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ABSTRACT

The linear and triangular 3-site Cluster of the spin – ½ Heisenberg antiferromagnet was studied
and its magnetic properties are analyze via Exact Diagonalization technique. The results of the
ground state energies were used to determine the magnetic phase diagram of the system. It was
found that the transition points for both the linear and triangular lattice system are the same
irrespective of having different ground state energies and geometries.

KEYWORDS: -  Ground  state  energy,  Antiferromagnetic  phase,  Ferromagnetic  phase,
Transition point. 

1.0 INTRODUCTION

In the past several decades, there has been increasing interest in spin structure of several
frustrated  spin  system where non-collinear  spin  configurations  appear  due to  competition  of
interaction.  The  structure  symmetry  of  the  non-collinear  structures  causes  various  types  of
interesting ordering processes.1 

Triangular  antiferromagnets occupy a special  niche in studies of quantum magnetism.
The Ising antiferromagnet on a triangular lattice has a finite zero-temperature entropy, which
reflect  an  extensive  degeneracy  of  the  ground-state  manifold.2 Most  experimental  results
confirmed the universality hypothesis which states that critical  behavior depends only on the
dimensionality of the system (D) and on the degree of freedom of the order parameter (n). For
instance,  antiferromegnetic materials,  provided that only short-range interactions are relevant,
can be described by a Heisenberg model.3 A magnetic system with Heisenberg spins that sit on
the vertices of triangular lattice of corner sharing tetrahedral and interact among themselves via
nearest-neighbour  antiferromagnetic  exchange  interactions  is  highly  geometrically  frustrated.
Such a system is theoretically predicted not to develop conventional magnetic long range order at
finite temperature for either classical or quantum spins.4 The classical Heisenberg model on a
triangular  lattice  represents  the  textbook  example  of  the  full  SU(2)  symmetry-breaking  and
noncollinear spiral spin ordering in the ground state.2  For a quantum S = - ½  antiferromagnet on
a triangular  lattice,  Anderson proposed back in 1973 the disordered resonating valence bond
(RVB) ground state. This suggestion stimulated extensive research for over 25 years. A RVB
ground state on a triangular lattice has been found recently, albert for a quantum dimer model. It
was also established by large-N and gauge theory approaches, that a disordered ground-state of a
triangular antiferromagnet must possess unconfirmed massive spin on excitations. 

The ideas about the disordered ground state of unconfirmed spinons, however, could not
be immediately applied to the most studied Heisenberg model of quantum S = - ½ spins as a
triangular lattice, as both perturbative 1/S and numerical calculations show that the classical, 1200

spin structure survives quantum fluctuations2.
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Figure 1: Exchange interactions in the Heisenberg Model on Triangular and Linear lattices.

In Fig. 1, Sites 1, 2 and 3 of line B can be considered as a linear lattices while Sites 1, 2
and 3 of  Line AB or BC can be used for the Triangular Lattices.

The rest of the paper is organized as follows: After introducing the spin – ½ Heisenberg
Hamiltonian  in  section  2,  the  problem of  3-site  Cluster  under  this  Hamiltonian  is  solved in
section 3, we present our results and discussion in section 4, and we offered concluding remark
and select other works in section 5.

2.0 MODEL AND METHODOLOGY

We consider an antiferromagnetic S = - ½ Heisenberg model on a linear and triangular
lattice. More precisely we will analyze a two parameter Hamiltonian of this type, given by 5,6,7

H=∑
i , j

J ij S i

→

. S j

→

−h
→
∑

i
S i

→

(1)

here  Si are spin – ½ operators. The first sum is over nearest neighbor connected by horizontal
bonds (see Figure 1), Jij are exchange integrals between spins at site  i and  j.  h represents an
applied external magnetic field. We suppose that S is the total spin of each atom, and classify the

spin state of the ith atom by the eigenstate of S i

z

, the z-component of the spin.8  Thus

S i
Z
|m⟩i=m|m ⟩i ,−s≤m≤s (2)

For a state with spin component m in the z-direction. It may be shown that for J > 0, the
ground state of the Hamiltonian (1) is the totally aligned state.

|ψG ⟩=|S ⟩1|S ⟩2 .. .. . .|S ⟩N (3)
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in which Sz has its maximum value S at each lattice site.7   It is easy to show that this state is an
exact  eigenstate  of  H.  We  define  the  spin  deviation  operators  by

S j

(+)

=S j

( x )

+iS j

( y )

, S j

(−)

=S j

( x )

−i S j

( y )

(4)

These are such that, for any lattice site

S
(+)

|m⟩=|m+1 ⟩ ,S
(−)

|m ⟩=|m−1 ⟩ , S
+

|s ⟩=0,S
−

|−s ⟩=0

(5)

and the Hamiltonian equation for the  Hlinear and  Htriangular lattice may be written as (6) and (7)
respectively.

H linear=J {S1

z

S2

z

+S2

z

S3

z

+
1
2 (S1

+

S2

−

+S1

−

S2

+

+S2

+

S3

−

+S2

−

S3

+

)}−h(S1

z

+S2

z

+S 3

z

)
 (6)

H triangular=J {S1

z

S 2

z

+S2

z

S3

z

+S3

z

S 1

z

+
1
2 (S 1

+

S2

−

+S 1

−

S 2

+

+S 2

+

S3

−

+S 2

−

S 3

+

+S 3

+

S1

−

+S3

−

S1

+

)}

                −h(S1

z

+S2

z

+S3

z

) (7)

Clearly when  H operates  on  |ψG ⟩ ,  only the  z-components  of the spin contribute,  and the
ordered  state  (3)  is  thus  an eigenstate  of  the Hamiltonian.  Other  spin configurations  can  be
shown  to  have  higher  energies  by  evaluating  matrix  elements  of  H.  Since  the  Heisenberg
interaction (1) is isotropic, the direction of the spin alignment in the groundstate is arbitrary and
the state (3) is in fact (N+1) – fold degenerate. 6,7  Classical bits, used for computation, are often
denoted as “1” and “0” they can be represented by an effective spin – ½ degree of freedom,
where “1” corresponds to the spin pointing up, and “0” represents a spin pointing down. To solve
a  complex  many-body  problem  such  as  determining  the  ground  state  of  a  Heisenberg
Hamiltonian requires 2N classical bits or Hilbert space for a system, with N sites.6  Hence N=3 is
the 3-sites Cluster or dimer corresponding to 8 basis electronic states.

3.0 THREE-SITE CLUSTER

Considering three-site spin - ½ Heisenberg Clusters. For this case, there are two possible
distinct  geometries.  A three-site  open chain  and a  closed  triangle  with exchange interaction
(Figure 1); Open sites chain correspond to the linear lattice system while the closed site chain
corresponds to triangular lattice system. The Hilbert space does not depend on the geometry. It
has 23 = 8 states. In the same Ising basis used for the previous two-sites [5,6]; this leads to the
basis electronic states given below
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|1 ⟩=|111⟩ ,|2 ⟩=|110 ⟩ ,|3 ⟩=|101⟩ ,|4 ⟩=|011 ⟩ ,|5 ⟩=|001 ⟩ ,|6 ⟩=|010 ⟩ ,|7 ⟩=|100 ⟩ ,|8 ⟩=|000 ⟩
(8)

The two geometries shall be considered in parallel.

3.1 LINEAR CLUSTER

Using  the  Hamiltonian  (6)  to  act  on  the  basis  electronic  states  (8)  leads  to  the  matrix
representation

H ij=[
J−3h

2
0 0 0 0 0 0 0

0
−h
2

J
2

0 0 0 0 0

0
J
2

−J−h
2

J
2

0 0 0 0

0 0
J
2

−h
2

0 0 0 0

0 0 0 0
h
2

J
2

0 0

0 0 0 0
J
2

−J +h
2

J
2

0

0 0 0 0 0
J
2

h
2

0

0 0 0 0 0 0 0
J+3h

2

]
 

    (9)

and the eigenvalues are given by

−h
2

,
h
2 ,

1
2
(−h−2 J )

,

1
2
(h−2 J )

,

J−3h
2 ,

J−h
2 ,

J+h
2 and 

J+3 h
2

    (10)

3.2 TRIANGULAR CLUSTER
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Using  the  Hamiltonian  (2.8)  to  acts  on  the  states  (3.5)  leads  to  the  matrix  representation

H ij=[
3 J−6 h

4
0 0 0 0 0 0 0

0
−(J+2h )

4
J
2

J
2

0 0 0 0

0
J
2

−(J+2h )

4
J
2

0 0 0 0

0
J
2

J
2

−(J+2h )

4
0 0 0 0

0 0 0 0
−(J+2h )

4
J
2

J
2

0

0 0 0 0
J
2

−(J+2h )

4
J
2

0

0 0 0 0
J
2

J
2

−J+2h
4

0

0 0 0 0 0 0 0
3 J+6 h

4

]
(11)

and the eigenvalues are given below 

−h
2

,
h
2 ,

1
2
(−h−2 J )

,

1
2
(h−2 J )

,

J−3h
2 ,

J−h
2 ,

J+h
2 and 

J+3 h
2

 (12)
 

4. 0 RESULTS AND DISCUSSION.

4.1 RESULTS

The linear Heisenberg results  are presented in Table 1 and 2 with their  corresponding graph
Figure 1 and 2. For the triangular Heisenberg results, Table 3 and 4 with their corresponding
graphs Figure 3 and 4 are used to illustrate the phase diagram

Table 4.1 Singlet (Es) and triplet (Et) state energies as h increases, while J remains constant 

for the Linear lattice system.

J
(Exchange integral)

h
(External magnetic field)

Es

(Singlet state energies)
Es

(Triplet state energies )
2.00 0.00 -3.00 -1.00
2.00 2.00 -2.00 -3.00
2.00 4.00 -1.00 -5.00
2.00 6.00 0.00 -7.00

6



0 1 2 3 4 5 6 7

-8
-7
-6
-5
-4
-3
-2
-1
0

Es
Et

Es, Et

J

Figure 4.1: Graph of Singlet (Es) and Triplet state energies (Et) energies plotted against h for

the Linear lattice system.

.

Table 4.2: Singlet (Es) and triplet (Et) state energies as J increases, while h remains constant

for the Linear lattice system.

h

(External
magnetic field)

J

(Exchange
integral)

Es

(Singlet state
energies)

Et

(Triplet state
energies)

2.00 0.00 1.00 -2.00
2.00 2.00 -2.00 -3.00
2.00 4.00 -5.00 -4.00
2.00 6.00 -8.00 -5.00
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Figure 4.2: Graph of Singlet (Es) and Triplet state energies (Et) energies plotted against J.

Table 4.3 : Singlet (Es) and triplet (Et) state energies as h increases, while J remains constant for the 
                  triangular lattice.    

J
(Exchange
integral)

h
(External
magnetic

field)

Es

(Singlet state
energies)

Et

(Triplet state
energies)

2.00 0.00 -3.00 -1.00
2.00 2.00 -1.50 -2.50
2.00 4.00 0.00 -4.00
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Fig. 4.3 Graph of Singlet (Es) and Triplet state energies (Et) energies plotted against  h

for the triangular lattice.

Table 4.4 :Singlet (Es) and triplet (Et) state energies as J increases, while h remains     
                 constant for the triangular lattice.

     
      
   

0 1 2 3 4 5 6

-7

-6

-5

-4

-3

-2
-1

0

1

2

Es
Et

h

Es , Et

Figure 4.4: Graph of Singlet (Es) and Triplet state energies (Et) energies plotted against J for the 
        triangular lattice.

4.2 DISCUSSION

Usually, the eigenvalue solution of the matrix form of the Hamiltonian will yield the total energy
which is the energy spectrum of the system and the lowest of them is the ground state energy of
the system.
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h

(External
magnetic field)

J

(Exchange
integral)

Es

(Singlet state
energies)

Et

(Triplet state
energies)

2.00 0.00 1.50 -1.50
2.00 1.00 0.00 -2.00
2.00 2.00 -1.50 -2.50
2.00 3.00 -3.00 -3.00
2.00 4.00 -4.50 -3.50
2.00 5.00 -6.00 -4.00



The condition to produce a ferromagnetic phase is that the lowest state energy of the triplet state,
Et must be smaller than that of the singlet state, Es, i.e Et <  Es.9   If the singlet states provides the
lowest energy, then the system will be Antiferromagnetic (AFM), while it will be ferromagnetic
(FM) if the triplet state provides the ground state energy.

The value at which Et  = Es gives rise to a transition from antiferromagnetic phase to the
ferromagnetic phase or vice-versa. This point is called the transition point, Tp.9

From Table 1 and 3 and their corresponding graphs Figure 1 and 3 show that, as the value
of the exchange integral,  J increases, the ground-state continue to increase to a transition point
Tp,  where  Es=Et and as the values are further increased beyond  Tp,  where  Es >Et  the system
becomes  Ferromagnetic  (FM).  The  physical  implication  is  that  the  electronic  correlations
favouring  AFM gets  weaker  while  that  of  FM gets  stronger  as  the  values  of  the  exchange
integral,  J  increases. This continue on till the electronic correlation favouring ferromagnetism
begins to dominate (i.e. there is cross-over to ferromagnetism) and this domination is enhanced
as  J increases.  Hence,  this  direct  exchange interaction provides a natural  way for stabilizing
ferromagnetic states.11 

From the computation of Table 2 and 4 with their corresponding Figure 2 and 4, we see
that as the external magnetic field, h increases, for example from 0 to 2.99, the lattice system is
still FM. At h = 3.00MeV, which is the transition point,  Tp a cross over from FM phase to an
AFM phase was observed. Within this section, the energy relation becomes Es<Et, which is the
condition for ferromagnetism.

On the whole the first excited state is a triplet and the ground state energy of the lattice
system  is  a  spin  singlet  respectively  for  both  the  linear  and  Triangular  Heisenberg
antiferromagnet.

The triangle has multiple degeneracy6, which are not split by the external magnetic field, whereas
in the chain case all degeneracies at zero field are split at finite fields. The critical point at which

the  ground  state  crosses  over  from  
S tot

z

=
1
2

 
to  

S tot

z

=
3
2  is  different  for  two  cases:

hc=
3J
2  for the chain and hc=3 J  for the triangular, indicating that the triangular geometry

protects zero-field 
S tot

z

=
1
2  ground state more efficiently. At the zero magnetic field, there is a

degenerate ground state, similar to an isolated spin -½ particle which has degenerate up-spin and
down-spin configuration. The degenerate is removed by infinitesimal applied field. For the three
site  clusters this  means that  strictly  at  h=0 the magnetization is  zero,  then it  jumps to ½ at
infinitesimal fields, and then it jumps to  3/2 at critical  magnetic field. Similar to the two site
cluster,9 the low temperature behavior depends on the specific magnetic field that is applied,
whereas the high temperature is Curie-like as usual.6

5.0 CONCLUSION
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In this paper the power of direct exact Diagonalization technique is apply to Heisenberg Model
to study the effect of three interacting electrons on linear and triangular lattices. We elucidate the
nature of the ground state and determine the tendency to ferromagnetism. Attention was focused
on the parameter region where a transition from AFM to FM occurs. 

Consideration of the four site cluster is highly desirable which a subject for further studies.
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