order we encounter the 

original clauses, we may get different additional rules, giving the idea of a non-

commutative algebra. We will however see that whatever eventual signature we 

arrive at for a satisfiable formula, all of its possible signature will be 

quantitatively equivalent, that is, they will preserve the same set of total 



solutions. This we will demonstrate in detail when we consider the soundness 

and completeness of our final algorithm.  

 

Going forward, we will only consider one of the many inductive paths that can be 

used to refute the scenarios we present (just as we have done in earlier cases). 

 

Possibility 3: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, axi, 

bz-y and ay-i. (a in positions 1, 2 and 4) 

Refutation:  The DIRECT SUM would combine ax-z and bz-y into abx-y which 

would then combine with ay-i to give abx-i which then combines with axi to give 

abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 4: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, bxi, 

az-y and ay-i. (a in positions 1, 3 and 4) 

Refutation:  The DIRECT SUM would combine ax-z and az-y into ax-y which 

would then combine with ay-i to give ax-i which then combines with bxi to give 

abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 5: The 4 original UC -2, Scenario 2 sums were of the forms bx-z, axi, 

az-y and ay-i. (a in positions 2, 3 and 4) 

Refutation:  The DIRECT SUM would combine bx-z and az-y into abx-y which 

would then combine with ay-i to give abx-i which then combines with axi to give 

abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 6: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, axi, 

bz-y and by-i.  (a (one random letter) is in positions 1 and 2, and b in positions 3 

and 4 ).  

Refutation The DIRECT SUM would combine ax-z and bz-y into abx-y which 

would then combine with by-i to give abx-i which then combines with axi to give 

abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 7: The 4 original UC -2, Scenario 2 sums were of the forms bx-z, axi, 

bz-y and ay-i. (a (one random letter) is in positions 2 and 3, and b in positions 1 

and 4). 

Refutation:  The DIRECT SUM would combine bx-z and bz-y into bx-y which 

would then combine with ay-i to give abx-i which then combines with axi to give 



abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 8: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, bxi, 

az-y and by-i. (a (one random letter) is in positions 1 and 3, and b in positions 2 

and 4) 

Refutation:  The DIRECT SUM would combine ax-z and az-y into ax-y which 

would then combine with by-i to give ax-i which then combines with bxi to give 

abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 9: The 4 original UC -2, Scenario 2 sums were of the forms bx-z, axi, 

az-y and by-i. (a (one random letter) is in positions 2 and 3, and b in positions 1 

and 4) 

Refutation:  The DIRECT SUM would combine bx-z and az-y into abx-y which 

would then combine with by-i to give abx-i which then combines with axi to give 

abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 10: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, bxi, 

bz-y and ay-i. . (a (one random letter) is in positions 1 and 4, and b in positions 2 

and 3). 

Refutation:  The DIRECT SUM would combine ax-z and bz-y into abx-y which 

would then combine with ay-i to give abx-i which then combines with bxi to give 

abx so that after assigning ab we must assign -x, breaking the unsatisfiability 

condition. 

 

 

Possibility 11: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, axi, 

bz-y and cy-i. (a is in positions 1 and 2, b and c occupy just one position). 

Refutation:  The DIRECT SUM would combine ax-z and bz-y into abx-y which 

would then combine with cy-i to give abcx-i which then combines with axi to 

give abcx so that after assigning abc we must assign -x, breaking the 

unsatisfiability condition. 

 

Possibility 12: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, bxi, 

az-y and cy-i. (a is in positions 1 and 3, b and c occupy just one position). 

Refutation:  The DIRECT SUM would combine ax-z and az-y into ax-y which 

would then combine with cy-i to give abcx-i which then combines with bxi to 

give abcx so that after assigning abc we must assign -x, breaking the 

unsatisfiability condition. 



 

 

Possibility 13: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, bxi, 

cz-y and ay-i.  (a is in positions 1 and 4, b and c occupy just one position) 

Refutation:  The DIRECT SUM would combine ax-z and cz-y into acx-y which 

would then combine with ay-i to give acx-i which then combines with bxi to give 

abcx so that after assigning abc we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 14: The 4 original UC -2, Scenario 2 sums were of the forms bx-z, axi, 

az-y and cy-i.  (a is in positions 2 and 3, b and c occupy just one position) 

Refutation:  The DIRECT SUM would combine bx-z and az-y into abx-y which 

would then combine with cy-i to give abcx-i which then combines with axi to 

give abcx so that after assigning abc we must assign -x, breaking the 

unsatisfiability condition. 

 

Possibility 15: The 4 original UC -2, Scenario 2 sums were of the forms bx-z, axi, 

cz-y and ay-i. (a is in positions 2 and 4, b and c occupy just one position) 

Refutation:  The DIRECT SUM would combine bx-z and cz-y into bcx-y which 

would then combine with ay-i to give abcx-i which then combines with axi to 

give abcx so that after assigning abc we must assign -x, breaking the 

unsatisfiability condition. 

 

 

Possibility 17: The 4 original UC -2, Scenario 2 sums were of the forms bx-z, cxi, 

az-y and ay-i. (a is in positions 3 and 4, b and c occupy just one position) 

 

Refutation:  The DIRECT SUM would combine bx-z and az-y into abx-y which 

would then combine with ay-i to give abx-i which then combines with cxi to give 

abcx so that after assigning abc we must assign -x, breaking the unsatisfiability 

condition. 

 

Possibility 18: The 4 original UC -2, Scenario 2 sums were of the forms ax-z, bxi, 

cz-y and dy-i. (all 4 assignments are in a single position). 

Refutation:  The DIRECT SUM would combine ax-z and cz-y into acx-y which 

would then combine with dy-i to give abcdx-i which then combines with cxi to 

give abcdx so that after assigning abcd we must assign -x, breaking the 

unsatisfiability condition. 

Post-Analysis : We started out by stating that this was a procedure to provide 

walking instructions for depth 3 sums and less. From above, we see that in this 

one case, we need a 5- depth sum indirect witness. As we stated earlier, this 



witness would also need a higher order witness so that if we have two sums, 

abcdxk 

and abcdx-k, we can make abcdx unsatisfiable. Hence we also need 6- depth 

sums.  

 

Summary: So far it appears that to walk successfully while abiding by our 

holographic formula, we only need to provide witnesses of up to sum depth 6. 

 

We should now state the second axiom of our theory: 

 

Axiom 2: Computing unsatisfiable sums up to 6- depth orders gives us the 

complete set of 4 and 5 depth implicit rules needed to verify that 3 depth rules 

and less can be run successfully using the UNBLOCK mandate, for satisfiable 

formula. 

 
5.2 Implementation: We are now ready to construct an algorithm that builds on the axiom we 
just stated and that is GUARANTEED as we promised, to produce a random satisfying assignment 
to some arbitrary satisfiable formula F when run. The primary goal of this algorithm would be to 
produce a satisfying set of assignments to F if it is satisfiable and then OUTPUT YES or indicate 
that it is not and OUTPUT NO. We leave the reader to verify that the moves made by the 
algorithm are indeed permitted based on the body of techniques and refutations we have stated: 

 
i. Start by assigning an initial unassignable statement to each starting clause. Label 

these a starting set of sums, S. 

ii. Expand S to the limit as follows. 

iii. For each element currently in the set and that is added to the set, evaluate its bi-

local union via the DIRECT SUM with every other relevant sum (sums for which it 

shares exactly one conflicting integer value). IGNORE any generated sums whose  

is greater than 6 (we will not need these witnesses). 

iv. Stop either when no sums can be generated or when we have reduced two sums 

to their minimum, but they conflict over this minimum value. If there is a conflict 

of this type, the original formula is unsatisfiable, OUTPUT NO, otherwise: 

v. If there are any (non-conflicting) minimum sums, assign their negations. 

vi. Are all variables assigned (bound)?, if so, OUTPUT YES, otherwise: 

vii. Start the free assignment of variables to values. 

viii. After each free assignment, execute the necessary reductions to each relevant 

unassignable sum (step iv of the Holographic Sum Of Products Rule). 

ix. Examine the field of 2-depth sums. If any variable is blocked as indicated above 

(Scenarios 1, 2 and 3 of UC2), assign its negation (Using the UNBLOCK rule as 

supported by our body of refutations in UC3). 

x. Repeat steps v to vii until all variables have been assigned. 



xi. OUTPUT YES. 

 

5.3   Soundness and Completeness:  Now we examine the correctness of our algorithm in terms 

of the topological conjecture, and our assumption that the set generated is indeed an ideal in 

the way we described, that is, can be extended/expanded to EVERY solution that satisfies the 

associated formula, if ANY solutions exist. We justify this notion of correctness in terms of the 

following questions, in order of increasing complexity: 

 
i. Will the algorithm OUTPUT NO if the formula is not satisfiable (Soundness)? 

- YES. Up to step iv of the algorithm, all we have computed is the DIRECT SUM of 

unassignable statements. Unless we miscategorized some statement as 

unassignable, which we have not, then this is the correct sum (and so is its dual) 

giving our operational definitions. If the algorithm outputs NO at this point, the 

formula is not satisfiable. 

ii. Will the algorithm OUTPUT NO if the formula is satisfiable (Soundness)? 

- NO. By converse of the argument above, if after we complete step iv, the 

program can only output YES because we know the algorithm will proceed to 

the end and find a flat model using free assignments and the UNBLOCK rule. 

iii. Will the algorithm compute an incorrect product, that is, a set of assignments 

that do not satisfy the formula (Soundness)? 

- NO. Since every product is a result of the Holographic Sum Of Products Rule, 

every product will satisfy each formula. 

iv. Is there some correct product that satisfies some formula that we will be unable 

to compute (Completeness)? 

- NO.  

- First, assume that up to step iv, such a set has not been eliminated because we 

have only computed the correct sum of unassignable statements. 

- Now, let us assume that such a set exists, we start at step v, by assigning some 

of the variables to the values given in the set until we get our first blockage. This 

means that if we assign the supposed value, we get conflicting values for some 

other variable. 

- But we already have a value for that variable from our example and so our rule 

is wrong. 

- But if our rule is wrong about this one randomly set, then the inductive process 

is not sound with regards to the structure of this random set. 

- But we know that it is sound for determining unsatisfiability. 

- And we know that it is sound for determining satisfiability for instances with 

exactly one solution. They are not unsatisfiable, and all assignments will be 

bound. 



- If our algorithm breaks on some random set, then the set must have some type 

of extra structure! 

- We know we can take any formula with more than one solution and conjoin it 

with other clauses in such a way that we reduce the number of solutions down 

to 1. 

- We can take our original formula which contains this problematic solution and 

modify it so that it has only one solution, the problematic solution. 

- We know that we will now find this solution in the altered formula. It is the only 

solution. 

- Therefore, we would have found the solution in the original formula also and so 

the set could not have induced the blocking rule. 

- Therefore, our original answer is right and our algorithm and therefore our 

topological conjecture is proven complete for all possible products. 

 

       The conclusion of this analysis proves Theorem 2 (and its corollary) as we originally stated 

it. 

 
 5.4   Runtime And Optimizability Analysis: The essence of this algorithm essentially compares 
each member of a set with every other member of the same set with which it shares a single 

conflicting variable. Since we know that the maximal depth of elements cannot exceed 6, the set 
size cannot exceed the number of ways to choose random 6 digits from n, which is exactly n6. 
The maximal running time for our algorithm is indeed easy to compute. It is the combinatorial 
time needed to complete the necessary set of comparisons required, which the maximal size of 
the set, n6, in a cartesian product with itself, which yields O(n12). Subsequent steps to assign n3 

number of clauses in exactly that amount of time, O(n3), and to check for blocked variables 
requires comparing depth two sums with each other in a cartesian product giving a runtime of 

O(n4). So, in fact, the worst-case running time for our algorithm remains O(n12). 
It is easy to see algorithms in practice effectively partitioning data so that elements need 

only to look at so many elements, indexed by some structure which looks at their constituent 
integer values. Thus, for problems already highly structured (probably where the internal 
propositions represent rational terms of some domain of thought), running times may well go 
below the worst case pictured here.  

Also, the fact that the common number of terms in two elements need not exceed 5 is 
potentially a factor that some algorithmically innovative technique may exploit in a novel way to 
further constrain running times.  

These considerations, along with the fact that the very form of the algorithm promises to 
be hardware (hardware meaning even physical systems we do not currently consider as 
computational) implementable for faster processing of domain specific computational problems, 
makes the optimization of this algorithm beyond its current form, look promising.  

All these possibilities offer hope the algorithm here may indeed be extended and 
implemented in practice in its exact form in ways more efficient than presented here.  



One exception we see here may be in the feasibility of constructing increasingly effective 
prime factoring algorithms. We will show in future work, when we address the formal 
cohomology that integer prime factorization may still be the most naturally difficult problem to 
crack with our system and may be still even harder than simply using other known, traditional 
methods. 

 

6. Implications For Theories of Computational Complexity and Computability 
 

To the computational complexity theorist, the implications for this algorithm are easy to 
see: That the class of NP problems does reduce to the class of P problems via this approach. To 
do this, we implicitly followed descriptional complexity approach of extending unordered 
(implicit) first order logic by an induction operator, where order is defined according to some 
monotone progression. This has precedence in the complexity literature for example, in the work 
of Dawar [9]. In fact, since we are also able to prove unsatisfiable cases, we really do have an 
extension of known nullstellensatz styled algebraic proof systems [10] and indeed have a proof 
that NP = coNP. 

More importantly, by virtue of invoking Tarski’s principle of inductivity, certain issues of 
self-reference and the impossibility of computing semantic (satisfiability here is realized as a 
semantic property of logical formulae) properties of formulae/programs invoked in the proof of 
Rice’s theorem, particularly related to the halting problem, become addressable, as follows: 

It is a known fact that any computer program can be represented in circuit form which 
can then be converted to CNF form and then to a 3 SAT form. This same construction can also be 
applied to any type of computable inputs to some arbitrary program. 

Rice’s theorem in terms of the halting procedure states that it is impossible to know if 
some arbitrary input will cause a program to terminate. This is simply because we do not have, 
nor can we demonstrate a logical model of termination that can be represented in the first order 
language normally used to address this problem. 

In our model, this is remedied. A termination of a program in holographic form can simply 
be interpreted as the holographic reduction to a final product when the model is fed a series of 
operations from some input space. This is possible because our model guarantees that the meta 
language is responsible for interfacing between inputs and our program space. In this case, non-
termination can simply be read as a program which hangs because the sequence of input 
operations has not yielded a product (the original formula has become unsatisfiable OR the set 
of input operations assigns valid values to only a subset of the variables. 

This description is quite condensed but should be sufficient to show that we are able to 
achieve, in what would seem in computational terms, a relative Turing jump for what may be 
termed computably enumerable but uncomputable sets. Instead of working with explicitly 
defined arithmetic schemes, what we are able to achieve is what we may call meta-order 
dualization. In future work, we show that the arithmetic scheme used in the syntactic 
construction of programs is dual to a higher order scheme used to specify the programs 
semantically. We hope this is an area in which our findings here may be able to help invigorate 
and advance the study of computable functions and computability in general. 

 



7. Implications For Other Mathematical Fields. 
 
Where we seem to have ignored, or not explored in very much detail, the potentials of 

many mathematical intricacies inherent in our model in pursuit of our definition and proof of 
existence of a product space, a very algebraic object, it is our hope that working mathematicians 
may take some of these ideas in a more fruitful direction. 

One apparent type of structural object we are working with is  that of a naturally dual 
functor that associates an unassignable model to an assignable one (or more precisely a model 
and an ideal in a ring) and our unions between statements are adjunctions between functors with 
an overall algebraic identity. In essence, what we have can be seen as a type of abstract definition 
of self-adjoined operator. 

And what exactly about this manifold (representable as a tuple of algebraic integers, and 
thus Euclidean), which we never explicitly construct, makes it have these special properties from 
which a highly structured operator can be defined? We contend there is a property – fibered 
symmetric categoricity – which we borrow from category theory and homological algebra, which 
gives our manifold these properties. 

Symmetric categoricity, informally defined here is the inherent mappability of an initial 
power object to all possible final objects via computable morphisms. The anti-product we define 

is a natural co-product of what we may call fibered symmetric k-categories, where k is the depth 
of the clause. If we ask what the objects that we categorize are, these would be the directed 
constraints, that is, the intervals/open sets, and together they constitute topological data about 
some closed set, which makes the point over which the topological algebra induces objects and 
their morphisms, a sheaf (that is the point being multiplied)  – locally defined data (inductively) 
attached to the open sets of a topological space. The category of sheaves on a topological space, 
generated from a small category (clause) on a site with a big category (formula) is the definition 
of topos found in most literature. Here we seem to have the case of localized, schematic topos, 
a discrete analogy that could be of interest to mathematicians that study these objects. A place 
to begin investigations into the kind of underlying abelian categories used, that is additive 
categories (pre-additive category with all finite biproducts – product/anti-product pairs), those 
most alike in structure to the underlying types of categories implied above would be the essential 
study of Grothendieck categories [11]. 
             The full analyses of these methods of investigation lay beyond the scope of this paper but 
one can say that all of these readily available mathematical tools in the field of topology, 
topological algebra and differential and algebraic topology coupled with our initial reference to 
the holographic principle, does point strongly to the fact that this theory can be used to model 
physical processes and it is itself a kind of abstract physical process.  

Another strong indication of the above fact is from the field of logic itself in the form of 
linear logic. We recall that essentially, linear logic is an improvement to proof and truth-based 
logics that emphasizes the use of resources. Our method is indeed a form of complex linear logic 
in emphasizing satisfiability/assignability as a resource with similar operations for object 
formation, introduction and eliminations. Linear logic has since been identified as a very suitable 
logic for quantum processes, a thing which is readily seen from the (implicit Lagrangian) manner 
in which our theory regulates degrees of freedom over super-posable probabilistic end states. 



Finally, the nature of the manifolds we encounter strongly suggest some variant of String 
Theory. Briefly, they seem from a surface inspection to have a K�̈�hler form, with the following 
identifiable properties: 

 
i. Symplectic (differential) form on unassignable statements. 

ii. Complex form on assignable statements AND 

iii. Riemannian metric over the product space obtained as a positive definite, 

continuous expansion mode over the entire manifold, leading up to a solution 

(for satisfiable instances). 

 
We intend to fully delineate this structure in future work where we consider the scheme 

cohomology. We contend that the String/Membrane (with surface regulation of potential) theory 
we get from a full pursuit of this analytic method, beyond what can be easily gleaned as above, 
also yields a very powerful analytic form that may be able to shed light not only physical initial 
conditions (like the ones suggested by the Big Bang theory) but may well be used to explain 
processes (as we have shown directly in the case of 3 satisfiability) as diverse as to how virtual 
particles (of information/energy) push/scatter on and around each other (applying weights via 
some field law/theory) to acquire mass (permanence) and become real, relative to each other 
under the influence of gravity (attraction to similar regions of space). It can be shown that this 
explanatory modelling power can also be applied to the intricacies of other natural processes 
such as the evolution of these kind of systems along the lines of intelligent evolution. 

 In fact, to buttress the point about its evolutionary modelling power, an algorithm 
generated the way we described functions as a domain specific evolutionary calculus over 
combinatorial species according to Joyal [12]. This would be a calculus with a direct signature of 
these operations (+, ×) and their inverses as well as indirect operations of function exponentiation 
and composition. A full discussion of the physical and evolutionary implications of the results 
obtained here will be fully addressed in a future work, as they are closely tied with viewing the 
process itself as an elementary form of machine reasoning with shared signal processing. 

 
 

8. Conclusions and Future Directions 
 
As evident from the set of implications considered above, holography as elucidated seems 

to be a promising foundation for the exploration of the solution spaces to many complex 
problems as well their model implications. We hope that the algebraic and algorithmic ideas 
pursued here can be further developed by other researchers along these and other promising 
lines. 

The personal interest of the authors is in pursuing this line of reasoning, that is,  in 
addition to providing computationally satisfying descriptions of natural processes as explained 
above, is also to study the form as the building block of a powerful new form of machine 
reasoning, as indicated in the closing of the last section, a topic which in itself demands further 
in-depth investigation and research. 



It is our belief that the methods explored here can be used and further developed in the 
pursuit of the resolution of many important scientific, engineering and technological problems. 

 
References 
[1] Valiant, Leslie (17–19 October 2004). Holographic Algorithms (Extended Abstract). FOCS 2004. 
Rome, Italy: IEEE Computer Society. pp. 306–315. doi:10.1109/FOCS.2004.34. ISBN 0-7695-2228-
9.  
[2] Bousso, Raphael (2002). "The Holographic Principle". Reviews of Modern Physics. 74 (3): 825–
874. arXiv:hep-th/0203101. Bibcode:2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825. 
S2CID 55096624. 
 
[3] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd 
ACM Symposium Theory of Computing, pages 151–158, Shaker Heights, Ohio, 1971. 
[4] Leonid A. Levin. Universal search problems. Problemy Peredachi Informatsii, 9(3):265–266, 
1973. 
[5] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer 
Computations, (R. Miller, J. Thatcher eds.), pages 85–103, 1972.  
[6] L. G. Valiant. Expressiveness of Matchgates. Theoretical Computer Science, 281(1): 457-471 
(2002). See also 299: 795 (2003). 
[7] J. -Y. Cai, V. Choudhary and P. Lu, "On the Theory of Matchgate Computations," Twenty-
Second Annual IEEE Conference on Computational Complexity (CCC'07), San Diego, CA, USA, 
2007, pp. 305-318, doi: 10.1109/CCC.2007.22. 
[8] Alexander Beilinson, Vladimir Drinfeld, Chiral Algebras, Colloqium Publications 51, Amer. 
Math. Soc. 2004. 
[9] Dawar, Anuj (1993). Feasible computation through model theory.  University of 
Pennsylvania ProQuest Dissertations Publishing,  1993. 9321378. 
[10] R. Impagliazzo, J. Krajíček, P. Pudlák, A. Razborov and J. Sgall (1995/1996), Proof Complexity 
in Algebraic Systems and Constant Depth Frege Systems with Modular Counting. Computational 
Complexity 6 (1995/1996) 256-298. 
[11] Grothendieck, Alexander (1957), "Sur quelques points d'algèbre homologique", Tohoku 
Mathematical Journal, Second Series, 9: 119–221, doi:10.2748/tmj/1178244839, ISSN 0040-
8735, MR 0102537 
[12] Joyal, André (October 1981). "Une théorie combinatoire des séries formelles". Advances in 
Mathematics. 42 (1): 1–82. doi:10.1016/0001-8708(81)90052-9. 
 
 

 


	Holography For Satisfiability

