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Abstract
Long term time series of variable renewable energy (VRE) generation and electricity demand 
(load) provide important insights into the feasibility of fully renewable power systems. The 
coverage of energy statistics is usually too short or the temporal resolution too low to study 
effects related to interannual variability or the impact of climatic extreme events. We use time 
series simulated from climate data to assess the frequency, duration, and magnitude of 
extreme residual load events of two fully renewable power scenarios with a share of VRE 
generation (wind and solar PV) of about 50% for the case of Sweden. We define residual load 
as load – wind – PV – nuclear generation. Extreme residual load events are events that exceed 
the balancing or ramping capacities of the current power system. For our analysis, we use 29 
years of simulated river runoff and wind and PV generation. Hourly load is derived from 
MERRA reanalysis temperature data by applying statistical models. Those time series are used 
along with historic capacity and ramping restrictions of hydro and thermal power plants in an 
optimization model to minimize extreme residual load events. Our analysis shows that even 
highly flexible power systems, as the Swedish one, are affected by climatic extreme events if 
they increase their VRE shares. Replacing current nuclear power capacities by wind power 
results on average in three extreme residual load events per year that exceed the current 
power system’s flexibility. Additional PV generation capacities instead of wind increase the 
number of extreme residual load events by about 4 %, as most events occur during the winter 
month when solar generation is close to zero and thus not able to counterbalance low wind 
events. Contrarily, overproduction and the need to curtail VRE generation become more 
pressing with higher shares of PV. In the discussion we highlight measures that could provide 
additional balancing capabilities to cope with the more frequent and severe residual load 
events in a fully renewable power system with high shares of VRE generation.
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Highlights:

 Load during winter is negatively correlated with wind power and natural river runoff
 Annual residual loads vary between 51 and 72 TWh in a fully renewable power 

system
 Two out of three years exceed the balancing capacities of the current power system
 The longest extreme residual load event lasts 18 hours with a maximum lack of 

capacity of 4 GW
 Additional flexibility measures can avoid loss of load events in fully renewable power 

systems
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1 Introduction
The transition to fully renewable power systems is an important prerequisite for limiting 
adverse long-term impacts of climate change [1]. Wind power and solar photovoltaics (PV) 
have experienced significant cost reduction and growth rates in recent years[2,3]. One major 
concern for large shares of variable renewable energy (VRE), such as wind and PV, is still their 
variable (intermittent) nature that increases the vulnerability of power systems to extreme 
climatic events. The frequency and duration of extreme production events in fully renewable 
power systems is of high relevance, as power systems are designed to endure maximum load 
and peak generation capacities contribute significantly to the overall systems cost.

Critics warn that periods of persistent low VRE generation might threaten grid stability and 
exceed the balancing capabilities of current power systems [4]. Therefore, power system 
studies that aim at determining the optimal mix of wind and solar in future power systems 
increasingly use long-term time series to avoid criticism that results may be valid only for the 
given year(s), while not being feasible for years with extreme climatic conditions [5]. This is 
important as VRE generation and electricity demand exhibit not only seasonal but also 
considerable interannual variation. 

Recent works, therefore, use global reanalysis data-sets, such as the MERRA reanalysis data 
[6] to derive long-term time series of VRE generation. These time series provide an important 
input for the growing body of literature that assesses the variability of VRE and its impacts on 
the balancing power as well as storage and transmission capacity needs of power systems with 
high shares of up to 100% renewables. The flexibility requirements of power systems on 
country or continental level are usually assessed by analysing net load variations [5,7–10]. For 
a detailed discussion of fully renewable power scenarios see [11]. Residual load refers to the 
difference between load and VRE generation and equals the amount of electricity that must 
be provided by dispatchable power plants, storage or demand side management options. 
While most of the studies argue that it is necessary to include long-term time series of VRE 
generation to account for interannual variations of VRE generation, most of them rely on 
historical data for electricity demand covering only representative days [12] or one or two 
[7,13,14] up to 5 [8] and 10 [5] years. However, climatic conditions affect electricity demand 
in a similar way as VRE generation. For assessing extreme residual load events, it is therefore 
crucial to use long-term time series for load as well, as low VRE generation events might be 
easily balanced during mild winter days but become a problem during cold winter days with 
high heating demand. In this article we aim to overcome this limitation by using MERRA 
temperature data to simulate 35 years of hourly temperature dependent load. Based on the 
simulated time series for VRE generation and load we assess the frequency and magnitude of 
extreme residual load events and the implications for balancing capacities for Sweden as a 
case study. While previous studies mostly use techno-economic assumptions to describe the 
technical capabilities of the system (such as ramping), we, in contrast, derive historical 
capabilities from empirical data and use it in our modelling approach.

The most important resource for balancing extreme residual load events in Sweden is 
hydropower, which contributes to over 40% of today’s electricity production in Sweden [15]. 
Hydropower plants can be operated very flexibly to provide ramping capacities for short term 
fluctuations of VRE. Beyond that, Sweden has a large amount of hydro reservoirs with a total 
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capacity of about 33 TWh [16]. This is about a quarter of the annual electricity demand and 
provides enough storage capacity to balance seasonal and, to some extent, also interannual 
fluctuations of VRE. However, analogous to VRE, hydropower generation may vary 
considerably between wet and dry years. Currently, Sweden still produces 40% of its electricity 
from nuclear power plants [15]. While the proposed target for 2040 is 100% renewable 
electricity production, there is currently no political decision regarding nuclear phase-out in 
place [17]. However, nuclear power must cover its own costs, including costs for disposal of 
spent fuel and nuclear waste, without subsidies. Further, several currently operating plants 
need major investment in order to meet safety requirements. For these reasons, nuclear 
power may be expected to be, partly or fully, phased out during the coming decades, which 
could boost the share of VRE and initiate the transition to a fully renewable power system.

In this article, we assess the feasibility of two scenarios for a fully renewable power supply in 
Sweden by considering long-term climatic variations, using continuous hourly time-series 
from 1986 to 2014. We address several aspects that affect the short- and long-term flexibility 
needs of balancing and storage capacities. Our aim is to provide a better understanding of 
current, available system flexibility when taking into account climatic extreme events and thus 
we do not include all available flexibility options [18]. Considering all these options is typically 
done when assessing investments into new options for integrating renewables such as in 
[12,14]. This is not our aim, instead we assess (1) the current balancing and ramping capacities 
in the system and how they are affected by a high penetration of VRE under nuclear phase-
out in Sweden, (2) the frequency and magnitude of extreme residual load events and the 
capability of the system to deal with them, and (3) the inter-annual variations in renewable 
supply and electricity demand, possible systematic relationships between these variables, and 
resulting challenges for the power system. For this purpose, we generate residual load time 
series for a 29-year period by subtracting simulated VRE generation from simulated load. 
Based on those time series we assess how the hydro-thermal power system can cover residual 
load. For that purpose, a stylized optimization model of the Swedish hydro-power system is 
used to optimize hydropower production.

2 Data and Methods
We assess extreme residual load events in two fully renewable power scenarios with a share 
of VRE generation (wind and solar PV) of about 50%. For that purpose, we use 29 years, from 
1986 to 2014, of simulated wind and PV generation in conjunction with statistical models to 
derive hourly load from MERRA reanalysis temperature data. The time series are used along 
with historic capacity and ramping restriction in an optimization model to assess the flexibility 
that can be provided by hydro and thermal power plants. In this section, we describe two 
alternatives for a fully renewable power supply, the data and models used to derive time 
series for VRE generation and load, as well as the optimization model used to assess the 
maximum flexibility that can be provided by hydro and thermal power plants.

2.1 Scenarios for a fully renewable power supply with VRE
In this paper we focus on assessing the impact of fully renewable power scenarios on the 
residual load variability and its implications for the flexibility needs of the power system. 
Therefore, we compare extreme residual load events in the current power system with two 
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fully renewable power scenarios that assume that the current nuclear power generation of 
about 60 TWh annually is phased out and replaced with VRE generation capacities (see Table 
1). The reference scenario uses historic generation and load data from 2007 to 2016 and 
provides a reference for the fully renewable power scenarios. In this case, residual load refers 
to the difference between load and VRE plus nuclear power. The Wind scenario assumes that 
nuclear power is replaced by wind energy alone - adding up to an installed wind capacity of 
19.2 GW or an average annual wind power output of about 70 TWh, which is well in line with 
estimates of Swedish wind power potential by Byman et. al. [16]. The wind+PV scenario 
assumes the same VRE mix as the “More solar and wind” alternative in the IVA Electricity 
Crossroads project [16] with 55 TWh wind (15.1 GW installed capacity) and 15 TWh solar 
power (16.9 GW installed capacity). Capacity factors of wind power plants increase in the 
scenarios, due to assumed technological improvements and a higher share of offshore wind 
power. Both of our fully renewable scenarios assume that load and generation capacities of 
other technologies (i.e. hydropower and thermal) remain constant. Future thermal generation 
though is assumed to rely only on biomass resources to guarantee a fully renewable electricity 
supply. Imports and exports are not explicitly considered in the model but will be discussed 
along with other balancing options in the discussion section. Differences in mean annual 
power demand stem from the fact that demand in the reference scenario is observed, while 
demand in the renewable scenarios is derived from a statistical model (see below).

Table 1: Mean annual generation and power demand (TWh/y) from 2007 to 2014 and installed capacities (GW) as this period 
is available for both simulated and observed data

Reference scenario Wind scenario Wind+PV scenario
TWh/y GW TWh/y GW TWh/y GW

Load (power 
demand) 131.1 129.6 129.6

Hydro 67.0 16.2 64.1 16.2 64.1 16.2
Nuclear 59.7 9.5 0 0 0
Wind 11.6* 5.4* 69.3 19.2 54.4 15.1
PV < 0.1 < 0.1 0 0 14.9 16.9
Thermal (biomass) 9.7 8.4 9.7 8.4 9.7 8.4

* values for wind in the reference scenario for 2014 only

2.2 Hydro runoff and variable renewable energy generation data sets
In order to assess the balancing capabilities of Swedish hydropower for short-term balancing 
(hourly fluctuations) as well as seasonal variations, we use simulated time series for river 
discharge from the hydrological catchment model S-HYPE. The model simulates water flow 
from precipitation through soil, river and lakes to the river outlet [19,20] and provides daily 
time series of natural and corrected river runoff. The natural runoff simulates river runoff 
without human interference such as hydropower. The corrected discharge is modelled using 
regulation routines but replaced by observations where such are available. Up to now, 
hydropower plants have been operated to respond to changing electricity demand. Higher 
shares of VRE generation will change these prevailing hydro and thermal power generation 
patterns as they will increasingly have to balance fluctuations of wind and solar generation. 
Thus, it is not meaningful to use the corrected HYPE runoff data for simulating hydropower 
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generation in fully renewable power systems. Instead, we implement the natural runoff data 
in a residual load balancing optimization model (see Section 2.4).

For wind power assessments, it has become common practice to use wind speed time series 
from reanalysis data, which is then converted into power output using approximations of 
standard power curves [21]. However, using output from reanalysis models may lead to 
significant spatial bias and overestimate wind output by up to 50% (e.g. in Northwestern 
Europe) and underestimate it by up to 30% (e.g. in the Mediterranean) [22]. Therefore, we 
use a dataset that that has been specifically bias corrected for Sweden [23,24]. The authors 
generated time series of future wind power production for 23 scenarios with different shares 
of onshore and offshore wind, different spatial distributions between Northern and Southern 
Sweden, and different capacity factors. The simulated annual power production ranges from 
20 up to 70 TWh. For our analysis we use the time series of scenario C1 and D1 [23] (details 
on the validation can be found in Appendix A1). For the Wind scenario we used scenario D1 
with an annual wind power generation of 70 TWh (whereof 20 TWh is new offshore 
generation). C1 assumes an annual wind power generation of 50 TWh (whereof 13 TWh is new 
offshore generation), which we scaled to 55 TWh assuming the same spatial configuration, for 
the Wind+PV scenario.

EMHIRES aims at reproducing wind and solar power time series at both national and regional 
levels within Europe using a homogeneous methodology. However, on a country level it is 
possible to achieve higher correlation values and a better representation of extreme ramping 
events by the use of additional correction factors [21]. For Sweden, EMHIRES provides hourly 
time series of PV capacity factors per bidding area (a detailed description of the Swedish 
bidding areas can be found in Appendix A2). We assume that no considerable PV generation 
capacities are installed in the most northern of the four Swedish bidding areas (SE1). In total, 
a PV capacity of 16.9 GW is needed to provide 14.9 TWh of electricity at mean capacity factors 
ranging from 9.70 % (SE2) to 10.7% (SE3) (Wind+PV scenario). Between bidding area SE2, SE3 
and SE4 we distribute the solar generation capacities according to the electricity demand in 
the region. Therefore, the majority of the PV capacity (11.6 GW or 68.6%) is assumed to be 
installed in bidding area SE3.

2.3 Simulated load time series
For the simulation of hourly loads (electricity demand) of the entire 29-year period (1986-
2014) we apply a statistical model that uses reanalysis temperature data and gridded 
population raster data to calculate the population weighted mean temperature, and historical 
load data of the Swedish transmission system operator (TSO) Svenska Kraftnät, to fit and 
validate the model.

Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis [6,25] 
provides consistent hourly temperature time series from 1979 up to now. It offers a spatial 
resolution of 0.66-degree longitude by 0.5-degree latitude, resulting in 267 grid cells for 
Sweden. In order to reduce the number of predictor variables for the regression model, we 
calculated a population weighted temperature index for each of the four Swedish bidding 
areas. For that purpose, we used the “Gridded Population of the World” (GPWv4) [26] data 
set. It provides population numbers consistent with national census at a 1 km grid resolution. 
We aggregated the population for each MERRA grid cell and then used the information to 
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calculate the mean temperature of all MERRA grid cells within one bidding area weighted by 
the population of the single MERRA grid cells. This ensures that the temperatures of more 
densely populated areas with higher electricity demand get a higher weight in the resulting 
mean temperature. 

In Sweden the temperature sensitivity of load is mainly driven by heating while cooling is 
negligible under current conditions [27]. Therefore, the negative relationship between 
temperature and load can be observed for almost the entire temperature range. To estimate 
the response function of hourly load to temperature, we estimate a linear regression model 
for each of the four Swedish bidding areas. Besides temperature, hourly load (load) is affected 
by calendar effects as hourly, weekday our seasonal patterns [28–31]. The effect of the hour 
of the day, weekdays, and public holidays is modelled with dummy variables and seasonal 
cycles are modelled using Fourier series. The complete estimating equation is given by:

𝑙𝑜𝑎𝑑(ℎ) = ∑3
𝑖 = 1𝛽𝑖𝜏𝑖,ℎ + ∑27

𝑗 = 4𝛽𝑗𝛿ℎ𝑜𝑑
𝑗 + ∑34

𝑘 = 28𝛽𝑘𝛿𝑑𝑜𝑤
𝑘 + 𝛽35𝛿ℎ𝑜𝑙 + 𝛽36 ∗ cos

𝑝𝜋ℎ
8760 + 𝛽37 ∗

(1)sin
𝑝𝜋ℎ

8760 

where  includes the mean weighted temperature of the current hour and the lagged 𝜏𝑖

temperature of the last hour and 24 hours ago.  and  are dummy variables for the 𝛿ℎ𝑜𝑑
𝑗 𝛿𝑑𝑜𝑤

𝑘

hour of the day and the day of the week and  is a dummy variable that covers the effect 𝛿ℎ𝑜𝑙

of public holidays.  and  are the amplitude coefficients that describe the two cycles 𝛽36 𝛽37

within a year (p = 2) of the Fourier series, while h is hour of the year [31].

For fitting the model, respectively choosing the values of , we applied linear regression, 𝛽1 ― 36

i.e. we minimized squared errors, using historic data from 2010-2016 [32]. The prediction 
performance was evaluated using data for the years 2007- 2009 (see Appendix A3).

2.4 Hydro and thermal power simulation model
We have developed a linear program that minimizes the residual load balancing demand. The 
main inputs for the model are hourly time series of the simulated natural river runoff (a 
detailed description how we simulated hydro power generation is given in Appendix A4), load, 
and wind and PV generation. The model is solved for 29 years with varying meteorological 
conditions and initial hydro reservoir levels that are determined from the operation in the 
year before.

The objective function aims to minimize the sum of the overall balancing demand given by the 
sum of hydro and thermal power generation plus potential loss of load events. We have 
designed the model to provide the maximum amount of balancing energy from hydropower 
and to use thermal power only when hydropower can not provide enough energy. Therefore, 
we use weighting factors to prioritize hydro generation and spilling (factor 1) over thermal 
(factor 2) and loss of load (factor 10).

min 𝑛𝑒𝑡_𝑙𝑜𝑎𝑑_𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝑦𝑒𝑎𝑟 =  ∑ℎ(ℎ𝑦𝑑𝑟𝑜ℎ + 𝑠𝑝𝑖𝑙𝑙ℎ + 𝑡ℎ𝑒𝑟𝑚𝑎𝑙ℎ ∗ 2 +  𝑙𝑜𝑠𝑠_𝑜𝑓_𝑙𝑜𝑎𝑑ℎ ∗ 10), ∀ 𝑦𝑒𝑎𝑟
(2)

This prioritization has an economic interpretation, as in general, variable costs (loss of load) > 
costs (thermal generation) > costs (hydropower generation). In Appendix A5 we show that the 
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results of the optimization model are insensitive to the choice of weights, as long as the order 
of weighting factors is maintained. The first constraint ensures that residual load (= Load- VRE 
generation) equals the sum of hydro and thermal power generation plus potential loss of load 
events at every hour. Negative residual load events (i.e. when VRE generation exceeds load) 
are assumed to be balanced by curtailments or exports with no additional cost. 

(3)𝑛𝑒𝑡_𝑙𝑜𝑎𝑑ℎ = ℎ𝑦𝑑𝑟𝑜ℎ + 𝑡ℎ𝑒𝑟𝑚𝑎𝑙ℎ + 𝑙𝑜𝑠𝑠_𝑜𝑓_𝑙𝑜𝑎𝑑ℎ ― 𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑎𝑖𝑛𝑡ℎ, ∀ ℎ

Curtailment is limited by the sum of VRE and nuclear generation at each hour. It is necessary 
to include nuclear generation here to keep the model feasible in the Reference scenario. 
However, it has no impact on the fully renewable energy scenarios.

(4)𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡ℎ ≤ 𝑉𝑅𝐸ℎ +𝑛𝑢𝑐𝑙𝑒𝑎𝑟ℎ, ∀ ℎ

Our goal was to provide a simple model that captures the overall flexibility of hydro and 
thermal power plants, rather than a detailed dispatch model at power plant level. Therefore, 
we aggregated the generation capacities to one plant per generation technology (i.e. one 
hydropower plant with one reservoir and one thermal power plant). In 2014, the installed 
capacities amounted to 16.2 GW for hydropower (cap_hydro) and 8.4 GW for thermal power 
(cap_thermal) [16]. Our approach to aggregate the generation capacities of all plants is not 
able to capture operational restrictions of single plants. Instead we derive operational 
restrictions (i.e. maximum capacity factors) from observed operational data between 2007 
and 2014 [32]. Within this period, the maximum hydropower generation was 13.7 GW or 85 
% (cfHydro) of the installed capacity and 6.6 GW or 79 % for thermal power plants (cfThermal). 

(5)ℎ𝑦𝑑𝑟𝑜ℎ     ≤ capHydro ∗ cfHydro     ∀ ℎ

(6)𝑡ℎ𝑒𝑟𝑚𝑎𝑙ℎ ≤ capThermal ∗ cfThermal ∀ ℎ

Additionally, we implemented a minimum flow constraint to account for restriction due to 
water legislation of 1.5 GWh (minFlow). Maximum flow is limited by the historic maximum 
power generation and the maximum hourly water spill (spillh) that is allowed is one 1 GWh 
(max_spill).

(7)ℎ𝑦𝑑𝑟𝑜ℎ + 𝑠𝑝𝑖𝑙𝑙ℎ ≥ 𝑚𝑖𝑛𝐹𝑙𝑜𝑤, ∀ ℎ

(8)𝑠𝑝𝑖𝑙𝑙ℎ ≤ maxSpill, ∀ ℎ

Most thermal power plants are CHP (combined heat and power) plants that have to supply 
heat for district heating networks. Therefore, we have assumed that the hourly minimum 
generation for each month has to be higher than the average hourly generation of the same 
month with the lowest generation in the period from 2007 to 2014. Thus, the hourly minimum 
thermal generation ranges from 197 MW in July up to 1470 MW in January. 

Hourly ramps for both thermal and hydropower plants have been restricted by the maximum 
observed ramps in the past (i.e. maxRampHydro = 4.0 GW and maxRampThermal =1.5 GW).

(9)|ℎ𝑦𝑑𝑟𝑜ℎ ―  ℎ𝑦𝑑𝑟𝑜ℎ ― 1|         ≤ 𝑚𝑎𝑥𝑅𝑎𝑚𝑝𝐻𝑦𝑑𝑟𝑜,      ∀ ℎ

 (10)|𝑡ℎ𝑒𝑟𝑚𝑎𝑙ℎ ―  𝑡ℎ𝑒𝑟𝑚𝑎𝑙ℎ ― 1| ≤ 𝑚𝑎𝑥𝑅𝑎𝑚𝑝𝑇ℎ𝑒𝑟𝑚𝑎𝑙, ∀ ℎ
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The following equation ensures that the reservoir level at each hour equals the reservoir 
level of the previous hour plus inflows minus hydropower generation and spilled water.

 (11)𝑟𝑒𝑠_𝑙𝑒𝑣𝑒𝑙ℎ = 𝑟𝑒𝑠_𝑙𝑒𝑣𝑒𝑙ℎ ― 1 + 𝑖𝑛𝑓𝑙𝑜𝑤ℎ ― ℎ𝑦𝑑𝑟𝑜ℎ ― 𝑠𝑝𝑖𝑙𝑙ℎ, ∀ ℎ

Furthermore, the reservoir level has to be kept between the minimum (5 %) and maximum 
(98 %) observed storage levels of the total reservoir capacity (33.7 GWh) for all hours [33].

 (12)𝑟𝑒𝑠_𝑙𝑒𝑣𝑒𝑙ℎ > 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝐶𝑎𝑝 ∗ 0.05, ∀ ℎ

 (13)𝑟𝑒𝑠_𝑙𝑒𝑣𝑒𝑙ℎ < 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝐶𝑎𝑝 ∗ 0.98, ∀ ℎ

To ensure operational flexibility for the next year, the reservoir has to be at least half full at 
the end of the year. This corresponds to the historically observed minimum reservoir levels at 
the end of the year from 1960 to 2015.

 (14)𝑟𝑒𝑠_𝑙𝑒𝑣𝑒𝑙ℎ > 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝐶𝑎𝑝 ∗ 0.50, ℎ = 8760

The reservoir level for the first hour of the year is set to reservoir level at the end of the 
previous year, except for the first simulation year, where we assume that the reservoir is filled 
to 70 %, which is the long-term mean at the first week of the year.

The resulting hourly time series of hydro- and thermal power generation, loss of load and 
curtailment are used to assess the occurrence and frequency of extreme residual load events 
(potential loss of load events).

3 Results
In the first part of the results section we analyse seasonal and interannual variations of 
residual load and hydropower generation to show how different mixes are affected by climate 
variability. In the second section we focus on aspects of fully renewable power systems that 
affect the short-term flexibility of the power system. These include measures to balance 
hourly and daily fluctuations of residual load such as the change in extreme ramping events 
and the need for backup, storage, and transmission capacities.

3.1 Seasonal and interannual variability of VRE generation and load
Wind power generation in Sweden shows no clear diurnal pattern, but a favourable seasonal 
profile with slightly higher production during the winter when electricity demand is higher. PV 
on the other side has an unfavourable seasonal profile with high production during summer 
and depending on the generation site, low to zero generation in winter. The diurnal profile of 
PV, however, matches load quite well, with peak generation during midday and no generation 
during night.

Figure 1 shows the simulated seasonal patterns of electricity demand and VRE generation. The 
influence of heating and lighting requirements leads to higher load during winter and low 
demand during summer with minima during the holiday season in July and August. The daily 
mean hourly load ranges from 10.9 GW on a typical day in July up to 18.5 GW in January. The 
comparison of daily mean hourly loads over the 29 year period (shaded area in Figure 1) 
reveals considerable variability, especially during winter. Daily mean hourly loads in the 
simulated time series in January range from 14.3 GW on the mildest winter days up to 26.9 
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GW for the coldest days in January 1987, which was the coldest month between 1980 and 
2016. The variation of summer loads is significantly lower, as electricity demand for cooling is 
a minor issue in Sweden. They range from 8.26 to 15.4 GW between May and September. The 
hourly maximum loads range from up to 29.1 GW in January to a maximum of 15.1 GW in July.

Compared to electricity demand, PV generation shows a clear anticyclic pattern, with 80 % of 
the annual solar PV output generated in spring and summer. On sunny summer days, the daily 
mean PV generation reaches 5.0 GW. On cloudy days though, generation could be as low as 
0.6 GW, despite the spatial distribution of PV capacities across Sweden. From November to 
February, when load is highest, the contribution of PV generation to the electricity supply is 
negligible, with daily mean generation not exceeding 0.8 GW. Mean capacity factors for PV 
thus range from about 18 % in summer to below 5 % in February and November, and below 
2 % in January and December. 

During this time of the year a fully renewable energy system, therefore, would have to rely on 
other renewable energy generation capacities. Wind generation follows a similar seasonal 
pattern as load, with slightly higher production during autumn and winter. In the Wind 
scenario, mean hourly generation ranges from 6 GW in the summer to 9.6 GW in the winter 
months. This corresponds to mean capacity factors of about 50 % in the winter months, from 
December to February, and about 30 to 33 % in the summer months, from June to August. 
Low wind generation events with a daily mean hourly generation of less than 1.2 GW can occur 
during the whole year. However, in winter, such events are very rare and occur on only 13 
days within the full 29-year simulation period (light blue shaded area in Figure 1).

Figure 1: Interannual and seasonal variation of simulated electricity demand (load), solar PV and wind generation from 1986 
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to 2014 in the Wind+PV scenario. The black line shows the daily mean values over 29 years of simulated temperature 
dependent load and generation. The shaded areas indicate the observed variation of daily mean values in the simulated time 
series: minimum and maximum values in light blue, 10th to 90th percentile in blue and 25th to 75th percentile in dark blue. 
The dotted lines show the hourly minimum and maximum load and generation for each day. 

The annual electricity demand varies between 125 and 136 TWh in all simulated scenarios 
(Figure 2). This corresponds to maximum deviations of 4.62 % from the long term mean of 130 
TWh. Annual capacity factors vary between 29.5 and 34.5 % for wind energy, and between 
6.87 and 8.58 % for PV. In the Wind+PV scenario, annual wind energy generation thus varies 
between 50.5 and 59.5 TWh, and PV generation between 13.3 and 16.5 TWh. Deviations from 
the long-term mean annual generation range from -8.40 to +8.00 % for wind generation and 
from -11.6 to +10.0 % for PV generation. Interannual variability of VRE generation is thus not 
higher than the historic variability of hydro, which experienced deviations of -17.1 to +12.0 %, 
between 2007 and 2016. 

Figure 2: Simulated annual load (black line), residual load (red line) and generation by source (nuclear, thermal, hydro, wind 
and solar PV) for weather years 1986 to 2014 (the reference scenario relies on historic data from 2007 to 2014). Note that the 
simulated time series assume constant capacities as given in our scenarios over all years and thus do not reflect historic 
generation but the effect of interannual climatic variability on VRE generation and load.

The combined effects of load and VRE generation on residual load (=load -wind - solar - 
nuclear) are shown in Figure 2. From 2007 to 2014, the actual annual residual load (reference 
scenario) varied between 51.3 TWh in 2014 and 77.0 TWh in 2010. Over the complete 29-year 
period from 1986 to 2014, we observe similar minimum residual loads in the fully renewable 
power scenarios (Wind and Wind+PV) of 50.9 and 52.3 TWh per year. Annual maximum 
residual loads are lower with 71.5 and 70.5 TWh in the Wind and Wind+PV scenario, 
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respectively. Annual power generation is 7.61 and 8.08 TWh higher than the annual load in 
the Wind and Wind+PV scenario, respectively. In years with above average hydropower 
generation (e.g. in the year 2000) overproduction can reach up to 2.4 TWh. In the reference 
scenario, from 2011 to 2016 Swedish net electricity exports varied between 7.23 and 22.6 
TWh[32].

3.2 Long-term correlations of VRE generation and load
So far we have shown that electricity demand and wind generation are higher during the 
winter period while PV produces about 80% of its output during the summer months. 
However, to better understand the risk of extreme residual load events it is crucial to assess 
interannual variations and to determine the long-term correlations of load, hydropower, and 
VRE generation. Therefore, we analyse the long-term correlations of monthly load, VRE 
generation and natural river runoff (Figure 3). As the time series with 29 years of simulated 
data is still relatively short to get meaningful results for the correlations of annual data, we 
compare deseasonalized monthly load and generation to assess if it is more likely that a month 
with above average electricity demand is associated with low or high VRE generation in the 
same period. Of specific interest for our analysis is the relationship between wind power 
output and electricity demand (load) during the winter month. During this time the probability 
of loss of load events is highest due to the higher electricity demand and the negligible PV 
generation. 

Figure 3: Correlation matrix (red: negative, blue positive) of deseasonalized monthly load, solar, wind and simulated hydro 
generation for the summer (June, July and August) and winter months (December, January and February)

In the context of extreme residual load events, the negative correlations of -0.61 between 
wind and load and -0.66 between natural river runoff and load during the winter months, are 
particularly interesting. This means that high shares of wind energy might considerably 
increase the pressure on the power system’s balancing capacities, as it is likely that periods of 
high electricity demand coincide with periods of low wind power output. Contrarily, PV 
generation shows moderately positive correlations during winter (r = 0.25) and negative 
correlations during summer (r= -0.55). Considering the small overall PV generation during 
winter the potential to balance peak loads during winter is limited, while the negative 
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correlation during summer is likely to result in negative residual loads (overproduction) and 
the need to curtail VRE generation.

3.3 Variability and hourly ramps of residual load
In the previous section, we have shown that load as well as VRE and hydro generation 
fluctuate considerably from year to year and that severe winters with above average 
electricity demand are more likely to coincide with relatively low wind generation and river 
runoff. In this section, we explore the resulting residual load variations in more detail, to 
assess the impact on the balancing capabilities of the power system. We define residual load 
as load – wind – PV – nuclear generation. This thus corresponds to the amount of electricity 
that has to be met by hydro and thermal power plants, as well as imports and exports. 

The mean monthly residual loads in the fully renewable scenarios are on average slightly lower 
than the ones in the current power system (see Table 2). Replacing nuclear power capacities 
by wind (Wind scenario) lowers the variability of monthly residual loads, while adding PV 
capacities increases the standard deviation due to the strong seasonal pattern of PV 
generation.

Table 2: Comparison of monthly residual loads (TWh/month) in the three scenarios

Scenario Mean Standard deviation Min Max
Reference 5.3 1.6 1.8 10.1
Wind 5.0 1.5 2.2 10.2
Wind+PV 5.0 2.1 1.5 11.2

From 2007 to 2014 (reference scenario), the mean hourly residual load was 7.5 GW (with a 
standard deviation of 3.1 GW) (see Figure 4). The minimum and maximum hourly residual load 
was -1.1 GW and 18.6 GW, respectively. In 3.5 % of the time (on average 306 hours per year) 
residual load exceeded the maximum hydropower generation capacity (red dotted line in 
figure), while negative residual loads occurred in only 0.2 % of the time (on average 17 hours 
per year). The fully renewable scenarios both show a significant increase in more extreme 
residual load events. The frequency of negative residual loads increases to 6.5 % and 8.0 % of 
the time in the Wind scenario and the Wind+PV scenario, respectively. Hours with a higher 
residual load than maximum hydro generation increases to 7.5 % and 9.0 % of all hours, in the 
Wind and Wind+PV scenario, respectively. 
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Figure 4: Distribution of hourly residual loads in the reference and the fully renewable scenarios. We define residual load here 
as load – wind – PV – nuclear. The red dotted line shows the maximum observed hydropower generation between 2007 and 
2014. Above: full distribution. Below: Lower and upper end of distribution.

With the transition to a fully renewable power system, not only high and low hourly residual 
loads increase substantially, but also the frequency and magnitude of hourly ramps (Figure 5). 
In the past (Reference scenario) hourly residual load ramps ranged from -1.6 GW (for ramping 
down) to 2.3 GW (for ramping up). These fluctuations could be easily balanced by hydropower 
with hourly ramping rates ranging from -2.6 to 3.8 GW (observed historical ramps, orange in 
figure). For thermal power plants, historical ramps ranged from -2.2 to 0.9 GW and for imports 
and exports from -1.7 to 1.9 GW. However, the combined ramps (total) of hydro, thermal and 
imports and exports were significantly lower than the hydropower ramps. This demonstrates 
that in the past hydropower ramps were highest when the ramps of imports and exports were 
the lowest and vice versa. Thus, ramping up of hydropower generation was highest when 
imports decreased, or exports increased, substantially from one hour to another.

In the fully renewable power scenarios, the demand to balance hourly fluctuations increases 
significantly. In the Wind scenario the ramps range from -3.60 to 3.91 GW. This exceeds the 
observed total ramping rates of balancing capacities in 0.304 % of the time or on average 26.6 
hours per year. The Wind+PV scenario produces far more extreme ramping rates ranging from 
-11.1 to 10.8 GW, which is three to four times more than the observed maximum historic 
ramping rates of hydropower. It would exceed the observed total ramping rates of balancing 
capacities in 3.86 % or on average 338 hours per year. In this case also the observed historic 
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hydropower ramps would not be able to balance 0.619 % of the ramping down events and 
0.0856 % of the ramping up events.

Figure 5: Hourly residual load ramps (blue) in the three scenarios (Reference, Wind and Wind+PV) compared with historically 
observed ramps of balancing capacities (orange) (hydro and thermal power plants, as well as imports and exports). The “total” 
ramp boxplot shows the observed combined hourly ramps of all balancing capacities.

3.4 Extreme residual load events
In this section we assess the frequency, magnitude and duration of extreme residual load 
events in a fully renewable power system for Sweden. As extreme residual load events we 
define events that exceed the balancing capacity of the current hydro and thermal power 
capacities. The main focus of our analysis are positive residual load events, thus events where 
the load exceeds the generation capacities of the hydro and thermal power plants. For those 
events, a fully renewable power system would need additional backup capacities to avoid loss 
of load events. Besides that, integrating large shares of VRE substantially increases the 
occurrence of negative residual loads, where the generation of wind and PV is higher than the 
electricity demand. These events can be handled more easily by the curtailment of VRE 
generation, but the need to curtail large shares of VRE generation still affects their overall 
generation costs and thus the feasibility of a fully renewable power system. Therefore, we will 
highlight the occurrence of negative residual load events in the second part of this section. 
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Figure 6: Number of extreme residual load events in the Wind and Wind+PV scenarios that exceed the balancing capacity of 
current hydro and thermal power plants. Note that the simulated time series assume constant capacities as given in 
our scenarios over all years and thus do not reflect historic generation but the effect of interannual climatic 
variability on VRE generation and load.

Over the complete 29-year period, we observe 83 and 86 extreme residual load events in the 
Wind and Wind+PV scenario, respectively (Figure 6). The occurrence of extreme events shows 
considerable interannual variations. In nine out of the 29 years, the occurring residual loads 
can be balanced by the current hydro and thermal backup capacities in both the Wind and the 
Wind+PV scenario, and we therefore observe no extreme residual load events. The climatic 
conditions of 1987, 1996, and 2010 result in the highest number of extreme residual load 
events, with eight or more events, several of which are long duration events, per year in both 
scenarios. In total about 36 % of all extreme residual load events over the 29-year period occur 
within these three years.

On average our simulation results show about three extreme residual load events per year. In 
total the simulated extreme residual load events sum up to 359 and 372 hours, respectively, 
with a lack of capacity in both scenarios. This corresponds to an average of about 13 hours per 
year. However, in the Wind scenario, only in one third of those hours the lack of balancing 
capacities exceeds 1 GW and only in about 12 % more than 2 GW of additional balancing 
capacities are needed. In the Wind+PV scenario the additional balancing needs are slightly 
higher with 39 % of all hours above 1 GW and 13 % above 2 GW. Overall, both fully renewable 
power scenarios result in relatively few events with a lack of capacity of more than 2 GW, 
when seen over whole 29-year period; amounting to 11 events for the Wind scenario, and 9 
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for the Wind+PV scenario, respectively. The highest lack of balancing capacity reaches 4.8 GW 
in both scenarios.

The Wind scenario results in six events lasting longer than 12 hours with a maximum duration 
of 15 hours, while the Wind+PV scenario shows five events with a maximum duration of 18 
hours. Events between 5 and 12 hours are more frequent in the Wind scenario, with 24 
compared to 22 events in the Wind+PV scenario. Shorter events that last less than five hours 
are the ones with lower additional capacity demands (Figure 7). The additional balancing 
capacity need during those events is mostly below 1 GW. Contrarily, in events that last longer 
than 12 hours, the lack of capacity ranges from 2 up to 4.4 GW.

Figure 7: Lack of balancing capacities in the Wind and Wind+PV scenarios, grouped by the duration of the extreme residual 
load events

The hourly load and generation profiles for the second week of 1987 - the period with the 
highest and longest net load event - in both scenarios are shown in Figure 8. In both scenarios 
the combination of high load (peak at 27 GW) and for the season extremely low wind 
generation of below 2 GW on 7 January 1987 results in residual loads that can not be balanced 
even by assuming maximum hydro and thermal generation. In the Wind+PV scenario, PV 
generation is able to lower the loss of load for about 4 hours around midday but is too low 
with 1.8 to 2.9 GW to cover up for the extremely low wind generation. At the same time, the 
lower installed wind capacity in the Wind+PV scenario leads to an about 0.9 GW higher lack 
of capacity in the late afternoon hours of the same day, with 4.4 GW compared to 3.5 GW in 
the Wind scenario. In total, additional backup generation, imports, or storage of 39.4 and 41.3 



ACCEPTED MANUSCRIPT

GWh within 14 and 18 hours are required in the Wind and the Wind+PV scenario, respectively, 
to avoid a loss of load event.

Figure 8: Hourly load (black line), residual load (black dotted line) and generation capacities (solar, wind, thermal and hydro) 
for the simulated week using weather data from 1987 with the highest and longest extreme residual load event 
within the complete 29 year period.

4 Discussion
We found that switching to a fully renewable power system with VRE shares of about 50 % 
would result in 83 and 86 extreme residual load events in the Wind and Wind+PV scenario, 
respectively, over the complete 29-year simulation period, if no additional flexibility options 
are made available in the Swedish power system. On average those events last 4.3 hours with 
a lack of balancing capacity of around 0.6 GW. One third of the events needs balancing 
capacities of more than 1 GW and six and five events, respectively, last longer than 12 hours. 
This highlights the challenges that even highly flexible power systems as the Swedish one, with 
its high share of hydropower and reservoirs that can store up to quarter of the annual 
electricity demand, will face when accommodating VRE shares of about 50 %.

In general, our assessment follows a conservative approach, i.e. real flexibility should be 
higher in the system, as imports and exports are not regarded in the model and only historical 
system flexibility is considered. Also, the temperature dependent load time series slightly 
overestimate high load events during winter (see Appendix A3). Our modelling approach of 
simulating hydro power with one large reservoir and power plant, provides time series of 
hydro power generation that are in line with maximum historic generation and hourly ramping 
rates. Scenarios with high VRE shares result in an unprecedented variability of hydro power 
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generation within days and from day to another. More detailed regional analyses need to 
verify, whether those new operational schedules can be met by individual reservoirs’ and 
power plants’ limitations as well as environmental regulations for single rivers. Accounting for 
those limitations could regionally reduce the ability of hydropower to provide system 
flexibility in extreme climatic situations, i.e. a hot and dry season followed by a cold winter 
with low wind. Our optimization approach prioritizes hydro over thermal power generation. 
Thus, hydro power plants reach their maximum generation capacities more often, while at the 
same time thermal power generation tends to be lower than historically observed. Therefore, 
there is still flexibility in the system to switch between hydro and thermal power generation 
that is not reflected in the results. 

Another flexibility restriction of the real power system, which is not considered here, is the 
transmission system. Further studies would have to assess the limitations imposed by 
transmission limits. Also, we only assess extreme events on the demand side caused by 
climate. Extreme events caused by other factors (such as e.g. outages of power plants) are not 
assessed.

In our reference scenario with about 45 % of the electricity coming from nuclear power plants, 
the maximum hourly residual load reaches about 19 GW, which is equivalent to the combined 
peak generation from hydro and thermal power between 2007 and 2014. Replacing base load 
nuclear power capacities by VRE in the two fully renewable scenarios increases the simulated 
maximum hourly residual loads by about 4.0 GW to about 23 GW in both scenarios. The 
variability of wind and PV generation also increases the maximum hourly ramps up to 3.9 GW 
in the Wind scenario, and up to 11 GW in the Wind+PV scenario. The hourly ramps in the two 
fully renewable scenarios exceed the ramping capacities of the current system on average 26 
and 338 times per year, respectively.

Seasonal and diurnal variations of VRE generation and load have previously been studied on 
different scales [34–36] and are generally well understood. Our results demonstrate that also 
extreme residual load events follow clear patterns. Typically, they occur during daytime on 
weekdays in winter, as those are the times with peak demand when low VRE generation 
cannot be balanced by hydro and thermal power generation. Our results further show that 
events that cannot be balanced with current balancing capacities could last up to 18 hours. 
During the night, when electricity demand is generally lower, also events related to extremely 
low VRE generation can be balanced more easily. Our analysis also confirms results that 
extreme events (at least in Northern Europe) are clearly a winter phenomenon [36–38], with 
all residual load events occurring between December and March.

Our results provide valuable information on the frequency, duration and magnitude of 
extreme residual load events (potential loss of load events). However, further research is 
needed to assess the implications of these extreme events on the cost optimal design of 
flexibility and backup options. Possible options range from adding hydropower and thermal 
biomass balancing capacities or investing into storage and demand response technologies to 
balance short-term peaks of residual load.

Current environmental regulations limit the potential for new hydropower plants. However, 
hydropower generation could be expanded through efficiency improvements of current 
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hydropower plants by 2 to 4 TWh annually, and new hydro plants on non regulated water 
courses could provide additional 6 TWh [16]. If only half of this potential is realized, about 1.5 
GW of additional capacity would be available for balancing extreme residual load events. Our 
results highlight that wind power expansion intensifies extreme residual load events during 
winter. Biomass CHPs represent a viable substitute for this period as heat demand is highest 
on cold winter days. The fact that only a few hours per year require additional balancing 
capacity makes it questionable though, whether new biomass capacities can provide a cost 
optimal backup solution. Another option would be to foster demand response management. 
Measures to increase demand flexibility of Swedish industry and households could provide 3 
to 5 GW for short extreme residual load events of up to three hours [39]. Measures that 
address reducing or shifting peak electricity demand for heating are of particular interest, as 
it can amount to 7 GW in a normal and up to 8 GW in a severe winter [39]. Demand response 
seems a reasonable option, considering the low frequency of extreme net load events that 
last longer than 4 hours (8 and 8.5 hours per year in the Wind+PV and the Wind scenario, 
respectively), as well as the fact that in the majority of extreme residual load events (66 % in 
the Wind scenario and 63 % in the Wind+PV scenario) the lack of balancing capacity is below 
1 GW. 

5 Conclusions
Our results build on a modelling framework that uses long-term simulated time series of 
hourly VRE generation, river-runoff and load, combined with an optimization model that 
incorporates operational restrictions of hydro and thermal power plants (i.e. maximum 
generation and ramping capacities as well as reservoir management). This approach allows us 
to study the interannual variations of residual load and the impact of climatic extreme on the 
flexibility demands of the power system to guarantee security of supply.

The importance of using long-term time series of VRE generation and load has been stressed 
by several authors before, as interannual climate variability affects VRE generation and load 
[38,40], but is also responsible for large fluctuations of generation costs and CO2 emissions 
[5,41]. Over the complete 29-year period that uses climatic data from 1986 to 2014, simulated 
annual loads deviate up to 4 % from the long term mean of 130 TWh. Renewable energy 
generation shows much greater interannual variability with deviations from the mean of up 
to 8, 12 and 18 % for wind, PV and hydropower generation, respectively. Annual residual loads 
range from 50.9 up to 71.5 TWh. 

These results highlight the importance of using long-term time series of VRE generation and 
load for assessing the impact of extreme climatic events on power systems with high shares 
of VRE, as in about one third of the simulation years we do not observe any extreme residual 
events, while fully 37 % of the events occur within the three years with the most extreme 
climatic conditions (1987, 1996, and 2010). The strong impact of climate is highlighted by the 
fact that temperatures during extreme residual load events within these three years were 5 
to 15°C below long term average. Increasing temperatures due to climate change may cause 
a decrease in the probability of these events. However, they still cannot be ruled out in the 
future.



ACCEPTED MANUSCRIPT

Simulated time series do not perfectly reflect fluctuations of load and VRE generation and 
may, as shown in the appendix, slightly overestimate the occurrence of extreme residual load 
events. However, relying on shorter periods of observed data may lead to even more 
problematic results, as it is unlikely that time series of only one or a few years capture the 
most extreme climatic events.

The key insight from our analysis is that highly flexible power systems as the Swedish one are 
able to accommodate VRE shares of up to 50 % in a fully renewable power system and to 
balance the resulting VRE fluctuations on various time scales ranging from interannual and 
seasonal to hourly. However, extreme climatic events (i.e. cold winter days with extremely 
low wind generation) that occur for only some hours per year still exceed the balancing 
capacity of the current power system. The key question that future research needs to address 
is, whether investments in new backup or storage capacities to balance those very rare 
residual load events or measures to achieve higher demand flexibility can provide more cost 
efficient solutions.
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7 Appendix
A1 Validation of simulated wind power time series with a focus on extreme events
In this section we assess the ability of the simulated wind power time series taken from 
Olauson et.al. [23] to reproduce historically observed extreme generation events. For the 
validation of hourly wind power generation we compare the simulated time series with 
historic generation for the years 2008, 2010 and 2012 in Sweden [32]. As the simulated time 
series provide capacity factors, while the observed generation is given in kWh, a time series 
of capacity factors is derived from the historic data, based on installed capacities. For the 
validation we assess capacity factor time series by means of basic model quality criteria, an 
evaluation of seasonal and hourly differences between model and observation values, and an 
assessment of events of extreme high and low generation events as well as ramps in 
generation.

Table A1: Table basic model quality criteria

Hourly Daily Monthly
Correlation 0.974 0.988 0.995
NRMSE 0.160 0.102 0.033
NMAE 0.121 0.076 0.024
n 26328 1097 36

The model validation based on basic model quality criteria shows a good overall model fit, 
slight underestimation of frequencies of high generation events and an overestimation of low 
generation events. Table A1 summarizes basic model quality criteria, namely correlation, 
normalised root mean square error (NRMSE), and normalised mean absolute error (NMAE) 
and the number of events (n) within various time frames for the whole generation time series. 
Daily and monthly data are aggregates of hourly values.

The comparison of frequencies of different capacity factor bins of the simulated time series 
with historic values shows a slight overestimation of low capacity factors up to 0.1, a good fit 
of frequencies between 0.2 and 0.8 and underestimations of high modelled values above 0.8 
(see figure A1).
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Figure A1: Frequency (hours per year) of simulated and observed historic values for different capacity factor classes

Table A2 and Table A3 show mean durations and frequencies of extreme generation events. 
The frequency of modelled low generation values (below 0.05 and below 0.025) and higher 
capacity factor values (above 0.6 and above 0.7) differs significantly between the modelled 
and observed values. The model overestimates the frequency of low production events, while 
it underestimates both average duration and the frequency of high production events with 
capacity factors of above 0.8. Additionally, it slightly overestimates the frequency and 
duration of persistent extreme events (longer than 24h) compared to the observations.

Table A2: Comparison of extreme generation events

< 0.025 < 0.05 < 0.1 > 0.6 > 0.7 > 0.8

Frequency 634 2130 6017 1321 309 5

Mean duration 4.59 7.98 14.89 11.1 5.94 1.25Model

Max. duration 28 73 216 60 28 2

Frequency 468 1826 5716 1125 248 16

Mean duration 4.59 8.08 12.37 11.48 5.9 4Observations

Max duration 24 39 115 58 18 8

Table A3: Comparison of extreme generation events with a duration of more than 24 hours

< 0.025 < 0.05 < 0.1 > 0.6 > 0.7

Frequency 1 18 74 13 1
Model*

Mean duration 28 35.89 49.24 36.08 28

Frequency 1 14 68 9 -
Observations*

Mean duration 24 31.57 45.88 31.78 -
*no observation values for threshold above 0.7 and above 0.8; no model values above 0.8
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Figure A2 compares frequencies and durations of low and high generation events for different 
capacity factor thresholds between modelled and observed values. The significance of some 
capacity factor thresholds may be questionable due to the low number of observations (i.e. 
for capacity factors above 0.8). In general, the duration of extreme events is overestimated 
with some minor exceptions (e.g. capacity factors above 0.8). Therefore, the simulated wind 
power time series provide a conservative estimate as the actual number of observed low wind 
generation events is likely to be lower, which would result in fewer extreme residual load 
events.

Figure A2: Comparison of durations and frequencies of high (above) and low (below) generation events in the simulated and 
the historically observed time series
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A2 The four bidding areas of the Swedish power market
The Swedish power market (Figure A3) is divided 
into four bidding areas: Luleå (SE1), Sundsvall (SE2), 
Stockholm (SE3) and Malmö (SE4). Figure A1 shows 
that the majority of electricity is consumed in the 
population rich Stockholm bidding area SE3, while 
demand in the northern regions SE1 and SE2 is 
relatively low. The borders between bidding areas 
have been drawn according to transmission 
limitations of the national grid [42]. Transmission 
bottlenecks result in different electricity prices 
between the bidding areas.
Currently, a large amount of electricity is 
transported from north to south, as the northern 
bidding areas generate a large electricity surplus 
due to their large hydro power resources (see Table 
A4). All of the existing nuclear power plants are 
located in SE3. They provide about 72 % of the 
electricity demand in the Stockholm area. Replacing 
nuclear power capacities by spatially more equally 
distributed wind and PV generation capacities 
would result in a larger power deficit in SE3. 
Contrarily, in the Malmö area (SE4), which now had 
the greatest deficit, new wind and PV capacities 
would allow production of more electricity than 
needed in the region. Overall, the proposed fully 
renewable power scenarios would intensify the 
current pattern with power surplus in the north and 
power deficit in the south (i.e. in SE3). This would 
further increase the pressure on the transmission 
power grid and investments into new transmission 
capacities are likely to be needed to avoid future 
bottlenecks.

Figure A3: Mean annual electricity 
demand in the for Swedish bidding 
areas from 2010 to 2014

SE4 - Malmö

SE3 - Stockholm

SE1 - Luleå

SE2 - Sundsvall

23.3 TWh

83.6 TWh

8.34 TWh

15 TWh

56N

58N

60N

62N

64N

66N

68N

15E 20E



ACCEPTED MANUSCRIPT

Table A4: Annual power generation and electricity demand in the four Swedish bidding areas for the three assessed scenarios 
(Reference, Wind, Wind+PV). Mean values for the period from 2010 to 2014 in TWh.

Scenario Area Generation Demand Difference
  hydro nuclear solar thermal wind total   
Reference SE1 18.78 0.00 0.00 0.26 0.64 19.68 8.34 11.33
Reference SE2 36.31 0.00 0.00 0.84 1.56 38.71 15.04 23.67
Reference SE3 11.42 60.33 0.00 5.65 3.18 80.58 83.56 -2.98
Reference SE4 1.65 0.00 0.00 2.42 2.34 6.41 23.34 -16.93
Reference sum 68.17 60.33 0.00 9.17 7.71 145.39 130.29 15.10
Wind SE1 17.14 0.00 0.00 0.26 5.05 22.46 8.63 13.83
Wind SE2 35.55 0.00 0.00 0.84 15.77 52.16 14.93 37.22
Wind SE3 11.15 0.00 0.00 5.65 19.34 36.14 83.50 -47.35
Wind SE4 0.67 0.00 0.00 2.42 29.31 32.40 23.28 9.12
Wind sum 64.51 0.00 0.00 9.17 69.47 143.15 130.33 12.82
Wind+PV SE1 17.14 0.00 0.00 0.26 4.85 22.25 8.63 13.62
Wind+PV SE2 35.55 0.00 1.85 0.84 12.52 50.76 14.93 35.83
Wind+PV SE3 11.15 0.00 10.36 5.65 15.88 43.04 83.50 -40.46
Wind+PV SE4 0.67 0.00 2.87 2.42 21.23 27.19 23.28 3.92
Wind+PV sum 64.51 0.00 15.09 9.17 54.48 143.25 130.33 12.92
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A3 Validation of simulated load with historic load data
For the long term evaluation of extreme residual load events we had to rely on simulated load 
time series as historic hourly load data is available only from 2007. Therefore, we applied a 
statistical model that uses population weighted mean temperature to simulate hourly load. In 
this section we demonstrate the ability of the model to reproduce historic load and its impact 
on assessing climatic extreme events. Figure A4 compares the monthly historic and simulated 
load. For the period from 2008 to 2014 the correlation of monthly loads is 0.991. The 
correlation of hourly loads for the same period is 0.963.

Figure A4: Monthly historic and simulated load from 2008 to 2014

Figure A5: Distribution of historic and simulated hourly loads for all month from 2008 to 2014.
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For our assessment of extreme residual load events it is crucial that extreme loads are 
captured sufficiently well. Figure A5 compares the distributions of hourly loads for all months. 
It shows that the simulated monthly mean values are on average about one percent lower 
than the historic values. With the exception of July, the standard deviation is also from one up 
to eight percent lower in the simulated time series. Contrarily, we observe more extremely 
low and high loads especially during winter, which affects our analysis of extreme residual 
loads the most. Figure A6 highlights that during residual load events the mean simulated load 
overestimates the actually observed historic load by 0.39 to 0.69 GW. Therefore, using 
simulated load time series may slightly overestimate the occurrence of extreme residual load 
events and the reported lack of capacity may be slightly lower due to the same effect.

Figure A6: Distribution of historic and simulated hourly loads during extreme residual load events between 2008 
and 2014
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A4 Simulation and validation of hydro power generation time series
The Swedish version of the hydrological catchment model S-HYPE provides river discharge for 
36,692 subbasins. The model simulates water flow from precipitation through soil, river and 
lakes to the river outlet [19,20] and provides daily time series of natural and corrected river 
runoff. The natural runoff simulates river runoff without human interference such as 
hydropower, while the corrected runoff incorporates historic hydropower generation and 
irrigation patterns.

To translate the time series on river discharge into time series of hydropower generation we 
used a spatially explicit data set of Swedish hydro power plants [42]. It contains information 
on the installed capacity and head height for about 1450 Swedish hydro power plants that 
allowed us to simulate hourly generation time series at plant level. For our analysis, we 
selected only plants with an installed capacity of more than 10 MW. This resulted in a data set 
of the 200 plants that together account for 95 % of the Swedish hydro power generation (see 
figure A7).
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Figure A7: Cumulated hydro power capacity per bidding area and location and capacity of the 200 largest hydro 
power plants in Sweden that amount to 95 % of the total installed capacity and have been included in our analysis

The validation of our simulated hydro power generation time series against historic data 
demonstrates that the corrected S-HYPE time series cover seasonal and annual variations 
quite well. Simulated and historic monthly hydro power show a correlation of 0.94 in the 
period from 2008 to 2014 (see figure A8). After accounting for the fact that we included only 
95 % of the generation capacities and adjusting the generation to 100 %, the average annual 
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power production is slightly overestimated by about 0.60 %. Overall, with the corrected S-
HYPE time series and the spatially explicit hydro power data set it is possible to reproduce 
historic hydro power generation very well. However, due to the large storage capacities of 
Swedish hydro power plants, they can be operated very flexibly to respond to demand 
fluctuations or outages of other power plants. Therefore, the corrected S-HYPE time series, 
which already incorporates past hydro power generation and thus implicitly also the past 
power generation portfolios, are not applicable for assessing fundamentally different power 
mixes, as we do in our fully renewable power scenarios. 

Figure A8: Monthly historic and simulated hydro power generation in TWh. The shype35y_corrected time series 
accounts for the effect of historic hydro power generation on river runoff, while shype35y_natural shows the 
theoretic hydro power generation without hydro reservoirs or any other human interference 

For this task we use the S-HYPE natural runoff time series in an optimization model that adjusts 
hydro power generation so that the residual load balancing demand is minimized (see section 
2.4). The aim of this approach is to allow hydro power generation to be adjusted flexibly to 
new residual load patterns that result from VRE fluctuations, while accounting for interannual 
and seasonal runoff variations and guaranteeing that operational restrictions are taken into 
account.
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Figure A9: Monthly historic and optimized hydro power generation in the reference scenario. The historic hydro 
power generation [32] and the reference scenario time series is based on the optimization model for minimizing 
residual load demand.

The optimized hydro power generation in the reference scenario, which assumes historic 
generation capacities and load, should therefore look similar to the historically observed ones. 
The comparison of simulated and historic annual hydro power generation between 2008 and 
2014 show a high correlation of 0.944 (Figure A9).
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A5 Sensitivity analyses of weight factors
We have assessed varying weight factors using the objective function. Figure A10 shows that 
the absolute levels of the weights do not matter, but the relative ranking does. E.g. when 
hydro weights grow higher than thermal weights (red-line at hydro weights of 2), thermal 
generation is increased. As long as hydro weights are equal to or lower than thermal weights, 
dispatch does not change. Even changing the weight for loss-of-load by an order of magnitude 
(from 10 to 100) does not change dispatch. 

Figure A10: Sensitivity analysis of weight factors of the objective function


