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Abstract

The Nonlinear Finite Element Method is a widely used numerical technique to
solve engineering problems associated with nonlinear solid continua. Often, real-life
engineering problems require immense computational resources. Thus, raising the
computational efficiency of the method is a highly desirable goal. A nonlinear global
system solver requires constant reevaluation of the element-level internal forces to-
gether with the nonlinear stiffness matrix. For this purpose, commercial software
employs the standard numerical integration based on the quadrature method (e.g.,
Gauss points). Consequently, computational complexity increases linearly with the
number of integration points. Therefore, the derivation of alternative, highly effi-
cient integration approaches is essential, and this is the main goal of our study.

Herein, we propose new element-level integration formulae of the internal forces
and of the nonlinear tangent stiffness matrix. Our formulae admit the “full” order
integration requirement. Moreover, we demonstrate analytically that the computa-
tional cost of the proposed schemes is roughly equivalent to One-Point quadrature,
irrespective of the element type (e.g., tetrahedral, hexahedral, wedge, etc.,) and ir-
respective of the element order (e.g., 8-node brick, 20-node brick, etc.,). Code im-
plementation of our formula follows a rather familiar, standard, manner. However,
prior to code implementation, it requires sets of coefficients/special weights to be
pre-computed or adopted from the literature. Undoubtedly, the proposed integra-
tors require significantly more coefficients than the standard numerical integration.

Recently, the Semi-Analytical approach has been employed to produce highly effi-
cient case-specific integrators for the mass matrices. Here, we generalize and expand
this approach to all element-level integrals. To this end, the integrands are decom-
posed into two multiplicative parts. The first part includes kinetic and kinematic
functions which admit “full” integration criteria for one sampling point (e.g., the
centroid). While the second part consists of mesh-independent and displacement-
independent polynomial functions. We integrate the above polynomials analytically,
to derive coefficient sets. Those coefficients are incorporated in the resulting scheme’s
subroutine. In other words, we take advantage of the mathematical structure of the
integrand to produce a highly efficient yet case-specific integration formula (e.g., our
internal forces rule can’t be used for the mass of stiffness matrices and vice versa).
Importantly, code implementation doesn’t involve either meta-programming or a
computer algebra system for explicit (closed-form) code generation.
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1 Introduction

Nonlinear Finite Element Method (NFEM) is the most widely used numerical tool
to solve engineering problems associated with nonlinear continua. Often, practical
problems require extensive computational resources. Therefore, raising the compu-
tational efficiency of the overall procedure is highly desirable.

Fundamentally, NFEM requires a nonlinear solver (e.g., Newton/modified Newton-
Raphson, etc.) to achieve a global system solution. Such a solver is required to update
the internal and external forces together with the nonlinear stiffness matrix every com-
putational step i.e., the solution procedure goes back and forth between element-level
computations and global system iterations. All element-level evaluations, such as the
mass matrix, internal forces, and the nonlinear tangent stiffness matrix, require in-
tegration in the element domain. Most commonly, those are performed using the
Standard (ST) numerical integration, based on a specific quadrature scheme. Thus,
computational complexity grows linearly with the number of integration points, which
increases dramatically the element formation cost. The goal of our study is to radically
improve element-level integration efficiency for the solid NFEM. We achieve this goal
by proposing new integration formulae, based on the Semi-Analytical approach. The
proposed method is sufficiently general i.e., it addresses all isoparametric solid ele-
ments of general order, including both, geometrical and material non-linearity.

It is known that increasing the efficiency of element-level integration yields signif-
icant CPU time savings [1]. Noticeable savings can be achieved by ”Closed-Form”
code generation using Computer Algebra Systems CAS [28, 1]. For the linear elastic-
ity and regular shape elements (straight-sided), a combination of analytical integration,
by means of CAS, together with closed-form code generation, yields dramatic im-
provements in CPU time (e.g., [29, 30]). In addition, special structural formulations
based on Cosserat Point Element (CPE) theory, technically do not require integration
(e.g., [22, 21]). Yet, to the best of our knowledge, for a fully nonlinear FE, there is no
alternative systematic approach to dramatically over-perform the standard numerical
integration. Namely, there is no alternative method, which can be consistently ap-
plied to all solid elements having a general constitutive behavior i.e., whether 1D, 2D,
or 3D elements, arbitrary shape & order (e.g., quadrilateral, triangular, bricks, tetra-
hedral, wedges, etc.,). This is the gap we attempt to close in the present contribution.

Recently, the Semi-Analytical (SA) approach has been employed to derive highly
efficient integration formulas for the consistent/lumped mass matrices [15, 17, 18].
We generalize this method and specialize it for the nonlinear tangent stiffness matrix
and the internal forces. The resulting integration formulae are case-specific, i.e., a
unique formula for the mass matrix, an additional unique formula for the internal
forces, and the last one for the nonlinear tangent stiffness matrix. Yet, the result-
ing schemes are sufficiently general, in the sense that the same formula addresses all
isoparametric solid elements of an arbitrary order (whether a wedge, tetrahedral, hex-
ahedral, etc.,).

SA integration presented here, admits the “full” order integration requirement.
Specifically, it is exact for a regular shape and a constant strain element, while ap-
proximation for all the other cases. Importantly, computation-wise, the SA formulae
are roughly equivalent to the Standard (ST) One-Point quadrature, regardless of the
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element order! Thus, the higher the element order, the more pronounced the effi-
ciency advantages of our schemes.

Throughout the study, we explicitly consider the isoparametric element and a Total
Lagrangian formulation. Both of those choices are widely used and accepted. There-
fore, they serve as a good framework to demonstrate the main ideas of the contribu-
tion. However, the SA method is not restricted by those choices. Incorporation of
the Updated Lagrangian formulation follows the same guidelines.

Subroutine implementation of the proposed integration rules, do not require spe-
cial programming strategies such as meta-programming or the use of CAS for closed-
form code generation. The resulting formulae take a familiar form, their code imple-
mentation follows conventional tactics.

Organization of the paper is as follows: section (2) recalls the essential well-established
element-level kinematic and kinetic relations and formulae, for one to be able to follow
through later derivations. Then, subsection (2.1) recalls the Standard (ST) numerical
integration approach. Next, subsection (2.2) recalls and discusses the ”full” order vs.
the ”reduced” order integration concepts. Section (3) begins with the general concept
of the Semi-Analytical approach; it presents the guidelines that we follow to derive the
proposed formulae. In addition, computational equivalence between the full integra-
tion SA scheme and the ST One-Point quadrature is briefly discussed. Subsections
(3.1),(3.2) and (3.3) contain derivation of the SA integration schemes for the mass ma-
trix, internal forces and the nonlinear tangent stiffness matrix respectively. Finally,
section (4) discusses, highlights, and summarises the important points and takeaways
of the study.

2 Background

In this section we recall the basics of the well-established Total Lagrangian (TL)
formulation. In particular, we end up with expressions for the consistent mass matrix,
internal forces and the nonlinear tangent stiffness matrix. Those require numerical
integration. Subsection (2.1) emphasizes the standard quadrature-based numerical
integration. Then, subsection (2.2) recalls the ”full” and ”reduced” order integra-
tion approaches. Even though we confine ourselves to isoparametric TL formulation
throughout the section and the study, the proposed SA approach is not limited by
those constraints. We keep this section extremely brief since all of the below are well-
established relations that can be found in at least several great books e.g. [42].

Within the framework of the isoparametric concept, the displacement field u is ap-
proximated in the element domain by u ≈ ue =

∑n
I=1 NI(ξ)uI(t) where n denotes

the number of element nodes, ξ = (ξ, η, ζ) stand for the local coordinates, NI (ξ),
(I = 1, .., n) are the shape functions, uI represent the nodal displacements, while Ωe

refer to the initial element configuration. Position vectors in the initial and current
configurations are denoted by X and x. They are interpolated in the element domain
using the same shape functions

Xe =
n∑

I=1

NI (ξ)XI , xe =
n∑

I=1

NI (ξ)xI (t) (1)
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Where XI and xI stand for respective nodal positions. Shape functions NI usu-
ally take a rather simple form, most frequently a polynomial interpolation. For
example, for a standard twenty-node hexahedral element, the first shape function
is given by N1 (ξ) = −1

8
((1− ξ) (1− η) (1− ζ) (2 + ξ + η + ζ)). For later conve-

nience, we emphasize that the shape functions are mesh & displacement-independent
NI ̸= NI (XJ), NI ̸= NI (uJ(t)) One can easily analytically differentiate those func-
tions with respect to local coordinates. Also, those functions and their derivatives can
easily be analytically integrated in the parent element domain (parametric space) to
result in a number. Further down the line, we’ll use those numbers as coefficients.

It is important to distinguish between differentiation of NI (ξ) with respect to local
and global coordinates

∇ξNI (ξ) =


NI;ξ (ξ)
NI;η (ξ)
NI;ζ (ξ)

 =


NI;1

NI;2

NI;3

 , (I = 1, .., n) (2)

where semicolon is used to denote partial differentiation with respect to local coordi-
nates e.g. NI;3 = ∂NI

∂ζ
. Similarly, gradients with respect to initial global coordinates

X1, X2, X3 or current global coordinates x1, x2, x3 are given by

∇XNI =


NI,1

NI,2

NI,3

 , ∇xNI =


NI,1

NI,2

NI,3

 , (I = 1, .., n) (3)

where comma represents partial differentiation with respect to global coordinates. The
transformation between the gradients of different configurations is given by

∇XNI = J−T
e ∇ξNI , ∇xNI = j−T

e ∇ξNI , (I = 1, .., n) (4)

where with the help of (1), entries of JACOBI matrices Je = GradξXe = ∂Xe

∂ξ
and

je = Gradξxe =
∂xe

∂ξ
take the next form

[Je] =

 X1;ξ X1;η X1;ζ

X2;ξ X2;η X2;ζ

X3;ξ X3;η X3;ζ

 , Xm;k =
n∑

I=1

NI;kXm,I , (m, k = 1, 2, 3) (5)

[je] =

 x1;ξ x1;η x1;ζ

x2;ξ x2;η x2;ζ

x3;ξ x3;η x3;ζ

 , xm;k =
n∑

I=1

NI;kxm,I , (m, k = 1, 2, 3) (6)

Relations (4) require inverse transform of the above 3 × 3 matrices (5),(6). Inverse
of an arbitrary real square 3 × 3 matrix A is given by A−1 = 1

det(A)
adj (A), where

determinant and adjoint matrix follow simple rule

det (A) = a1,1a2,2a3,3 − a1,1a2,3a3,2 − a1,2a2,1a3,3+

a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,3a2,2a3,1

Adj (A) =

 a2,2a3,3 − a2,3a3,2 −a1,2a3,3 + a1,3a3,2 a1,2a2,3 − a1,3a2,2
−a2,1a3,3 + a2,3a3,1 a1,1a3,3 − a1,3a3,1 −a1,1a2,3 + a1,3a2,1
a2,1a3,2 − a2,2a3,1 −a1,1a3,2 + a1,2a3,1 a1,1a2,2 − a1,2a2,1

 (7)
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thus we can write[
J−1
e

]
=

1

Je
Adj (Je) ,

[
J−T
e

]
=

1

Je
AdjT (Je) ,

[
j−T
e

]
=

1

je
AdjT (je) (8)

Je = det (Je) , je = det (je) (9)

In terms of (5),(6),(8),(9) deformation gradient Fe is given by

Fe = jeJ
−1
e , JF

e = det(Fe) =
je
Je

(10)

The nonlinear strain-displacement 6× 3 matrix BI , (I = 1, .., n) is given by

BI =


F1,1NI,1 F2,1NI,1 F3,1NI,1

F1,2NI,2 F2,2NI,2 F3,2NI,2

F1,3NI,3 F2,3NI,3 F3,3NI,3

F1,1NI,2 + F1,2NI,1 F2,1NI,2 + F2,2NI,1 F3,1NI,2 + F3,2NI,1

F1,2NI,3 + F1,3NI,2 F2,2NI,3 + F2,3NI,2 F3,2NI,3 + F3,3NI,2

F1,1NI,3 + F1,3NI,1 F2,1NI,3 + F2,3NI,1 F3,1NI,3 + F3,3NI,1

 (11)

Importantly, in the above, shape functions are differentiated with respect to global
X1, X2, X3 coordinates. Next, GIJ , (I, J = 1, .., n) matrix is recalled

GIJ = (∇XNI)
T Se (∇XNJ) (12)

GIJ = [NI,1, NI,2, NI,3]
T

 S11 S12 S13

S21 S22 S23

S31 S32 S33


NJ,1

NJ,2

NJ,3

 , (13)

where Se is the Second Piola-Kirchhoff stress tensor. Following (12) it becomes ap-
parent that differentiation in the above (13) is done with respect to global coordinates
X1, X2, X3.

Finally, we recall the expressions, for efficient integration of which, the present
work exists i.e. - the consistent mass matrix, internal forces, and the nonlinear tan-
gent stiffness matrix. External forces are omitted since their SA treatment follows
identical guidelines proposed below and is quite immediate.

The consistent mass matrix is given by

MIJ =

∫
Ωe

ρ0NINJ dΩe =

∫
Ω□

ρ0NI (ξ)NJ (ξ) Je (ξ;XK) d□

(I, J,K = 1, .., n)

(14)

where ρ0 denotes the initial density. Since the mass matrix does not depend on the
displacement, it needs to be evaluated only once. In that sense, even though its effi-
cient evaluation is desirable, it is hardly the ”bottleneck” of the overall procedure. On
the contrary, a nonlinear solver (such as Newton/Newton-Raphson) requires the in-
ternal forces and the nonlinear stiffness matrix to be evaluated every step of the global
system solution. This, in turn, makes their integration efficiency improvements ex-
tremely sought after!

The internal forces RI are given by

RI =

∫
Ωe

BT
I SedΩe , (I = 1, .., n) (15)
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whereas here, Se is the Voigt notation of the Second Piola-Kirchhoff stress tensor S
that is Se = {S11, S22, S33, S12, S23, S13}T .

The nonlinear tangent stiffness matrix KT IJ is given by

KT IJ =

∫
Ωe

[
GIJI +BT

I DBJ

]
dΩe , (I, J = 1, .., n) (16)

where for 3D problem, I is a 3 × 3 identity matrix, strain-displacement matrix BI

is given by (11), GIJ is detailed in (13), D stands for incremental constitutive tensor
(which is merely a 6 × 6 Voigt notation of incremental constitutive tensor C = 2∂S

∂C
,

with C being the right Cauchy–Green deformation tensor C = F TF ). The above
(16) contains two additive terms. The first, associated with GIJ is sometimes referred
to as the ”initial stress” or the ”geometric” stiffness matrix. While the other can be
referenced as the ”material” stiffness matrix. Both of them contribute to the non-
linearity of KT IJ which makes analytical integration impossible.

2.1 Standard (ST) Numerical Integration

The integrand of the internal forces (15) and of the tangent stiffness matrix (16) is
a nonlinear function, which generally speaking, can not be integrated analytically in
the element domain Ωe. Thus, an approximate integration approach must be adopted.
Most commonly, commercial FE packages utilize the Gauss quadrature or a similar
integration rule based on the use of integration points (e.g. [4, 37]).

Transformation of the volume element admits dv = det(F )dV . Hence, integration
in the element domain admits dΩe = Jed□ where d□ is a parameter space. Consider an
arbitrary tensor/vector valued function A (ξ;XI ;uJ ; c0, .., ck), (I, J = 1, .., n), where
c0, .., ck is a set of material properties. Then, an integral of A in the element domain
is given by

Ā =

∫
Ωe

A dΩe =

∫
Ω□

A (ξ;XI ;uJ ; c0, .., ck) Je (ξ;XK) d□ =

∫
Ω□

AJe dξdηdζ

(I, J,K = 1, .., n)

In particular, for the hexahedral element it becomes
∫ +1

−1

∫ +1

−1

∫ +1

−1
AJe dξdηdζ. Fol-

lowing the standard numerical integration, the approximation of the integral takes the
form

Ā
ST
≈

nip∑
q=1

WqA (ξq;XI ;uJ ; c0, .., ck) Je(ξq;XK) , (I, J,K = 1, .., n) (17)

where nip is the number of integration points, Wq, (q = 1, .., nip) denotes weights as-
sociated with each point – ξq = (ξq, ηq, ζg). It follows immediately from the above
(17), that the higher the nip the more additive terms are included in the summation.
Therefore - computational complexity grows linearly with nip.

Each quadrature has its order (rank), i.e. scheme of order n will integrate poly-
nomial functions of order n exactly. Typically, the higher the quadrature order the
higher nip, the higher the computational cost of element formation. As a general
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consideration, it is important to lower the element formation cost by lowering nip

as much as possible. The most computationally inexpensive integration rule, using
which the global system converges (performs sufficiently well), is desirable.

2.2 "Full" Order Integration

Following the previous subsection (2.1), an important question arises - What order
of quadrature should one use to evaluate (14),(15),(16)? The higher the scheme’s or-
der the higher the nip and therefore the element formation cost. The lower the order
and nip, the less accurate and rank-deficient matrices become. Thus, two important
integration strategies have been discovered/formulated and widely adopted — ”Full”
order and ”Reduced” order integration. i) Full order integration requires quadrature
order to match the integrand order provided regular shape and constant strain el-
ement. ii) Reduced order integration happens when quadrature order is lower than
full integration. While full integration could be associated with its own problems such
as over-stiffness, the reduced integration results in even worse outcomes such as rank
deficient element stiffness matrix, which leads to instability, spurious singular mode,
zero-energy, or hourglass mode.

As a general guideline, the reduced integration is not recommended for a higher
order elements ((44)pp.62). Broadly speaking, full integration is the default choice, a
convergence necessity. There is no need to go higher than full order due to computa-
tional costs and still present over-stiffness problems. Also, reduced order integration,
if used for linear elements, usually employs a special stabilization technique. Herein,
we’ll propose a full integration formula at a significantly lower (than reduced) compu-
tational cost.

Now it is important to recall and detail the practical mathematical meaning of ”reg-
ular shape” & ”constant strain” element. i) Regular shape element has several equiv-
alent statements such as - constant metric element or constant Jacobian element i.e.
Je (ξ,XI) = const = Je (XI), (I = 1, .., n), where XI is the initial nodal positions
(mesh). Therefore, given a regular shape element, one can sample the Jacobian at the
centroid and result in an exact value Je|reg. shape = Je|centroid = J0

e . Visually, for an
8-node brick element, this is true as long as an element is parallelepiped (however
skewed). For a 20-node hexahedral element parallelepiped shape, all middle nodes
must be in the middle of the edges. In fact, for all higher-order elements, the edges
are straight lines while middle nodes are in the middle of the edges. For a wedge
element triangular bases are equal and parallel to each other etc. In addition, it im-
mediately follows that Je given by (5) is also coordinate independent Je|reg. shape = J0

e ,
together with its inverse J−1

e |reg. shape = 1
J0
e
Adj (J0

e ) = J0 −1
e , (see (8)).

ii) Constant strain implies that the strain tensor is coordinate independent, i.e. the
deformation gradient (10) is also constant Fe = Fe|centroid = F 0

e . With the help of
(10) and (6) it must hold that je = j0e , F

0
e = j0eJ

0 −1
e . In addition, for a constant strain

element, the stress tensor must remain constant so that Se|Fe=const = Se|centroid = S0
e .

In summary, an integration formula that admits full order integration, is exact pro-
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vided the below conditions and is an approximation for all the other cases

Je|regular shape = const = J0
e , Fe|constant strain = const = Fe|centroid = F 0

e

Je|Je=const = J0
e , J−1

e |Je=const = J0 −1
e =

1

J0
e

Adj
(
J0
e

)
, je|Fe=const = j0e

Se|Fe=const = Se|centroid = S0
e

(18)

here and throughout the text, the upper index ”0” denotes evaluation at the centroid.

3 Semi-Analytical (SA) Integration

In this section, we detail the general concept behind our SA approach to element-
level full order integration. Then, we discuss the computational cost of the resulting
formula. Next, in subsections (3.1),(3.2),(3.3) we specialize it to the element mass
matrix, the internal forces and the nonlinear tangent stiffness matrix respectively.

Consider an integral

Ī =

∫
Ωe

I dΩe =

∫
Ω□

I(ξ;XI ;uJ ; c0, .., ck)Je (ξ;XK) d□ , (I, J,K = 1, .., n) (19)

An integrand I can be either a tensor/vector/scalar-valued function, which depends
on the local coordinates ξ = (ξ, η, ζ), initial nodal positions (mesh) XI , nodal displace-
ments uJ(t), a set of material properties c0, .., ck. Most commonly, integrand I is a
nonlinear function with respect to local coordinates ξ as well as to other arguments.
Our goal is to derive an approximate formula for the above integral (19), such that it
will be exact for (18), i.e., admit full integration (see subsec. (2.2), while approximate
for all the other cases. To this end, we
i) we decompose the integrand of the above (19) to two multiplicative parts

I = I1 (ξ;XI ;uJ ; c0, .., ck) I2 (ξ)

Ī =

∫
Ω□

Je (ξ;XK) I1 (ξ;XI ;uJ ; c0, .., ck) I2 (ξ) d□ , (I, J,K = 1, .., n)
(20)

Given regular shape & constant strain element (18), the first part JeI1 can be exactly
evaluated using ONE sampling point (JeI1) |centroid = J0

e I
0
1 . The second part I2 (ξ)

consists of mesh-independent and displacement-independent polynomials with re-
spect to local coordinates ξ. Importantly, even though the integrand I is a nonlinear
function with respect to local coordinates ξ, provided (18), the above decomposition
(20) is always possible, as is revealed by careful examination of the mathematical struc-
ture of the element-level computations.
ii) Thus, SA approximation of (20) takes the form

Ī
SA
≈ Ī| Je=const

Fe=const
= J0

e I
0
1

∫
Ω□

I2 (ξ) d□

Thus, the integration rule becomes

ĪSA = J0
e I

0
1I

∗
2 , I∗2 =

∫
Ω□

I2 (ξ) d□ (21)
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Importantly, I∗2 is merely a number/coefficient/weight. Prior to code implementa-
tion of the above formula (21), I∗2 have to be adopted from the literature (if exists) or
to be pre-computed. One needs to pre-compute it only once since it is both mesh-
independent and deformation-independent. Practically, I2 is either a shape func-
tion/shape function multiplication (e.g. NI (ξ), NINJ ), or its derivative/derivatives
multiplication (e.g. NI;2 =

∂NI

∂η
or NI;2NJ ;3 ). In some sense, I∗2 resembles weights Wq,

(q = 1, .., nip), from the standard approach (17). However, weights Wq are associated
with a specific integration point in a particular quadrature; weights are not related to
the integral being evaluated. To the contrary, I∗2 makes sense only for a case-specific
integrator (21), since I2 (ξ) is a specific polynomial function which appears in the in-
tegrand decomposition (20).

Why do we loosely state that roughly speaking, the SA approach is computationally
equivalent to the One-Point quadrature? Originally, we are evaluating (19), which can
be tackled by numerical integration (17) in a straightforward manner

Ī =

∫
Ω□

JeI d□
ST
≈ W1J

1
e I

1 +W2J
2
e I

2 + ..+Wnip
Jnip
e Inip (22)

where Jq
e = Je|ξq , Iq = I|ξq , (q = 1, .., nip). Alternatively, one can apply the ST

scheme to the decomposed form (20) of the same integral (19) i.e.

Ī =

∫
Ω□

JeI1I2 d□
ST
≈ W1J

1
e I

1
1I

1
2 +W2J

2
e I

2
1I

2
2 + ...+Wnip

Jnip
e I

nip

1 I
nip

2 (23)

where Iq1 = I1|ξq , I
q
2 = I2|ξq , (q = 1, .., nip). Clearly, both (22) and (23) produce the

same result, however, strictly speaking, computationally they are not exactly the same.
Our full integration SA formula (21), i.e., ĪSA = J0

e I
0
1I

∗
2 is equivalent to one additive

term in the above (23). In summary, our formula (21) is equivalent to One-Point
of (23), while each additive term in (23) is roughly equivalent to each term in the
original (22).

What order quadrature should one use to evaluate (19) using the full integration
ST approach? Following (20) and (18), integral (19) is given by

Ī| Je=const
Fe=const

=

∫
Ω□

J0
e I

0
1I2 (ξ) d□

Apparently, the exact evaluation of the above, requires quadrature order to match the
order of I2 (ξ). For I2 of the 2nd order vs. the 4th order, the number of integration
points nip can vary quite significantly, especially in 3D. While for the SA approach,
the order of I2 is irrelevant to the computational complexity of (21), since I∗2 is still
one number. Thus, the higher the order of I2 the higher the computational efficiency
advantage offered by the proposed method.

Regarding code implementation. Often, Semi-Analytical work in the field is asso-
ciated with meta-programming or extremely lengthy (yet efficient) codes generated
by CAS (closed-form approach). None of this is necessary for the proposed method.
To illustrate, following the present case, the integration formula (21) is similar to the
one-point of the ST quadrature use (22). The very same is true regarding subroutine
implementation.



10

Why the proposed formula (21) to evaluate (19) is so efficient with respect to (23)?
For instance, for I2 (ξ) of a 6th order in 3D, one might need dozens of integration
points (depending on the domain), while the proposed (21) is still equivalent to only
one. Quadrature (cubature), such as Gauss points, is well established, the most effec-
tive, and the most general integration scheme, reaching far beyond mechanics and
NFEM. They are over-performed due to the highly specialized nature of the pro-
posed formulas. Our approach exists in the element-level NFEM domain. It relies
strongly on the existence of the decomposition (20), which in turn has meaning due
to the existence of the full integration conditions (18), and the coefficients are pre-
computed using analytical integration, which is possible once again due to unique
nature of the integrand. It is important to emphasize, that SA formulas are case-
specific integrators. We combine an essential convergence criteria (18) together with
a special mathematical structure of the (element-level) integrals to analytically decom-
pose the integrand (20). Even though, the resulting formula (21) somehow resembles
the standard approach (22),(23), one can not apply this formula to an integral with a
different structure. For instance, our formula for the nonlinear tangent stiffness ma-
trix (30) can not be used for the mass matrix or the internal forces and vice versa. In
contrast, the standard approach quadrature can tackle a general problem. In addition,
while the standard approach is versatile in terms of rank i.e., one can apply a variety
of distinct quadrature to evaluate a problem (19) with different levels of accuracy, our
SA formula admits the full integration criteria, no less & no more. Luckily, it fits the
demand of a specific problem being tackled in the study.

3.1 Consistent Mass Matrix

Semi-Analytical integration for the consistent and lumped (diagonal) mass matrices
has been thoroughly discussed in [15, 17, 18]. However, herein we omit the higher-
order models and include only the basic One-Point full integration model, which
keeps this contribution complete and coherent. The decomposition (20) of (14) comes
quite naturally

(NI (ξ)NJ (ξ)) (ρ0Je (ξ;XK)) , (I, J,K = 1, .., n)

where the first part ρ0Je is coordinate and mesh-dependent; to admit the full integra-
tion (18), it is sufficient to evaluate it at the centroid ρ00J

0
e . The second part NINJ is a

mesh-independent & displacement-independent polynomial function, the analytical
integration of which results in a set of numerical coefficients/weights

MSA
IJ = M0

IJρ
0
0J

0
e , M 0

IJ =

∫
Ω□

NINJ d□ , (I, J = 1, .., n) (24)

where a set of coefficients M0
IJ is either adopted from the literature or pre-computed

once prior to subroutine implementation. Each element type results in a different
set. For example, shape functions NI of a 10-node tetrahedral element, are quadratic
with respect to the local coordinates (e.g., N7 = 4η (1− ξ − η − ζ) ). Coefficients M0

IJ

are pre-calculated following the rule M0
7 8 =

∫ +1

0

∫ 1−ζ

0

∫ 1−ζ−η

0
N7N8 dξdηdζ = 2

315
, see

[11].
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3.2 Internal Forces

Internal forces are given by (15). With the help of (11) & (4), strain-displacement
matrix BI , (I = 1, .., n) is decomposed such that

BI =
3∑

r=1

B̂rNI;r , (I = 1, .., n)

B̂r =
1

Je


F1,1ar,1 F2,1ar,1 F3,1ar,1
F1,2ar,2 F2,2ar,2 F3,2ar,2
F1,3ar,3 F2,3ar,3 F3,3ar,3

F1,1ar,2 + F1,2ar,1 F2,1ar,2 + F2,2ar,1 F3,1ar,2 + F3,2ar,1
F1,2ar,3 + F1,3ar,2 F2,2ar,3 + F2,3ar,2 F3,2ar,3 + F3,3ar,2
F1,1ar,3 + F1,3ar,1 F2,1ar,3 + F2,3ar,1 F3,1ar,3 + F3,3ar,1


(25)

where arn, (r, n = 1, 2, 3) are entries of the adjoint matrix arn = [Adj(Je)]rn, see (7).
Using the above (25), the integrand of (15) takes the form

∑3
r=1 JeB

T
r SeNI;r (ξ),

which admits (20) given the (18). Then, the SA approximation to (15) takes the
next form

RSA
I =

3∑
r=1

J0
e B

0T
r S0

e N
∗
Ir = J0

e

(
B0T

1 N∗
I1 +B0T

2 N∗
I2 +B0T

3 N∗
I3

)
S0

e

N∗
Ir =

∫
Ω□

NI;r (ξ) d□ , (I = 1, .., n , r = 1, 2, 3)

(26)

where N∗
Ir is a set of coefficients/weights having real numerical values. Those coeffi-

cients have to be one-time pre-computed prior to code implementation e.g. for a 20-

node brick element N16;3 = ∂N16

∂ζ
=

(ξ−1)(η2−1)
4

, N∗
16 3 =

∫ +1

−1

∫ +1

−1

∫ +1

−1
N16;3 dξdηdζ =

4
3
.

3.3 Nonlinear Tangent Stiffness Matrix

The nonlinear tangent stiffness matrix is given by (16). The integrand consists
of two additive terms, the first often referred to as the ”geometric” or ”initial stress”
stiffness matrix, while the other as the ”material” stiffness matrix. Following the SA
approach described in Sec. (3), we decompose both additive terms. GIJ is given by
(12), with the help of (4) & (13), GIJ , (I, J = 1, .., n) is rewritten as

GIJ =

[
1

J2
e

[Adj(Je)] [Se]
[
AdjT (Je)

]]
•
[
(∇ξNI) (∇ξNJ)

T
]

(27)

where bold dot between two matrices of the same rank (3 × 3 ) denotes scalar prod-
uct (double contraction) i.e. C = [A] • [B], C =

∑3
m,n=1[A]mn[B]mn. Hence, SA

approximation takes the next form∫
Ωe

GIJdΩe
SA
≈ GSA

IJ =
1

J0
e

[
Adj(J0

e )
]
[S0

e ]
[
AdjT (J0

e )
]
•
[
K0

IJ

]
[K0

IJ ]mn =

∫
Ω□

NI;mNJ ;nd□ , (I, J = 1, .., n , m, n = 1, 2, 3)
(28)
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Once again we accentuate, coefficient matricesK0
IJ =

∫
Ω□

(∇ξNI) (∇ξNJ)
T d□ are ei-

ther one time pre-computed prior to in code implementation or adopted from the lit-
erature (if exist). Coefficient matrices are element-specific due to the element-specific
nature of the shape functions and integration domain.

Decomposition of the ”material” part, uses representation (25). Accordingly, the
integrand becomes

BT
I DBJ =

3∑
r,t=1

BT
r DBt (NI;rNJ ;t) , (I, J = 1, .., n) (29)

thus, full-order SA approximation takes the form∫
Ωe

BT
I DBJ dΩe

SA
≈

3∑
r,t=1

J0
eB

0 T
r D0B0

t

[
K0

IJ

]
rt

Finally, the overall SA approximation of fully integrated (16) is given by

KSA
T IJ = GSA

IJ I +
3∑

r,t=1

J0
eB

0 T
r D0B0

t

[
K0

IJ

]
rt

, (I, J = 1, .., n) (30)

where GSA
IJ is given by (28).

4 Discussion and conclusions

Currently, commercial FEA software packages, mostly use the standard numerical
integration for element mass matrix, internal forces, and the nonlinear tangent stiff-
ness matrix. For example, ANSYS adopts a 14-point quadrature to evaluate the mass
and stiffness matrices of the 20-node hexahedral element, while ABAQUS adopts a
27-point quadrature for full and 8-point scheme for reduced integration. Clearly,
the more integration points the higher the element formation cost. In this study, we
specialize, for the first time, in the recently suggested Semi-Analytical approach to
derive a new, full-order, integration formulae for element mass & stiffness matrices
plus the internal forces.

Our formulas admit ”full” order integration i.e. they are exact for a regular shape
& constant strain element (18), regardless of an element shape or an order.

Code wise, the suggested schemes (24),(26),(30), are implemented in a conventional
manner. No meta-programming is required; no explicit code generation (closed-
form) by means of the Computer Algebra Systems (CAS) is necessary.

The present contribution is neither restricted by a specific element or an element or-
der nor by a particular constitutive behavior. All solid elements can be implemented,
whether 2D or 3D, whether wedge, triangular, bricks, quadrilateral, tetrahedral, etc.,
whether linearly elastic, hyper-elastic, or other constitutive behavior.

In terms of efficiency, Our formulae are roughly equivalent to One-Point quadra-
ture, regardless of an element order! Subsection (2.1) elaborates on this loose state-
ment.

Throughout the study, we adopt the nonlinear Total Lagrangian formulation. How-
ever, specialization to the Updated Lagrangian formulation follows exactly the same



13

guidelines developed here. Also, external forces are omitted from the study, yet,
given the guidelines, their inclusion follows a straightforward manner. Finally, we’ve
explicitly considered the isoparametric elements, due to their widest commercial ac-
ceptance. Once again, the SA approach can be specialized for other element concepts
if necessary.

The higher the element order, that is, the higher the shape functions order, the
more pronounced the efficiency advantage of the proposed method, see section (3).

The consistent mass matrix (14) is deformation independent. Consequently, it is
sufficient to calculate it only once (24). Therefore, even though its efficient evalua-
tion is desirable, it is hardly the ”bottleneck” of the global nonlinear system solution.
In contrast, the nonlinear stiffness matrix is to be evaluated every step of the global
system solution, which makes its computational efficiency improvements extremely
in demand.

SA formulas (24),(26),(30) contain coefficient sets. Numerical values of those coef-
ficients can be obtained via literature (e.g.[17],[18]) or by one-time pre-computation.
Clearly, those coefficients are element-specific, due to the element-specific nature of
the shape functions and the integration domain. To illustrate, coefficients for a 10-
node tetrahedral element differ from coefficients for a 15-node wedge element.

SA integration rules (24),(26),(30) are case-specific integrators — mass matrix for-
mula (24) cannot be applied to the stiffness matrix (16) or to the internal forces (15)
and vice versa.
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