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Abstract.  

Urban drainage systems are integral infrastructural components. However, their monitoring poses considerable challenges 15 

owing to the intricate, hazardous nature of the process, necessitating substantial resources and expertise. These inherent 

uncertainties act as deterrents, discouraging active involvement of researchers and sewer operators in the rigorous monitoring 

and utilization of data for a comprehensive understanding and efficient management of drainage-related processes. 

Consequently, a notable absence of openly available urban drainage datasets hampers exploring their potential for engineering 

applications, scientific analysis, and societal benefits. In this study, we present a distinctive dataset from the Urban Water 20 

Observatory (UWO) in Fehraltorf, Switzerland. This dataset is unique in terms of its completeness, consistency, extensive 

observation period, high spatio-temporal resolution and its availability in the public domain. The dataset comprises coherent 

information from 124 sensors that observe rainfall-runoff processes, wastewater and in-sewer atmosphere temperatures. Of 

these 124 sensors, 89 transmit their signals via a specifically set-up wireless network using long-range, low-power transmission 

technologies. Sensor data have a temporal resolution of 1-5 minutes and covers a period of three years from 2019-2021. To 25 

make the data interpretable and re-useable we provide systematically collected meta-data, data on sewer infrastructure, 

associated geo-information including a validated hydrodynamic rainfall-runoff model. Basic data quality checks were 

performed, and we motivate future research on the dataset with five selected research opportunities from detecting anomalies 

in the data to assessing groundwater infiltration and the capability of the low-power data transmission. We conclude that robust 

automated data quality checks, standardized data exchange formats, and a systematic meta-data collection are needed to boost 30 

interpretability and usability of urban drainage data. In the future, ontologies and knowledge graphs should be developed to 

expand the application of sewer observation data in solving scientific and practical problems. 
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1 Introduction 

Urban drainage systems are essential for public health and sanitation (Ferriman, 2007) because they not only safely transport 

wastewater and reduce the risk of waterborne diseases, but also protect groundwater and prevent flooding in populated areas. 35 

Thus, a profound understanding of the urban hydrological processes is crucial to develop urban areas to more liveable, more 

sustainable cities. Innovation in this field comes from first principles and data (Eggimann et al., 2017; Blumensaat et al., 2019). 

However, collecting data in urban hydrology is expensive, because sewers are a hazardous environment that requires 

specialized training and equipment (Nedergaard Pedersen et al., 2021). Although sharing datasets among research groups has 

always happened on a personal or project basis (Deletic et al., 2011; Lepot et al., 2016; Caradot et al., 2013; Ochoa-Rodriguez 40 

et al., 2015), it is not well established, neither in the research community nor among practitioners. 

 

Understanding urban hydrological processes require high-resolution data on both, the input - such as rainfall - and the output 

- such as wastewater flows and pollution. However, reliably collecting minute-by-minute rainfall data over many years can be 

challenging (Bianchi et al., 2013); monitoring stormwater runoff, wastewater flows and pollution processes at a minute scale 45 

is resource-consuming. Specialized equipment, training, and software (Mourad and Bertrand-Krajewski, 2002; Dürrenmatt et 

al., 2013) as well as considerable investments are required to collect and manage the data, as well as to maintain the sensors 

(Hoppe et al., 2016; Blumensaat et al., 2019). Arguably, sensor maintenance to ensure good data quality is one of the biggest 

challenges in urban monitoring (Mourad and Bertrand-Krajewski, 2002; Nedergaard Pedersen et al., 2021). Data quality is 

often dubious due to the low data literacy of the sewer workforce and lack of incentives to use data for evidence-based 50 

management of urban drainage systems (Manny et al., 2021). In addition, the lack of standards and meta-data makes it difficult 

to work with existing or historical data. 

 

To address these issues, there is a need to provide examples of open datasets (Nedergaard Pedersen et al., 2021), which can be 

used to develop procedures for data quality management and better understand the highly dynamic processes of rainfall-runoff 55 

and water quality. Unfortunately, the urban drainage research community has not yet fully embraced Open Science principles 

and openly available datasets of rainfall, runoff and water quality, as well as topological data of the urban drainage network 

and a domain-specific description of the catchment, i.e. including land use data and terrain models, are virtually lacking 

(Nedergaard Pedersen et al., 2021). 

 60 

In recent times, the demand for open datasets in the field of urban hydrology has been fueled by four primary factors. First, 

advancements in low-power electronics, data transmission (Ebi et al., 2019) and sensor application (Mathis et al., 2022; Boebel 

et al., 2023) have significantly reduced the effort of data collection. Second, meta-data efforts and OGC standards have 

facilitated data sharing among researchers and practitioners (Taylor et al., 2013; Bustamante et al., 2021). Third, scientific data 

collection efforts, such as the data set “Catchment Attributes and Meteorology for Large-sample Studies (CAMELS)” 65 
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(Newman et al., 2015; Addor et al., 2017), have truly revolutionized the field of hydrology through the use of advanced data-

driven models (Kratzert et al., 2018). Fourth, the public demands greater transparency of urban infrastructure performance, 

including reducing environmental pollution (Benyon, 2013; Giakoumis and Voulvoulis, 2023). In this regard, sharing data 

from urban water management and making it available to the public will become increasingly important soon given the impact 

of climate change. Therefore, regulatory bodies, such as those in the UK (Environment Act, 2021) and in the EU (EC, 2022), 70 

are and will be demanding more monitoring. At the same time industry initiatives, such as STREAM1, further emphasize the 

importance of collecting and sharing water company data. 

 

Recently, some openly available datasets have been highlighted, some of which are just available for visual exploration 

(Spraakman, 2023). For other available datasets2, no historical data are available. One promising example is the Bellinge 75 

dataset from Denmark (Nedergaard Pedersen et al., 2021), which includes rainfall-runoff data from 17 level sensors on the 

hydraulic behavior of the systems, such as levels, pump power and flows and 3 rain gauges, as well as X-band and C-band 

radar and air temperature. It is particularly strong on the asset data, which even includes CCTV footage and two different 

hydrodynamic models. Unfortunately, given the complexity of the system, it only provides data from comparably few level 

and flow sensors and limited meta-data on sensors: “[…] exact documentation of sensor maintenance has not been a high 80 

priority over all the years, and it is therefore presently not possible to give an overview of when and where sensors have been 

repaired, been replaced or received some sort of maintenance.” (Nedergaard Pedersen et al., 2021, p.4786). Thus, important 

sensor-related meta-data, as well as information on wastewater and stormwater quality is missing.  

 

In this publication, we present curated data from the Urban Water Observatory (UWO) field lab in and around the municipality 85 

Fehraltorf, Switzerland. The UWO dataset is unique due to its high spatial and temporal resolution, dense network coverage, 

and rich meta-data. It consists of four main data packages (A1-A4) (Figure 1), accompanying information (package B) and 

tools to explore and access the data (C and D). Specifically, the data packages contain 14 sources of precipitation and other 

meteorological variables (A1), 70 hydraulics sensors, e.g. flow, water level, overflow detection (A2), and 40 temperature 

measurements of wastewater and the sewer atmosphere (A3). Additionally, the dataset contains information on the behavior 90 

of 89 wireless sensor nodes (A4), partly from underground locations, which is unprecedented, to the best of our knowledge. 

The dataset has a temporal resolution of one to a few minutes and spans a period of three years from 2019-2021.  

The dataset is enriched with detailed geoinformation, including geographical and topological data, as well as a hydrodynamic 

rainfall-runoff model implemented in SWMM (B). Additionally, we provide tools for visual data exploration (C) and sample 

scripts for accessing monitoring data (D). Notably, the dataset exhibits high data completeness with minimal outages, as shown 95 

in Figure 4 (right), and maintains a consistent quality. Thus, the UWO dataset offers extensive research opportunities, ranging 

 
1 https://streamwaterdata.co.uk/  
2 https://www.kaggle.com/datasets/new-york-state/nys-combined-sewer-overflows-csos; https://theriverstrust.org/key-

issues/sewage-in-rivers 

https://streamwaterdata.co.uk/
https://www.kaggle.com/datasets/new-york-state/nys-combined-sewer-overflows-csos
https://theriverstrust.org/key-issues/sewage-in-rivers
https://theriverstrust.org/key-issues/sewage-in-rivers
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from enhancing our knowledge of urban drainage processes to evaluating the effectiveness of process-based and data-driven 

methods. It also allows for the assessment of wireless sensor network performance in underground applications. 

 

In the following, we describe the catchment of Fehraltorf, the sensors and datasets that are available as well as the methods 100 

used to collect, process and explore the data. Finally, we highlight five exemplary research opportunities in the prospect of the 

UWO dataset (Figure 1). 

 

  

Figure 1: Graphical representation of data provided (A-B), the current data viewer (C), scripts to access the data (D), and examples 105 
to highlight future research opportunities in the prospect of the UWO dataset (E). 

2. Material 

2.1 Description of the catchment 

Fehraltorf is a municipality located in the vicinity of Zurich and Winterthur, at an elevation of 530masl with a population of 

6,292 inhabitants in 2015 (HBT, 2016) and 6,578 in 2020. In terms of administrative boundaries the municipality covers an  110 
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Figure 2, Top: Overview of the Fehraltorf catchment, including urban drainage network, geography and land use. Bottom: The 

urban drainage flow scheme of Fehraltorf, illustrating the combined sewer network of Fehraltorf. The main flow path through the 

network is from top right to the left (bold line). Triangles represent aggregated sub-catchments. The relevant characteristics can be 115 
found in the supporting information. The here indicated flow times are estimated assuming a flow velocity in the sewer of 1 ms -1. 

 

area of 950 hectares with over half of it being used for agriculture (52.7  %), 26.9 % being forested, 13.4 % being developed 

for settlements, and 5.7  % being designated for transportation purposes (as of 2007) (Figure 2).  

 120 

The climate in Fehraltorf is a typical humid continental climate,3 with warm summers and cold winters. The average 

temperature in the warmest month is above 10 °C and the average temperature in the coldest month is just below -3 °C. The 

mean annual precipitation (1981-2010: 1334 mm) is distributed throughout the year, with an average rainfall depth in February 

of 78 mm and the heaviest amount falling in the summer months (ca. 140 mm - see Supporting Information (SI), Section 1 for 

details). The climate region has a high variability in weather patterns and the frequency of storms and extreme weather events. 125 

 

 

 
3 According to the Köppen-Geiger climate classification, the climate in Fehraltorf is classified Dfb (cf. https://skybrary.aero/airports/lszk - 

last access 23.04.2023) 

https://skybrary.aero/airports/lszk
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Figure 3 left, CAD model of the combined sewer overflow (CSO) tank “RUB Morgental” including inflow chamber, detention tank, 

overflow to receiving water and installed sensors. Right: Cross-section through the overflow structure at the sensor 130 
bl_plsRKBM1201_rubmorg_inflow (not drawn to scale). Detailed information of all detention basins and flow control structures is 

provided in the SI. 

2.2 The urban wastewater system and the River Luppmen/Kempt 

The drainage system of Fehraltorf is mostly a combined sewer system, which consists of 13 km of combined sewers, 4.6 km 

of foul sewage pipes, and 10.9 km of stormwater pipes. The municipality’s runoff-efficient, i.e. reduced area is 40 hectares, as 135 

reported in the general drainage plan (HBT, 2016). The system has six overflow structures of which four have a notable 

retention volume; the area-specific storage volume is about 36 m3 per hectare runoff-efficient area. Two additional flow split 

structures (VS22 and VS600) provide hydraulic relief within the system during large storm events but do not spill into the 

environment (see Figure 2, where the bold line depicts the main flow path). 

The nearby villages of Russikon (3320 inhabitants) and Rumlikon (451 inhabitants) are also largely connected to Fehraltorf’s 140 

wastewater treatment plant (WWTP) (HBT, 2016) (Figure 2). Also included in the dataset is the RUB Morgental (Figure 3), 

the catchment-concluding combined sewer overflow (CSO) structure in Russikon that limits the transfer flow to 75 Ls-1 

towards Fehraltorf. A significant portion of the drainage network infrastructure is located below the average groundwater table. 

Thus, some parts of the network are affected by sewer infiltration. Depending on the season infiltrating groundwater contributes 

to the WWTP inflow; the contribution varies from 35 % up to 55 % (HBT, 2016). The overall performance of the sewer system 145 

has been evaluated as satisfactory by the consultant engineers Hunziker Betatech (HBT, 2016). More details on the drainage 

system and the special structures is given in Sections 2 and 3 of the SI.  

The Fehraltorf WWTP is a modern facility that utilizes various stages of physical treatment and activated sludge processes to 

remove solids, organic pollutants, and nitrogen from wastewater. The facility has a maximum hydraulic capacity of 170 Ls- 1 

and contributes a major share to main watercourse, the River Luppmen. As there is considerable industry and commerce in 150 

Fehraltorf, e.g. chemical, paint, metal, pharmaceutical and others, the WWTP is substantially influenced by industrial 
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emissions (AWEL, 2021). It is currently being upgraded to eliminate micropollutants with adsorption to powdered activated 

carbon. 

The River Luppmen is the main watercourse, which flows through Fehraltorf, where it changes its name to Kempt at the 

junction with the Wildbach tributary. The ecomorphology of the Luppmen is heavily influenced by human activity and is 155 

partly described as artificial (HBT, 2016). The minimum residual flow (Q347) in the Luppmen amounts to 46 Ls-1 upstream and 

72 Ls-1 downstream of Fehraltorf (HBT, 2016), which means that the proportion of treated wastewater can be greater than the 

natural baseflow of the river, especially in dry summer periods. The intensive use of groundwater in the last 30-40 years has 

led to a continuous lowering of the groundwater level and, as a result, to a reduction of groundwater discharge into the Luppmen 

in the residential area of Fehraltorf. During prolonged periods of dry weather, stretches upstream of the confluent with the 160 

Wildbach dry out completely (Krejci et al., 1994). 

 

In 2015 Fehraltorf was chosen as the location for Eawag’s Urban Water Observatory (UWO), because the prior knowledge on 

the urban wastewater system (Krejci et al., 1994; Rossi et al., 2009), its proximity to Eawag, and its similarity in size and 

system characteristics to many settlements on the Swiss Plateau. Monitoring started in May 2016, reached a peak in 2022 with 165 

124 sensors. Today, the UWO still operates with a reduced number of sensors. 

2.4 Sensor data 

The dataset provided encompasses information gathered between 2019 and 2021, strategically selected to ensure the most 

comprehensive and consistently high-quality data. This dataset is rich in sensor signals with a remarkable temporal resolution 

of typically 1-5 minutes, covering diverse aspects such as precipitation and meteorological data (Figure 4, A1), wastewater 170 

hydraulics (A2), temperature of wastewater and sewer atmosphere (A3), and metrics evaluating the performance of the 

LoRaWAN4  network (A4). In our definition, a data source refers to a combination of a sensor and logger. This implies that a 

single source, like a rain gauge, can transmit various signals, including instantaneous precipitation, accumulated volumes, or 

battery voltage. The dataset not only incorporates signals from our own instruments but also integrates selected sensors from 

the utility's SCADA System. The data collection process involves automatic retrieval from a range of sources such as FTP 175 

servers, databases, and manufacturers' platforms, as detailed in Section 3.1. 

In addition to the primary measurement data, the dataset is enriched with crucial meta-data, including logbook entries detailing 

maintenance activities or operational malfunctions, as well as detailed images of installations (refer to SI Section 4 for further 

details). Faced with the absence of established standards, we devised a specific naming convention, aligning with the 

structuring principles outlined in the norm on industrial monitoring EN 81346 (IEC 81346-2, 2019), as elaborated in the SI in 180 

Section 5.   

 
4 LoRa®, ("Long-Range") represents a wireless modulation technique based on a proprietary communication technology. LoRaWAN is the 

protocol built on top of LoRa modulation delineating the communication and system structure. LoRaWAN has gained recognition as an 
official standard, ITU-T Y.4480, within the International Telecommunication Union (ITU). 
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Figure 4, Left: Locations of sensors and sensor nodes. Right: Data completeness from 01.01.2019 to 31.12.2021. A1= precipitation 

sensors, A2= hydraulics sensors, A3= temperature data. A4 (LPWAN sensor nodes) is not shown. The color saturation indicates the 185 
degree of data completeness on a weekly basis. Dark blue indicates periods with 100 % data completeness , i.e. all data points are 

collected according to the sensor node configuration; white indicates periods with no data. Light blue indicates a reduced number 

of data points, either through sensor maintenance, sensor outage or incomplete transmission. We provide a dynamic plot in package 

C, which can be used to interactively explore the data availability and view details. See SI Section 6 for details. 

 190 

 

Table 1: Overview of the installed sensor types and some important characteristics. 

 

 

A1

A2

A3

A1 - Precipitation and further meterological variables

Brand Ott RM Young Davis Lufft

Model Pluvio2L 52202 Rain Gauge WS700

Number of sources 4 7 1 2

Temporal resolution [min] 1 1 1 1

Data transmission Cellular LoRaWAN LoRaWAN Cellular

A2 - Hydraulic measurements

Brand Decagon (Meter) Decagon (Meter) Decagon (Meter) Hach Keller Maxbotix Nivus Nivus Sommer STS PLS (SCADA)

Model 10 HS 5TM ECTM Flo-Dar/AV9000 PR36XKY MB7369/7389/7386 CSM POA SQ-3 DLN70 various

Number of sources 1 10 1 3 2 35 2 2 2 1 11

Temporal resolution [min] 5 5 5 5 5 5 5 5 5 5 1

Data transmission LoRaWAN LoRaWAN LoRaWAN Cellular LoRaWAN LoRaWAN Cellular Cellular Cellular Offline SCADA system

A3 - Temperature measurements

Brand Maxim Integrated Sensirion UIT GmbH PLS (SCADA)

Model DS18B20 SHT 21/35 TSIC various

Number of sources 28 4 6 2

Temporal resolution [min] 1 5 30 1

Data transmission LoRaWAN LoRaWAN Cellular SCADA system
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2.4.1 Precipitation and further meteorological variables (A1) 195 

We operated four weighting rain gauges (OTT Pluvio2L, catch area = 400 cm2), which transmit via Cellular network and eight 

tipping bucket rain gauges (7x RM Young 52202, catch area= 200 cm2 and 1x Davis Rain Gauge, catch area= 200 cm2), which 

transmit their data via LoRaWAN. To avoid vandalism, we installed them preferentially on utility property, e.g. pumping 

stations or the enclosure of CSO facilities, or on rooftops. In contrast to the data of the Bellinge dataset (Nedergaard Pedersen 

et al., 2021), these gauges are not part of the national network operated by MeteoSwiss5 and their measurements have not been 200 

quality controlled a priori. Nevertheless, they operated reliably during the three-year period and measured the data in 1 min 

intervals. The OTT Pluvios were checked twice per year. Thus, they provide a comparably complete picture of the variability 

of liquid precipitation. The Davis rain gauge was chosen deliberately as a low-cost rain gauge operated at the site RUB 

Morgenthal. The meteorological variables have been collected by two multi-parameter weather stations (LUFFT, WS700), 

which simultaneously measure air temperature, humidity, pressure, precipitation, solar radiation and wind. Verified 205 

climatological information from MeteoSwiss is available for the stations Kloten and Fluntern, which are 15 km (Northwest) 

and 14 km (West) away from Fehraltorf. However, retrieval of actual precipitation and weather radar data is restricted to 

research and educational purposes and are not included in this publication. 

2.4.2 Hydraulic measurements (A2) 

In the study area, a total of 70 sensors have been implemented that survey the hydraulic behaviour of the network during dry 210 

and wet weather (Table 1). These sensor nodes measure and transmit data on hydraulic conditions at a temporal resolution of 

one to five minutes. Among these sensors, thirty-five are equipped with ultrasonic level sensors (MB7369/7389/7386, 

Maxbotix). Flows are recorded with two correlation wedge sensors (NIVUS), and four non-contact radar flow meters (2x 

Sommer, 2x Flo-Dar, MarshMcBirney). Additionally, twelve di-electric conductivity sensors (Meter, formerly known as 

Decagon) were installed as combined sewer overflow detectors (see Section 4.3) which provide redundant information on 215 

sewer spills (Blumensaat et al., 2017). 

 

The “backbone” of the rainfall/runoff monitoring consists of four high-quality weighting rain gauges (OTT Pluvio2L) and four 

industry-grade flow monitors (Nivus POA, Flo-Dar, Sommer SQ-3), which were deployed at strategic locations in Fehraltorf 

(see Figure 4, left) to provide reliable information on the functioning of the collection system during dry and wet weather. 220 

Flow monitors serve as a crucial anchor due to their ability to enable rainfall/runoff analyses and assist with flow balancing. 

They also survey relevant upstream boundary conditions, i.e. wastewater inflows from upstream sub-catchments: a) WW 

inflow from the Rumlikon district in the Northern part (F02), and b) WW inflow from the municipality Russikon is connected 

at the Northeast (F03). At two further locations (F08, F12, [F07, F10]) – redundant at the same site – we observe flow dynamics 

within the drainage network. 225 

 
5 MeteoSwiss - Swiss Federal Office for Meteorology and Climatology 
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Level sensors and threshold detectors were mainly used to complement the flow meters, e.g. in smaller sewers and to better 

describe the filling, spilling and emptying behaviour of CSO tanks. For example, all overflow structures had been instrumented 

with at least one level sensor (MaxBotix and PLS) inside the CSO tank and one capacitive sensor (Meter) installed on top of 

the weir crest to act as a binary spill detector (SI Section 4.4). 230 

 

Calibration of the hydraulic sensors was carried out at least once a year, but rather on demand than based on a structured 

maintenance schedule. Mechanical cleaning of the sensors, as well as reference measurements and visual checks (e.g., for 

perpendicular alignment of the non-contact sensors) were carried out regularly, besides the routine maintenance work (e.g., 

changing batteries) (see further details in the SI Section 4). The utility operates a process monitoring at certain structures, 235 

namely water level in retention basins as well as two flow measurements (Venturi and inflow WWTP). In the basins 

themselves, tank levels were monitored redundantly, mainly using low-power ultrasonic sensors (MB 7369/7389/7386, 

MaxBotix).  

 

Some of the sensors were specifically tailored to sensor- units (nodes) to enable Long-Range-Wide-Area-Networks 240 

(LoRaWAN). We used an operating voltage of 5 V or less and a current consumption of a few milliamperes for sensors and 

radio modules, which simplified the implementation of intrinsically safe devices to protect against ignition protection in the 

(per-se) explosive sewer environment.  

 

2.4.3 Temperature measurements (A3) 245 

Temperature can be used as a natural tracer to provide information on hydraulics (Dürrenmatt et al., 2013), groundwater 

infiltration (Schilperoort et al., 2013; Panasiuk et al., 2022) and sediments (Regueiro-Picallo et al., 2023). Also, net-zero 

considerations require a detailed understanding of urban energy and heat fluxes e.g., for energy recovery with heat exchangers 

(Hadengue et al., 2021), or to validate wastewater heat exchange predictions (Figueroa et al., 2021). Therefore, the in-sewer 

temperature was monitored using dual sensors that simultaneously record the temperature of the wastewater stream and the 250 

corresponding sewer headspace. Above ground, the ambient air temperature has been monitored at four locations across the 

catchment. To characterize surface runoff during wet weather, three additional temperature sensors were installed in gully 

inlets. The positions of the individual monitors are shown in Figure 4, left. This experimental design generates a consistent 

long-term data set, enabling the analysis of temperature dynamics within a hydrological context. It allows for studying 

temperature variations across different compartments at network scale, considering various seasonal and loading conditions. 255 
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2.4.4. Telemetry performance data of the sensor network (A4) 

Nowadays, the Internet of Things (IoT) is flourishing, and its prospects are promising, although early implementations were 

hindered by high costs, a lack of standards and technological challenges (van Kranenburg and Bassi, 2012). However, with 

the emergence of Long-Range Low-Power technologies like LoRaWAN, Sigfox or NBIoT6, implementing and operating 260 

wireless sensor networks, i.e. of such Low-Power Wide Area Networks (LPWANs) has become straight forward. The 

increasing availability and sophistication of these technologies has enabled data collection, also in the field of environmental 

engineering, at an – so far – unseen density and scale.  

 

Data transmission based on the LoRa® technology (Semtech Corporation, 2015) was a key factor in the UWO monitoring 265 

initiative. The UWO sensor network comprises i) 89 LoRa-enabled sensor nodes, ii) 3 LoRaWAN base stations, or gateways, 

and iii) network management elements (Blumensaat et al., 2017; Ebi et al., 2019). Data are transmitted between local sensor 

nodes and base stations using low-power, sub-gigahertz wireless communications, primarily utilizing the LoRaWAN protocol. 

Here we provide telemetry performance data including Received Signal Strength Indicator (RSSI), Signal to Noise Ratio 

(SNR) and the Spreading Factor (SF) for further analyses. According to our experience, LoRaWAN enables two-way wireless 270 

communication between independent sensor nodes and base stations with a moderate range of up to 20 km (above ground, 

subject to line of sight and weather conditions). Underground, we find typical transmission ranges of 500 m, which can be 

substantially extended with our LoRa-based mesh technology (Ebi et al., 2019). 

 

As sensor nodes, we deployed 89 industrial-grade nodes (DL-MBX, Decentlab) as well as custom prototypes (based on 275 

Libelium Waspmote). The DL-MBX nodes are powered by two standard LR20 alkaline-manganese monozinc cells (1.5 V, 

18,000 mAh) and achieve a battery life of three to six years when transmitting every five minutes. Our custom prototypes are 

powered by standard lithium-polymer batteries (3.7 V, 6,700 mAh) and reach a battery life of about six months (Blumensaat 

et al., 2017). To connect the radio modules and sensors, we used digital data communication. This prevented interferences and 

facilitated seamless integration with the nodes’ microcontrollers. We deliberately chose to connect the sensors to the radio 280 

modules via sensor cables, sometimes of several meters, which made it possible to optimize positioning of i) the sensors 

regarding the flow and ii) the radio module with regard to connectivity to the gateway. 

 

To transmit the data from the sensor nodes, we installed three standard gateways (Kerlink Wirnet Station 868). The gateways 

receive signals from the sensor nodes and transmit the data via cellular to a network server. As network manager (middleware), 285 

we use commercial services provided by LORIOT (Switzerland). This software manages the communication channels and 

 
6 Sigfox, LoRa, and NB-IoT are all types of low-power, wide-area network (LPWAN) technologies that are used on the Internet 

of Things (IoT) ecosystem. While LoRa and Sigfox are classified as non-cellular IoT technologies, NB-IoT is categorized as 

a cellular IoT technology. 
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data rates of the sensor nodes, sorting and forwarding the data packets to our internal data server. Although these services are 

subject to charges, they are far less costly than those for data transmission via SIM-based internet connectivity. 

In evaluating the appropriateness of radio coverage, we initially conducted a series of signal strength tests. As a result, our 

investigations demonstrated that deploying three outdoor gateways on elevated structures presented a cost-effective and 290 

efficient solution, achieving a balance to ensure sufficient signal strength throughout the entire urban catchment area. This 

region covers approximately three kilometers by three kilometers in extension. Nevertheless, it is crucial to acknowledge that 

signal strength is not a static parameter, and the network's performance shows temporal and spatial variations, as elaborated in 

Section 4.5.  

The LoRaWAN network data is automatically transmitted through a data pipeline to our internal data server. Subsequently, it 295 

is consolidated with signals from other sources and stored in our "Datapool" data management system, as outlined in Section 

3.1. 

3 Methods 

To collect and curate the data from a large sensor network it is important to establish a data pipeline that provides automated 

data transfer, automatically stores the sensor data, performs automated and semi-automated quality checks and provides the 300 

data in the correct format and aggregation for the required services (Figure 5). 

 

 

 

 305 

 

Figure 5: The individual components of the data pipeline for collecting, storing, and using UWO data from the sensor to the data 

service. The numbers refer to the corresponding Sections. 
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3.1 Implementation of the data pipeline: Data collection, processing and storage 310 

The "Datapool" is an advanced data warehouse developed at Eawag with implementation support by ETH Zurich's Scientific 

IT services. It utilizes open-source software, including PostgreSQL, PostGIS, TimeScaleDB, and a Python wrapper to manage 

structured data, such as time series, meta-data, signal quality information, binary data, raster data, and laboratory data. It allows 

for fast query processing, even with large amounts of data, and offers a clear separation of data management roles (see SI 

Section 5). The "Datapool" is based on open-source techniques, ensuring seamless interoperability with other software. To 315 

enhance simplicity, the UWO sensor data, totalling around 120 GB (comprising packages A1 to A4), has been divided into 

three segments, each corresponding to a specific year, and exported in SQLite format. 

 

3.2 Ensuring consistent data quality  

Long-term field monitoring constantly requires a high level of attention to ensure that the data are consistent, accurate, and 320 

reliable. By continually validating the data, we can identify any type of issues that affect the data collection routine, adjust and 

maintain system performance, and thus ensure high data quality. 

 

3.2.1 Automated flagging with range and gradient checks  

Automatized data plausibility checks of raw observations have been accomplished in quasi real-time. Although data-driven 325 

modelling holds great promise to improve the data quality in the future, initial trials required supervised data to yield 

satisfactory results (Russo et al., 2019; Disch et al., in prep.; Disch and Blumensaat, 2019). Presently, two plausibility check 

routines, namely a range and a gradient check are executed regularly (currently every 24 hours) and return flags to the 

“Datapool”. The range check is an effective measure to consider prior knowledge of the geometry of the sewer and the physical 

measurement principle in quality checking (Bertrand-Krajewski et al., 2008; Clemens et al., 2021). A range check is necessary 330 

to ensure that the measured values fall within a valid range (min, max). Values outside of this range may indicate an issue with 

the measurement or the sewer system itself and are flagged. Gradient checks are useful to detect sudden changes in a time 

series, which can help to identify events of malfunctioning or abnormal system behaviour (Clemens et al., 2021; Russo et al., 

2019). The latter involves looking for abrupt changes in the order of one magnitude from one data point to the next. By 

detecting these artefacts, it may be possible to identify the beginning of an event, such as a sudden spike or drop in a 335 

measurement. However, it is important to validate the results of gradient checks to ensure that the detected changes are 

meaningful and not just random fluctuations in the data. Despite the fact that many sensors are similar, parameterization of 

both routine checks is specific for each sensor. 
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The results are intentionally stored as additional information "flags" (to the raw data). This flagging helps to avoid 340 

redundancies, improves reproducibility, and saves computing resources. The data user can retrieve data with or without flags 

from the integrated SQLite database using one of the provided data-access packages (DAP) provided in package D. DAPs are 

available for different programming languages, e.g. Julia, Python and Matlab/Octave. The result of the automated flagging is 

either True or False for each data point. As data are recorded, these results are visualised in an internal maintenance dashboard 

and trigger maintenance alerts as appropriate. Only data flagged as True is shown in the web viewer (C) (see Section 3.4). 345 

 

3.2.2 Regular consistency and homogeneity checks 

To enhance data quality, we performed regular checks to ensure data consistency and homogeneity. We also identified and 

rectified any significant errors resulting from device failures, monitoring configuration changes, clogging, cross-section 

alterations, and other potential factors, thus ensuring unambiguous data. 350 

 

In addition to regular data consistency and homogeneity checks, advanced data validation methods, such as anomaly detection, 

have been proposed in literature (Russo et al., 2019, 2021; Clemens et al., 2021). However, these are a highly challenging 

topic of current research (Deheer, 2022; Disch et al., in prep.; Disch, 2022) and no standard methods are available yet for sewer 

data. We highlight this as a great opportunity to do further research with this dataset in Section 4.1. 355 

 

3.3 Rainfall-runoff model  

In addition to sensor data, we provide a hydraulic model implemented in EPA-SWMM, which entails information on 

underlying infrastructure, flow topology, network engineering, operation and functioning during dry and wet weather. It has 

been adjusted to the monitoring data using optimization and likelihood-based approaches and describes the rainfall-runoff 360 

process largely satisfactorily, with a Nash-Sutcliffe Efficiency (NSE) of 0.7 in calibration and a NSE of 0.4 for predictions of 

the WWTP inflow. Initially, the model was implemented in MikeUrban (DHI, 2015) by a consultancy for the drainage master 

plan. It was then converted to EPA-SWMM implementation to allow open access. This further referred to as base model only 

covers the combined sewer system, i.e. it ignores storm sewers and the associated drainage area, which represents about one-

third of the total drained area. It consists of 246 sub-catchments that drain into 427 junction nodes connected by 431 links, 365 

with six CSO structures. Hydrological and hydraulic parameters were adjusted after the conversion to EPA-SWMM, while the 

structure and hydraulic characteristics of the pipe system remained unaltered. Flow balancing has been conducted to validate 

the model for dry weather conditions. The base model accommodates groundwater infiltration, and it incorporates two methods 

(base-flow infiltration; rain-dependent inflow).  Wani et al. (2022) performed a spatially differentiated calibration using the 

Bayesian parameter inference approach and the NSE as the different points as objective functions. They concluded that the 370 

calibration of the model using spatially distributed data did not lead to better parameter estimates in Fehraltorf. The SWMM 
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model structure files as well as input files, flow patterns are available in package B. As with any other drainage system, the 

sewer network in Fehraltorf is subject to changes. For instance, with the installation of new flow-limiting hardware in 2019-

2020, modifications were made to the network that are not yet considered in the currently provided model structure. Further 

information on the rainfall-runoff model, as well as on the accompanying data can be found in the SI. 375 

 

3.4 Accessing and exploring the monitoring data 

To enable open access to data, we have adopted the FAIR (Findable, Accessible, Interoperable, and Reusable) principles 

(Wilkinson et al., 2016). To make the data findable, we ensure that our data is described and labelled using appropriate 

keywords, standardized formats, and persistent identifiers (see Section above). In this way, researchers and users can easily 380 

find and access the data they need. To make them accessible, we make our data available through ERIC/open (Eawag Open 

Research Data Institutional Repository) (see Section 6). We also provide documentation on how to access and use the data. To 

make the data interoperable, we structure our data using open, standardized formats that can be easily integrated into existing 

workflows and systems (SQLite, CSV, ascii). We also provide meta-data on how the data was collected, processed, and 

analysed to facilitate reproducibility and reuse in table “source_meta_data” (SI Section 5, Figure S 5-2). To make the data 385 

reusable, i.e. to ensure that data can be used for multiple purposes beyond the original research project, we place them in the 

public domain with a CC0 license, which waives all copyright and related rights to the extent allowed by law. This means that 

others are free to use, modify, and distribute it without any restrictions (Section 6). 

 

Unfortunately, the ERIC/open implementation provides access to the data, but yet only very limited exploration capabilities. 390 

Therefore, similar to previous work (Špačková et al., 2021), we provide a web-based dashboard7 as a pre-viewer to the data, 

which has been implemented in R-Shiny and is an efficient way to explore and filter the data, e.g. by signal type, source or 

location (Figure 6). 

 

 395 

 
7 https://uwo-opendata.eawag.ch/, last accessed 15.01.2024 

https://uwo-opendata.eawag.ch/
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Figure 6: Online pre-viewer to the UWO dataset, which includes information on the location of the data source, as well as time series 

and meta-data on the characteristics of the sensor and the monitoring site. Web access: https://uwo-opendata.eawag.ch/   

 

4. Research opportunities 400 

The UWO dataset is valuable for researching urban drainage processes and evaluating process-based and data-driven methods 

with real-world data. Here, we will briefly highlight five research opportunities using the UWO dataset to: i) develop automated 

data quality checks, ii) assess spatio-temporal variations in groundwater infiltration, iii) improve event-duration monitoring of 

combined sewer overflows, iv) investigate sewer heat transfer and v) assess wireless sensor network performance. More details 

on the individual opportunities are given in SI Section 9. 405 

  

https://uwo-opendata.eawag.ch/
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4.1 Anomaly detection of sewer monitoring data using semi-automated machine learning approaches 

Advancements in sensor technology and data transmission have transformed process monitoring in drainage systems through 

a wealth of data (Ruggaber et al., 2007; Kerkez et al., 2016). However, traditional manual data preparation is insufficient for 

extracting useful information. Automated approaches are needed for real-time sensor data validation, if needed with human 410 

intervention to improve data quality. Machine learning, especially unsupervised methods, can enhance real-time data 

preprocessing and ensure comprehensive data quality assessment. Detecting anomalies in recorded data is crucial, but complex 

data-driven methods often fail with urban drainage data (Deheer, 2022). In this study, we compared three data validation 

methods (ARIMA, Autoencoder, One-class Support Vector Machine (OCSVM) using UWO dataset time series of levels, flow, 

and temperature. We employed filtering, smoothing, and imputation preprocessing steps and generated a reference time series 415 

with synthetic errors. We used the popular F1 score to evaluate the performance to correctly detect anomalies (see SI Section 

9.1). Our results suggest that the simultaneous analysis of related signals enables anomaly detection, and more preprocessing 

with human intervention improves the F1 score (Figure 7).  

The F1 scores for monitoring data with synthetic errors during wet weather (Figure 7, right: Dwet) are substantially better 

(ARIMA: 0.71, OCSVM: 0.65, Autoencoder: 0.73) than for real measured data (average: 0.43). As expected, preprocessing 420 

(denoising, smoothing, imputing) aids anomaly detection and ARIMA fails with incomplete series. We also find that 

partitioning the data by weather enhances anomaly detection. ARIMA and Autoencoder methods show promise with synthetic 

data, but their superiority over OCSVM diminishes with real measurement data. 

 

 425 

 

Figure 7, left: Observations with potential anomalies. The highlighted data show the benefit of multiple sensors in detecting 

anomalies. While the high variability on the left is reflected in all sensors, the one on the right only appears in a single sensor. Right: 

F1 scores for different methods for pre-processing (A-D). An F1 score of 0.5-0.8 (between the red and yellow dashed lines) is 

considered medium quality, 0.8-0.9 good and above 0.9 excellent. For real-world data (A-C), the performance increases with 430 

increasing levels of pre-processing. For real-world data, ARIMA performs best and the Autoencoder never reaches the performance 

on synthetic data (D).  
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4.2 Quantification of groundwater infiltration 

Infiltration in urban drainage systems has detrimental effects on wastewater treatment efficiency and increases costs, because 435 

it dilutes sewage, reducing biological treatment efficiency, and overloads the drainage system during rain (Staufer et al., 2012). 

To estimate groundwater infiltration (GWI) rates in the Fehraltorf sewer network, we analyzed long-term flow recordings, 

focusing on dry weather night-minimum flows and excluding rain-induced infiltration. Using the night-minimum flow, GWI 

rates were estimated at the catchment outlet and two transfer flows in the Fehraltorf sewer network.  

 440 

GWI rates ranged from 10 to 15 Ls-1, depending on the season (see SI Section 9). The detailed monitoring data revealed spatial 

variations in GWI with changing seasons. For example, in April 2018, a high groundwater table affected 256 out of 459 

manhole inverts, while in October 2018, only 100 manholes were impacted (Figure 8). Future work can incorporate the 

spatially differentiated GWI rates into the hydraulic sewer network model to improve the predictive capabilities. 

 445 

 

 

 
Figure 8 left: 256 sewer manholes in the Fehraltorf network were affected by groundwater in April 2018. The darker the colour the 

more are manholes submerged in GW. Right: 100 sewer manholes in the Fehraltorf network were affected by groundwater in 450 
October 2018. The darker the colour the more are manholes submerged in GW.   
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4.3 The value of redundant sensors in event-duration monitoring 

 

Assessing CSO activity through tank-level monitoring is crucial for quantifying pollution and optimizing sewer networks. To 

date, more and more countries have implemented data-based compliance assessments of CSOs and make spill data, e.g. from 455 

overflow event duration monitoring, available to the public (Rieckermann et al., 2021; EC, 2022). However, ensuring data 

quality is a challenge and research explores various monitoring techniques to make data-based compliance assessment more 

reliable. 

 

In the UWO, we equipped some CSO tanks with multiple ultrasonic and capacitive sensors to independently monitor overflow 460 

duration to investigate how redundant signals would reduce the uncertainty of CSO event-duration monitoring (SI Section 9). 

 

The results shown in Figure 9 (right) demonstrate that comparing the capacitive sensor signal with the level signal greatly 

improves data confidence and allows for post-calibration. With only the tank level sensor, incorrect level sensor processing 

severely underestimated CSO activity and resulted in 50 % less cumulative overflow duration in a period of 1’077 days. 465 

 

 

 

Figure 9, left: Continuous tank-level (dots) and binary (triangles) information, the latter derived from the capacitive sensor signal, 

reflecting the overflow activity for a period of two days for which two independent overflow events were recorded. Monitoring 470 

frequency are five minutes, for rainfall it is one minute. Middle and right chart: event-specific overflow durations derived from one 

capacitive sensor (bm_dl332_rub_morg) and one ultrasonic level sensor (bl_dl311_rubmorg_inflow). Middle chart: tank-level data 

(dl311) have been used with original (erroneous) information on sensor settings, i.e. the distance between sensor head and the tank 

invert. Right chart: information on sensor offset settings have been revised. 

 475 
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4.4. Assessing latent heat transfer in sewers – detecting condensation 

Accurate predictions of sewer heat transfer processes are important for in-sewer processes (Huisman, 2001), and heat recovery 

(Figueroa et al., 2021; Abdel-Aal et al., 2019; Hadengue et al., 2021). Latent heat transfer in sewer systems has been often 

disregarded by urban drainage modellers (Elías-Maxil et al., 2017), although there is no quantitative evidence that latent heat 480 

transfer is not important. Using a subset of the provided temperature time series, we investigated the difference between 

headspace and bulk liquid temperatures to identify conditions for A) condensation and B) evaporation (SI of Figueroa et al., 

(2021)). We analyse the provided temperature data in three locations dl933, dl935 and dl931 (Figure 10). We find that 

condensation takes place in April when the typical temperature difference between the sewer headspace and the bulk liquid 

temperature is -2 K. In contrast, with warmer ambient air and headspace temperatures, evaporation occurs. Maximum 485 

differences can amount to 5 K, at location dl931. Based on these results, Figueroa et al. (2021) conclude that latent heat transfer 

should not be neglected, especially in areas with high relative velocity and lower bulk liquid depth in the sewers, i.e. in steep 

catchments and peripheral regions. Even in scenarios with high relative humidity values, latent heat processes play a crucial 

role and should be considered. This makes the provided temperature data an ideal source for further developing heat exchange 

models for sewer networks. 490 

 

Figure 10: The difference between the sewer headspace temperature and the bulk liquid temperature observed at three specific 

locations in the main collector. Red dots indicate periods of evaporation (higher temperature in the headspace compared to the bulk 

liquid) and blue colours indicate periods of condensation (inverse temperatures). From the SI of Figueroa et al. (2022).   
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 495 

4.5 The performance of a LoRaWAN network for underground applications 

Monitoring sewer systems faces challenges due to the restricted reception of diverse wireless data transmission technologies 

in underground settings. While LoRaWAN holds potential for subterranean monitoring, uncertainties persist regarding its 

performance in challenging conditions, particularly within metal-covered manholes, as highlighted by Ebi at el. (2019). We 

evaluated the quality of LoRaWAN network service by comparing packet error rates (PER) of underground and above-ground 500 

sewer nodes. PER represents the percentage of data packets that fail to reach their destination due to transmission errors Table 

2. Generally, we find that data packets can be transmitted from sensor nodes located in sewers if the nominal distance between 

node and gateway is less than 500 meters. Analyses of the data on the LoRaWAN telemetry performance show a low average 

PER of about 5 % and a median of 3 % across practically all nodes. Interestingly, 1-minute nodes perform slightly better, likely 

due to the fact that 1-minute transmission frequency mostly applies to sensor nodes located above ground (SI Section 10).  505 

 

Future research can analyse the IoT radio network to explore LoRaWAN networks' potential for underground monitoring, 

advancing the maintenance of infrastructures such as heating, water, and electricity networks. Investigating environmental 

factors impact, such as heavy rainfall or extreme temperatures, on key radio performance indicators could provide further 

insights into LoRaWAN networks suitability for underground monitoring. 510 

 

 

 

  

Table 2: Summary statistics of the Quality of Service of the LoRaWAN wireless network. The mean of sensor median packet 

error rates (PER) was computed from weekly values for two groups of gateways (1min, 5min). While the global average of data 

packet losses is very low, i.e. approximately 5 %, median values indicate an even lower packet loss, i.e. 3 %. Also, the 1-minute 

nodes perform slightly better, most likely since a fair number of these nodes do not transmit from underground locations. 

Values in brackets represent the number of nodes included in the evaluation in the corresponding evaluation period. 

Median PER [-]  
# of packets  

per week 
2017 (# Sensors) 2018* 2019 2020 2021 2017 - 2021 

1-min nodes 10,080 0.026 (2) 0.020 (13) 0.058 (34) 0.048 (36) 0.037 (31) 0.050 (39) 

5-min nodes 2,016 0.056 (34) 0.043 (46) 0.055 (58) 0.061 (58) 0.032 (47) 0.056 (68) 
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6 Data availability 515 

Data from the Urban Water Observatory are available at the Eawag Research Data Institutional Repository (ERIC/open). We 

provide the data under a CC0 license, granting users the freedom to use, modify, and distribute it without any restrictions, as 

the work is dedicated to the public domain. The geodata by swisstopo is supplied with conditions of use, which comply with 

the legal basis. The conditions of use enable free use for all purposes and oblige the user to indicate the source as “Source: 

Federal Office of Topography swisstopo” or “© swisstopo”. The datasets are quality controlled by Eawag staff and provided 520 

as part of the UWO project8. The packages are organized as follows: 

  

A) UWO - Field observations (2019 to 2021): Sensor data including corresponding meta-data (cf. A1-A4 in Fig. 1). The data 

are organized in three SQLite databases representing annual slices of UWO field data collected in 2019 until 2021 

https://doi.org/10.25678/00091Y (Blumensaat et al., 2024d). 525 

B) UWO - Accompanying information (cf. B in Fig. 1): a) a collection of prepared geodata, including a topographic basemap 

in raster format (National map 1:25'000) provided by swisstopo, a Digital Elevation Model (DEM, swissALTI3D) in 5m 

raster, an aerial photo “Swissimage”, Cantonal information on groundwater resources, sewer network cadastre data 

provided by the municipality of Fehraltorf, and b) a hydraulic “base” model version (EPA SWMM v5.1) 

https://doi.org/10.25678/000991 (Blumensaat et al., 2024a).  530 

C) UWO - Data viewer: a web-based dashboard that allows data users to view all UWO field observations, among them those 

provided in the sensor data package A https://doi.org/10.25678/00092Z (Blumensaat et al., 2024c).   

D) UWO - Data access: script files to query the UWO sensor data provided in the abovementioned SQLite databases. Sample 

queries are provided to access observation data in Python, Octave/Matlab, and Julia respectively. An overview of which 

sensor (source) is associated which package (cf. A1-A4 in Fig. 1) is given in table format https://doi.org/10.25678/000980 535 

(Blumensaat et al., 2024b).  

7 Conclusions and Outlook 

Monitoring of urban hydrological processes and making the data publicly available is of paramount importance, as sewer 

networks are under-monitored in relation to their significant monetary value and service. Therefore, we present this unique 

open set of urban hydrological data, which not only includes long-term observations on rainfall-runoff processes, but also 540 

information on in-sewer wastewater temperatures and the telemetry performance of our LoRa-based sensor network plus all 

relevant meta-data. Based on the results and experience of collecting and curating the UWO dataset, we draw the following 

conclusions: 

 
8 https://doi.org/10.25678/000C5K 

https://doi.org/10.25678/00091Y
https://doi.org/10.25678/000991
https://doi.org/10.25678/00092Z
https://doi.org/10.25678/000980
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• IoT-prone transmission technologies and advances in sensor development offer the opportunity to revolutionize sewer 545 

process monitoring by providing spatially differentiated information on key system parameters in real time. But, they 

do not make traditional monitoring techniques obsolete. The promise of ubiquitous monitoring is not solved by low-

power data transmission. Even if battery life can be extended to 5 or 10 years, possibly through adapting monitoring 

intervals to expected dry and wet weather dynamcis, managing a swarm of hundreds or thousands of sensors will 

require substantial resources and manpower until energy self-sufficient systems for monitoring and data transmission 550 

are available.  

• In terms of sensors, we have learned that it pays to establish a monitoring backbone consisting of a few full-featured 

but (often) maintenance-intensive sensors, such as rainfall and pipe flows. Due to their high measurement accuracy, 

their data can be used as reference observations, i.e. to establish volume balances. In addition to that, low-tech sensors 

may reveal relative deviations from normal system states, allowing operators to detect operational problems such as 555 

blockages or leaks earlier. To correctly interpret spatially resolved runoff patterns, adequate spatial rainfall 

measurements are necessary and, generally speaking, more level and flow sensors also require more rain gauges. 

Rainfall and urban climate monitoring provides further insight the impact of weather on the sewer system and helps 

operators to anticipate critical phenomena such as overflows or flooding. In comparison to spatially distributed 

rainfall, the monitoring of wastewater thermal energy, e.g. for heat recovery, is comparatively cheap and can help 560 

authorities to achieve an integrated operation of the wastewater system. 

• To fully benefit from monitoring data, it is crucial to ensure that streaming the sensor data in real-time is sufficiently 

reliable. We found that automated state-of-the-art quality checks, such as range and gradient checks, are adequate to 

identify anomalies in the data. Advanced analysis is required to further differentiate whether anomalies are due to 

sensor malfunction, triggering on-demand sensor maintenance, or abnormal system behaviour, requiring operational 565 

troubleshooting. Regular manual consistency checks, e.g. with simple physical models as Manning-Strickler, and 

homogeneity checks are still essential to ensure the accuracy and reliability of sensor data.  

• Collecting field observations without validating the data in a timely manner does not make sense. The significance of 

automated data validation becomes paramount, particularly when handling a considerable number of sensor signals, 

ranging, for instance, from 30 to 40 devices or more. Nevertheless, generally applicable solutions have not yet been 570 

developed, probably because sewer flows, both in terms of quality and quantity, display substantial variability and 

apparent randomness, which makes it challenging to develop universal solutions. We believe that further research is 

needed to ensure data quality, possibly using advanced methods and novel strategies. In our experience, the use of 

long time series (months to years) and the inclusion of data from nearby, i.e. adjacent sensors or alternate (surrogate) 

signals collected at the same site have been particularly promising in quality control. The UWO dataset and its meta 575 

data can serve as a nucleus for testing modern data-driven approaches such as generative adversarial networks or 

recurrent neural network models, as discussed in Russo et al. (2021). However, creating universally applicable 
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methods demands a more extensive collection of annotated monitoring datasets, akin to the scale seen in image and 

text databases used for machine learning. To facilitate seamless reuse, it is essential that these datasets be released 

into the public domain without imposing any license restrictions. 580 

• For in-sewer processes, such as sewer infiltration or overflow behaviour, the data provides a very comprehensive 

picture of the sewer network performance. In addition, it can be useful to detect causes of bias between the model and 

environmental factors, such as weather or temperature, the built environment, e.g. land use, or sensor failures. Data 

are useful to test hybrid models and data assimilation approaches.  

• Meta-data is crucial for accurately interpreting sensor signals. Standardising meta-data descriptions is essential for 585 

uniform interpretation. Coordinated efforts are needed to introduce open data and open science concepts in urban 

drainage. This includes standardized exchange formats for monitoring data (e.g. OGC-standards such as WaterML or 

InfraML) and a uniform meta-data description for machine-to-machine communication. To effectively improve the 

reusability of wastewater monitoring data, following FAIR data principles, it is crucial to improve existing ontologies, 

such as the urban water dictionary GSWS9, to ensure clear and precise descriptions of the provided information. 590 
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9 https://data.gwsw.nl/ 
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