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ABSTRACT: In [Oluwasanmi A. https://doi.org/10.31224/3065. (2023)], we presented an (holographic) 
algorithmic system for finding polynomial time proofs of both satisfiable and unsatisfiable 3 SAT 
problems and presenting them as differential varieties. In [J.M. Landsberg et al. Linear Algebra and 

its Applications, Volume 438, Issue 2, Pages 782-795 (2013)], the authors have identified holographic 
identities as spinor varieties. In this paper, we combine these insights and represent the solution 
manifold as a spinor space, that is, a spin manifold, along with varieties emerging as spin 
valuations using a form of complex arithmetic that we develop. Unsurprisingly, the spin forms 
that emerge can be associated with a type of algorithmic and relativistic, quantum gravity, which 
is not unlike the actual gravity associated with physical particles. We explore the implied 
gravitational field and also show that its structure is not only convenient for studying physical 
force fields but also can shed proof theoretic insights on several deep mathematical problems by 
encoding their computations as variables associated with the spin cohomology introduced. 
To obtain these results, we first examine the usual syntactical gadgetry invoked in other 

holography papers – variants of Pfaffian circuits - and find them to be inadequate to fully develop 

and associate the quite rigid notion of spin to definite numerical values in high dimensional 

differential space. We then introduce a fine-grained formalism that models the 

selection/deselection process as an algorithmization of a Lie algebra-type flow over a spin moduli 

stack in which the spins then arise as natural quotients of representations of the moduli group. 

 

1. Introduction 

    Valiant introduced the world to holographic computation via matchgates in [3]. [2] extends 

Valiant's methods but shows that it is not necessary to use matchgates to compute the needed 

solutions. Instead, identities occurring along matchgates are shown to be generally Pfaffian and 

take on a Plücker-Grassman form which makes them spinor varieties constructible via other 

means. 

    We recall that in [1], we generate our holographic solutions as differential varieties, embedded 

within a scheme. We can show that this embedding differentially generalizes the Plücker-

Grassman construction and results in a variety valued over an extended form of the complex 

numbers, embedded in hyper-dual space. This variety, like conventional spinor varieties, can be 

shown to be the double cover of a binding force which we equate to gravity. We can show a 

correlation to gravity by demonstrating a full unified field theory where we extend this force of 

gravity by spin analogy to other fundamental forces and show that this theory could be an exciting 

way to compute solutions to equations of physical spacetime. 
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    We reintroduce our solution system here as a system of interacting spins governed by this force 

of gravity – much like an Ising model. The mathematical formalism involved is that of the notion 

of a flow along a derivative of a second-order function – a flow measured as a spin dual functional 

that drives the normed numeric value of the spin (function). 

    Along with spacetime and physical computations, we can also show that some other types of 

mathematical problems can be addressed or at least abstractly modeled with this spin-gravity 

formalism. These ideas will be addressed in the following sections. 

2. Revisiting the Differential Manifold As An Embedding Space 

3. A Picture Of Gravity. 

4. A Completed Cohomology Definition Via A Model Of Solving Integer Factorization. 

5. The Riemann Hypothesis And The Hodge Conjecture. 

6. Conclusions. 

 

2. Revisiting the Differential Manifold As An Embedding Space 

2.1  A Word On Correspondences 

    To establish the notion of spin algorithmically and how it can be measured, we should first take 

a summary look at what is called the program-proof-category correspondence in computing.  

     If we take it that programs evaluate types, proofs reason about propositions and categories 

create morphisms between objects, then it is obvious from our previous paper [1] that these 

three mathematical objects correspond over a topology in a particular algebraic way. Essentially 

these objects generalize Boolean algebra by the Stone representation theorem. In our new 

terminology, we can say that these objects “spin” (evaluate, reason, morph) over the space (field) 

of sets to converge on some particular set composition. 

    In other words, the points on our manifold can be associated with spinors or continuous spin 

particles. This spin can then be viewed as being derived from a functional mapping of a spin path 

to some scalar value. The spinor variety obtained can be shown to be slightly different in flavor 

and complexity from that described in [2] as follows: [2] realizes the varieties as linear functionals 

acting on fermions, but in this article, we enlarge the notion of spin as a linear functional (a line 

of reasoning) which is a full field theory, acting on both (using proof theoretic language), fermions 

(proofs/multiplicative proof fragments) and bosons (propositions/structures of propositions). 

    Having thus established the notion of a spinor, we can now reintroduce our manifold of 

(implicit) functions as a differential spinor field, and we can study the valuation of this field using 

some insights from spin mechanics. 



2.2 The Differential Forms and the Cohomological form 

    We recall that in [1], we proved that certain implicit functions, represented by the dual of their 

coefficients, can be integrated up to a certain limit to determine satisfiability by showing that a 

subset of that dual space (sets of 3 depth sums and less) can either be differentiated down to a 

satisfying solution or not. This differentiation, for satisfiable equations, takes place over the field 

of sums (partial differential equations) of depth 3 and less and each variable is shown to be 

assignable within the bounds of a twice differentiable partial function that solves each equation. 

This is a 2 form σ2, on the tangent space of our main manifold. This makes this manifold a 

symplectic manifold. Notice that the tangent space itself forms a second manifold, with a 1 form 

σ1, of assignments, which makes this manifold, with some dimension counting which we show 

later, a contact manifold. 

 

    Now, we can create a template form for the cohomology of the assignment chains that live on 

the contact manifold, from the perspective of any one particular chain. This is because these 

cohomologies are differentially valued, in some sense. close to étale cohomology, which is 

diffeomorphically valued. At some points during our computation, some prospective 

cohomologies will vanish and the weight on the remaining cohomologies will adjust 

relativistically. Here, relativism is intrinsically tied to an idea we will introduce in the section on 

measures – that solutions are values as eventual distributions, that is as events, in a quantum 

mechanical but relativistic space. In this case, the ring of differential polynomials, itself having 

coefficients in time (to adjust for relativity) becomes the coefficient of its perspective-dependent 

or quantum relativistic cohomology. We can show that this cohomology in its kth index, for n 

variables, from the perspective of any assignment, should take the following form, valued as 

shown in [1] in direct sums: 

    Hk(C(p)) ≅ ⊕n
j=1Hn-k(C(p), D(t ∈ N)(q)) 

    where C(p) is the flow classifying a single solution at every point in some direction and D(q) is 

a twisting (in linear time) coefficient field. Here, we note that the word twisting is meant to have 

a similar meaning to that in which it does in Twistor theory – that this coefficient field creates a 

link between 2 real points in complex space – a demonstration we complete in the section on 

gravity. Note that the size (number of indices) of t here may be equal to n or less.  

 

    The n-kth homology of any particular solution (for a satisfying formula) eliminates the k + 1th 

cohomology component associated with its complement as a set of quotient operations, that is, 

each chain is valued at index k for some (final) direction d as: 

    Hn-k(C(p)  ≅  ⊗nHk+1(C(p))/ ℚd(p) 



    where ⊗n denotes a “new” type of n-structural tensor product of n fields and ℚd(p) is the 

(chiral) reflexive, rational subgroup of the total group Hn(C(p)) that divides Hn(C(p)) into n – 1 

irrational left cosets and 1 rational right coset (which is our solution), in the direction d. The 

tensor product of cohomologies in this case is the tensor product of fields at each point in 

spacetime where each cohomology vector in any direction treats the collection of possible 

cohomologies in other directions as a co-vector form and is thus in a natural vector-covector 

(dualized) tensor product form. The quantities of this product form contribute to the coefficient 

factor and are best compared to (a differential version) the Gromov-Witten invariant formalism 

in standard quantum cohomology. 

    Here it seems a differential version of the Hodge conjecture holds as the eventual and complete 

cohomology associated with each solution is just a Pfaffian combination of its level homologies. 

    We can formalize the above in the following theorem that characterizes the entire space (like 

before) just in terms of the symplectic form. We refer to the process defined in [1] where we 

integrate over all terms up to a depth of 6 as holographic integration.  

    The formal proof of the below theorem and some demonstrations of its applications can be 

taken to be the main object of this paper: 

 

    Theorem 1 

If a formula F has non-zero holographic integral H over n variables, then H is the twisting 

cohomology of a contact variety and is induced by the construction of  a compatible symplectic 

manifold under a ∂-graded ∂𝜕 ̅-ideal for all solutions in the field of solutions of F, where chains 

take graded values in 𝜕 ̅ and their coefficients take values in ∂ under the ∂-algebra fixed by the 3 

dimensional ∂-ideal, with ambient model support in (the extra dimensions of) H. 

 

    This is essentially a symmetric ∂∂ ̅theorem and we can consider the theorem proved when the 

notion of differentiation (split into two different symmetric operators over manifold boundaries) 

has been clarified and this ∂∂ ̅ relation has been demonstrated in our construction of a definite 

spin cohomology. 

 

2.3 Modeling The Distinction Between Fermions And Bosons 

 

    In [1], we presented the solution manifold as a single k-dimensional manifold, where k counts 

just (perfect) matchings, and like we have shown above, ignores the bipartite count on the pairing 

of each (rewritable) clause with an assignment. We will now expand on the bipartite 

decomposition of this manifold into two different and related manifolds in this section. 



 

    Let us recall that matchgates are circuit elements in the original formulation of holography by 

Valiant and they are circuits with a fan-in of 2, taking nodes in a bipartite structure and fan-out 

of 1, outputting edges (perfect matches) connecting these nodes. 

    Let the reader imagine a 2 SAT formula encoded in the holographic formulation from [1]. We 

can solve it with the following linear time algorithm: 

 

i. Generate the initial sums of unassignable statements for clauses in the input 

problem (as described in [1]). 

ii. Combine eligible sums pairwise to form a direct sum of topologies. No need 

to discard sums as no sum will have a depth greater than 2. Repeat for each 

new sum added until no more sums can be added, or two sums contradict. 

iii.  If (ii) completes successfully, perform a random walk over the entire set, that 

is, rewrite every sum IF NOT satisfied. The reader should now see that any 

rewrite will immediately satisfy the underlying clause, that is, the 2 SAT 

satisfaction looks like a simple DIFFERENCE operation. We can say that the 2 

SAT problem has definite circuits: For any assignment, the flow takes us to a 

definite and repeatable end state, thus we say the 2 SAT problem is 

completely algebraic. Note immediately that this is not the same in the 3 SAT 

case, which we say is only differentially algebraic and does not have this direct 

circuit representation. 

    Now, even though a direct circuit representation is not possible with the 3 SAT problem, we 

notice that we still have a bipartite structure that we seem to exploit. This can be described in 

one part as the flow of assignments and in the second part as obstructions to this flow. These 

obstructions are resolved differentially so the entire operation can be reread as a Lie bracket on 

a function fixing coordinate assignments along a flow: 

    f(p) = [p, q] 

Where q is the variable associated with differentiating out unassignable statements and p is the 

flow of assignments generated by this derivation process along p axial coordinates. 

The quantities p and q now live on different manifolds – one fermionic and one bosonic, 

characterized as follows: 

i. A differentiable bosonic contact manifold with a differential 1-form σ1, and a non-

integrable external derivative d(σ1): This records the flow of the assignments and is an 

additive quantity (non-zero). Quantities on this manifold are common to all clauses 

and can be associated with an eventual probability distribution with a norm of 1. This 

we borrow directly from quantum mechanics where observables are probability 



amplitudes, which in our case we differentiate (instead of squaring) to the final 

probability (1) of our selection. These differentiations are the “events” of the physical 

system and are so valued in an “eventual”, quantum manner. Note that this manifold 

is symmetric and has an associated group structure (to be fully identified in the section 

on measures). To accord with the definition of contact structures, we will fit this 

manifold with an extra point at -∞ (the null hypersurface from which bosons arrive). 

This would give our structure 2n + 1 dimensions as needed. 

ii. A differentiable fermionic symplectic manifold with a vanishing external derivative on 

its 2-form: d(σ2): This records the repulsion of non-selections and are a vanishing 

quantity. Quantities on this manifold are specific to clauses and the end quantity 

recorded on this manifold is assigned zero. This manifold naturally has a dimension of 

2n – 1, with first and last points subtracted from the contact manifold. This manifold 

is also symmetric and for satisfiable formulae, these symmetries match up with the 

symmetries of the contact form via a homological mirror (reflection) relation, that is, 

the contact manifold reflects the fermion through a change of planes via torsion. We 

believe this can be directly related to the homological mirror symmetry in physics. 

    Combining these 2 pieces of information, we arrive at the notion of the combined structure as 

two sheaves of groups (2-sheaf) forming a stack that computes equivalence classes (moduli) of 

solution paths, which is, a homotopy equivalence.  

    We can think of this as a reflexive stack characterizing (computing the trace and thus the 

accumulated spin) of a spin group as a differentially complex (p,q) differential form. We stress the 

term, differentially complex, as the p (bosonic) holomorphic coordinates are “differentially” 

wedged to the q (fermionic) obstructions. This gives the form a second-order differential form – 

as we differentiate the fermions in time, the differentials obtained are used to differentiate 

bosons in space, and the values that the bosons take further restrict how much we can 

differentiate along time – a classic picture of gravity.  

    The two manifolds we have just described can be said to form components of the tensor 

functional of a differential ring with one component in the reals (p forms) and another set of 

components (q forms) valued in the dual numbers [4]. According to [4], this is also a binding 

relation – indices of differentiation of both groups are paired one to one so it can be said that one 

group (the normal subgroup of subtractive elements to the right) witnesses (has an index) the 

interiority of the quotient group (group of assignments). In this case, the quotient group is the g 

character group in relation to the normal subgroup π and is the space of equivalence classes of 

group homomorphisms from π to G and contains the intersection of the spectrum of prime ideals 

of G. 

    g(π, G) = Hom(π, G)/G 

 



2.4 Measures On The Manifolds 

    Now to associate a functional value to every point in the spectrum of points along each 

manifold.  

    We just need to examine the total form to discover that over the entire collection of initially 

assignable values, we have naturally defined an entropy functor that broadly follows Shannon’s 

formulation – we are computing the expectation value of the information content for some 

random variable given by a log distribution. 

    E[-logp(X)]. 

    Where E is the expected value operator. In the case of classical information theory, this would 

be computed as classical Shannon entropy, but in our case, where we have decided to adopt the 

notion of an eventual distribution, this amounts to a form of quantum entropy, that is, we can 

map every moment of the function to a quantized entropy value (we will still look at the explicit 

form of the function under the section of Gravity but for now let us stay with its functional 

valuation) as follows: 

    We treat all assignment values as continuous information amplitudes that vanish as we 

complete the information with a density of 1 (on the p form). Here, a complete set of assignments 

is the information desired. The character group of the assignments mentioned above now takes 

on the same character (pun intended) as the group character taken along a trace (traversal) of 

the group representation of linearly independent (tensor) components and our entropy formula 

takes on the form of Von Neumann Entropy with density norm ρ and total trace summation value 

of 1. 

    tr[-ρlogρ] = -tr[ρlogρ] 

    This establishes the set of assignments as a projective embedding of a number system 

(Grassmannian-type field projective embedding) into a witnessing field of vanishing numbers.  We 

can see here we are performing a type of lifted reasoning where we can associate to our reasoning 

flow, entropy-based numbers associated with the size of the vanishing set, that is, we are 

measuring the differential equivalent of a (hyper) dual number. 

    We now formalize the first of the number systems needed to express our cohomology. 

    We can observe that the points on both manifolds are associated with an alternating sheaf 

algebra, which is differentially graded. Points on the number system swept out by this algebra can 

be associated with the gradient values induced by an inverted Laplacian operator ∇. Also note 

that this gradient goes to zero, much like squaring on a dual number does. We designate this 

number field as the field of dually gradient numbers and represent it as ∇d
ε. 



    With superscript d standing in for numbered differential depth and the subscript ε denoting 

dual differentiation (the symbol ε standing in for dual numbers in the normal literature). This field 

is symmetrized by the normal subgroup and is the coefficient field for our cohomology. 

    We have in essence set up a dual measure space for our bosonic functions taking place over n 

assignments and fermionic functions taking place over m clauses at a maximum differential depth 

of 6. This dual measure is extractable from just the contact manifold as measures on functions. 

All functions in our case belong to groups, which we will now call HU(n, m) for the holographic 

unital group on the bosonic space with function addition and multiplication on a field of 

characteristic ≤ 6 and HO(m, n) for the orthogonal fermion group with function composition 

and exponentiation. On HU(n, m) we have an Ln measure, differentiated down to L0 for as the 

initial distance between the entire field strength/potential carried by (all) gravitons and the final 

strength (0). On HO(m, n), we have an L6 to L0 word distance measure between the partial 

functions satisfying each clause. All distances are between real points (we show a correspondence 

to the real field in the section on integer factorization) twisted through complex space (also 

shown in the integer factorization section). 

    We now just have to complete the cohomology picture by identifying the nature of the number 

field associated with the satisfying unit functions, that is, the HU(n, m) group – elements of the 

chain/quotient subgroup. This number field is normed at 1, but in actual computations, we can 

assume that this norm will be multiplied by a representation weight to yield an integer value 

greater than 1. At this point, Theorem 1 is proved. Before we finalize the picture/concept of 

the described number field, we will first take a short look at the gravitational force implied by our 

spin field. 

 

3 A Picture Of Gravity 

    Recall that in [1], we evaluate the complement of proofs by summing over complementary 

polynomials (to the polynomial we intend to satisfy) and they take on the form: 

    ∑figi  

    Where i is taken to be instances of time supplied by a reflexive differential, which in other words 

can be taken to mean that the algebra being invoked is a reflexively graded algebra where the i 

term comes from applying a differential operator on a quantity. 

    Recall from above we have two interacting manifolds, one in which we directly measure and 

one in which we perform asymptotic lifted reasoning. Both are co-differentiated and in [1] are 

represented by the following term at each index: 

    fn ∂n g(x) / ∂nt 



    With each fn being the algebraic coefficient at a differential level (level sets/co-vectors) and ∂-

ideals split along a space (with functions on directions) and time submanifolds. Each (sub) 

manifold is differentiated along a boundary and the boundary operators form natural Dolbeault 

operators valued as the induced vector valued operator taking directed values in the difference 

between the scalar-valued total (exterior) derivatives taken between the preceding manifold 

M(x) and its lower dimensional boundary M(x +1). 

    That is: ∂(M(x + 1) = d(M(x)) – d(M(x +1)) 

    It can be inferred that the complementary manifold is valued in time and the other quotient 

manifold in space. This time must be a time that is intrinsic to the process, that is, the process 

contains its own regularized clock valued in natural periods. But how might we discover/construct 

such a clock? 

    In [5], Bousso describes a light sheet where light rays from infinity converge on a caustic before 

dispersing. We will employ a similar concept here, which we will call a gravity sheet. 

    The idea is that the entropy on the manifold represents an obstruction to the path of a graviton 

arriving from null infinity and thus records the path of the graviton around that mass. We can 

formalize this in the following way. 

i. All quotients are GIT as well as geometric quotients. 

ii. We can give our selection process the asymptotic geometry of a dynamic 2 sphere by 

imagining that for any variable, any two opposing assignments are two points on an ∞-

diameter circle and all possible circles bound a 2 sphere. This makes perfect geometric 

sense if we once again forget the extra 3 dimensions introduced in [1] and think of our 

algorithm as operating only in the bulk defined by the three-dimensional core subspace 

– then these circles form perfect "fractional" axes on which to take measurements. 

iii. Final assignments represent a direction on the sphere. 

iv. Removal of entropy in any direction reduces the gravitational potential in all opposing 

directions to zero and assures us that the graviton is traveling unobstructed to the 

chosen point. 

v. Since this is a spinor, we are working with a double cover and so at zero complementary 

potential, let us assume a black hole setting, where even the graviton does not travel to 

infinity but “spins” around to complete the cover (in a somewhat unphysical manner). 

The graviton is assumed bound to the particle and oscillates with it ad infinitum. Here, 

we do not make any assumptions about net travel in any direction. The two spin points 

represent the rotation phases of a fermion and are meant to adhere to the Pauli 

exclusion principle abstractly via the induced skew symmetry, that is, for the 2 points A 

and B, AB = - BA AND BA = -AB. One can speak of this as a transposable “quantum” 

identity n – 1 by n – 1 matrix, for a problem with n variables. 



    Here we have the definite topology of knots in space with the indexed set of complements 

forming the undercrossing at each rational point and main assignments comprising the 

overcrossings in the link. It is now easy to see how time can be associated with one manifold and 

space with the other. This comes squarely from a combination of the uncertainty principle and 

Noether’s theorem as follows: 

i. Momentum and position are quantum conjugates so we can only measure one 

accurately.  

ii. In isotropic space, even when we do not know the momentum, we know it is 

conserved, and we know the following hold:  

momentum = mass * velocity  

momentum = mass * (distance/time). 

iii. Since distance is equal in all cases, different masses for a fixed momentum will produce 

different lengths (sizes) of time and thus distances/ lengths of paths through space. 

iv. As implied in (i), we cannot measure this mass directly, but we can measure the 

(conformal) angular distance covered by the lifted measure. 

    Now we have a more complete picture of our computational process as an ensemble of 

information points co-spinning under the influence of mutual gravity. This lets us speak of these 

spins as computing something. We address the question of how much of this artificial gravity is 

like the real notion of gravity in future work. However, we must note here that this picture of 

gravity, in addition to using a bosonic sheet approach from [5] also blends insights from two 

physics-based theories of Holography. On one hand, we have the Celestial Holography program 

[6], which associates 4d gravity matrix (sums) and correlation functions in a conformal (directions 

given in implicit affinely presented angles) field theory living on an infinite sphere and on the 

other hand the ADS/CFT [7] which describes a correspondence between a theory (sums again) 

living in negatively curved (ADS) space and another theory living in (asymptotically in our case) 

flat space. In our case, for ADS/CFT, we formalize the correspondence as an intermediate theory 

living positively curved Riemannian space.  

    To give our theory the same level of physical dynamism as these two other theories, we must 

unbind the graviton from the point as gravitons are assumed to be massless and travel at speeds 

not possible by massive particles. Let us now allow the graviton to travel on to infinity until it hits 

another obstruction. Now we can say conclusively that spin along with mass does compute 

gravity, or the warping of spacetime, like in Einstein’s relativity, but with quantized spin added. 

This is the spin of the graviton, and we must assume that anywhere there is gravitational motion 

in any direction of spacetime, there is a graviton (one or many?) traveling in that direction that 

can pick up that directional expectation and communicate it to other expectations within the 

field. In short, everywhere in spacetime, a graviton is traveling, or that gravitons are spacetime 

itself. The above would give us a non-commutative (group multiplication-wise) gravitational field 

theory with a mass gap/description of the underlying fermions, and we believe that the theory 



should be considered seriously in the discussion of the Yang-Mills mass gap problem, which is 

usually defined over the 2-dimensional complex numbers. 

    A word on compactification here. We mentioned in [1] that the classifying manifold can 

discover all solutions, when they exist, via symmetric categoricity. We refine that statement here 

in the following form – we can discover all solutions because we have applied a symmetric 

compactifying form. In that paper, we introduce the first form of topological compactification, 

explicitly made apparent here – we compactified the 2n + 1 geometry of the contact form into 

separate co-dimensional 6 sums which we then unified into a single 6-dimensional structure + 1 

dimension at -∞. In our visual presentation here and in restricting our algorithm to the 3-

dimensional core subspace, we have introduced a second, fine-grained, geometric 

compactification to 3 dimensions + I dimension at -∞. This second sense is the one in which 

compactification is normally spoken of in the String theory literature in terms of Calabi-Yau 

manifolds. We hope the link with the first type of compactification will be of help here. In short, 

we think the whole project of Holographic Satisfiability can be viewed as an exercise in a broader 

set compactification theory. 

 

4 A Completed Cohomology Definition Via A Model Of Solving Integer 

Factorization 

    Here we address how we can use our new spin model to compute arithmetic functions using 

multiplication as a case in point and how that helps us define the nature of the chain number 

field. 

    A standard reduction of factorization to SAT conjuncts an open multiplication circuit (see 

example below) to a bound equality circuit (to some number C) so that the circuit satisfactions 

are factors (A and B) of the multiplication circuit: 

A x B = C 

   Now let us assume that this circuit has been integrated over holographically using the system in 

[1]. Applying any one of the integer factors will cause the function to vanish, that is, once we 

apply the one factor, we auto-differentiate to its cofactor(s). 

    The above procedure lets us think of our manifold as an implicit division algebra, that is A/B = 

C and A/C = B, where C and B are each the representation weights applied to the contact 

norm. 

    What of factors that do not divide evenly this way? Let us call the circuits that compute 

these types of results, non-integer circuits. For this, let’s imagine an equality circuit D which 

dividing by a string of bits E, leaves the choices of assignments to the remaining variables 



open. If we can represent all integer divisions via normal ABC circuits, then these new 

numbers must extend that field, 

    First, we notice that, along the lines of any computation, even over an infinite field, we can 

always place all points one on one with the natural/rational numbers. The fact, however, that 

some of these numbers are generated by non-integer circuits means in a number system, they 

add on to the natural numbers, allowing ANY particular combination of assignments to 

particular variables be able to take on an infinite set of values . In fact, the true cardinality of 

the allowed numerations is an infinite multiple of the cardinality of natural numbers. These 

associate them with the (constructively ∞-adic) completion of a field, isomorphic to the 

uncountability of the field of real numbers ℝn and the fact that that the operation lives on a 

manifold which eliminates imaginaries (paths that lead to negative evaluations), identifies this 

field at the very least as equal in arithmetical hierarchy to the complex numbers in a 

hyperplane (with torsion to separate different planes of realization of the integers).  In 

essence, one can think of each spin variety living in a different complex plane of a 

rational/countable cutout superposition of planes, and at each step, we multiply all path 

variables that we intend to cancel out by i, making them go to -1, and effectively eliminated 

from the multiplicative projection, which is twisting this variety over the hyperplane. The final 

value of the variety, which we previously associated with the value 1, multiplied by some 

result weight, can now also be written out like a number with many real and many imaginary 

terms, whose total number sums up to n, such that the completed operation appears like 

multiplication by i immediately followed by a conjugation which eliminates out the parts with 

i that have become negative and also multiplies the initial real terms by a constant term from 

their starting fractional values. This action can be viewed as the inverse of convolution over 

the set of possible functions in the space. 

    In fact, the hierarchy, derived from a standard model-theoretic arithmetic hierarchy 

scheme, can be specified as follows: 

1. Δo
0 – Our basic arithmetic circuits that we wish to compute. These are non-alternating (0 

subscripts) and operate directly on base numbers (0 superscripts). 

2. ∏1
1– The set of assignments that invert (multiply) the main path and take a sum over all 

other complementary elements. This alternates with and is dual to ∑
1

1 and operates on 

functions over numbers. It is directly generated by ∑2
2 . 

3. ∑
1
1 – The set of complementary differentiations that sum over all impossible paths and 

invert (multiply) the main path. Dual to ∏1
1 and alternates with it.  It is indirectly 

generated by ∏2
2 . Operates on function over numbers. 

4. Δ1
1 – Our satisfiable evaluating circuit. Combines ∏1

1 and ∑1
1. Operates on function over 

numbers. 



5. ∑
2
2– The extended sum to determine satisfiability. Second order extension of ∑1

1.  

Generates ∏1
1. Alternates on ∏1

1  and  ∏2
2. Operates on second-order functionals 

(functions over functions) over numbers. 

6. ∏2
2 – Extends ∏1

1 into second order – implicit. Alternates on both ∑
1

1 and ∑2
2 indirectly 

generates ∑1
1. Also operates on second-order functionals over numbers. 

7. Δ2
2 – Implicit – combines ∑2

2 and ∏2
2. 

    One can immediately see an arithmetic reason for which our circuit can solve the halting 

problem as shown in [1] – the initial problem lives in a lower hierarchy Δo
0 while the halting 

decider is in the arithmetical second order Δ2
2 and manipulated through the duality between the 

∑
1
1   and  ∑2

2 classes. 

    Now, if we can arithmetize this way, we can go on to designate the field in which the chain 

complex takes values as the field of complex gradient numbers, as they absorb their values 

gradually and symmetrically from the vanishing of the dual-graded numbers and can be 

represented (just like the dually graded numbers) with ∇d
i. 

    Where i now represents differentiation via the imaginary numbers and d explicitly identifies 

the numbers of partial coordinate elements for which we have to eliminate imaginaries 

(differentiating to -1, see [1] for the full field description associated with the coefficient field) We 

can now easily redefine our cohomology equation on any variety at the kth index  as:      

    Hk(∇d
i (p)) ≅ ⊕n

j=1Hn-k(∇d
i (p), ∇d

ε (t ∈ ℕ)(q)) 

    The cohomology can be said to have a twist in complex space, determined in time. A twisted 

Dolbeault cohomology has also been obtained in [8] for the SU(n) group studied in that paper. 

Other papers that use spin bordic and cobordic (surgery over manifolds) approaches to 

computing spins and their cohomology include [9, 10]. The cohomology theory itself can be 

viewed within a traditional algebraic topology frame as a sheaf-based topological K theory, which 

seeks group completions of fields over a differential variety with an associated twisted Galois 

theory. The field to be completed in this case is simply a field of compactifiable sets and as 

discussed previously, we seek the differential group symmetry that compactifies the valid 

assignments sets to the original problem. Recent work on prismatic (structures of rings paired 

with ideals in a p-adic context) cohomology [11] in which derivations are spread out and total in 

some sense, also mirrors our work here. 

    We can see that the differentially complex numbers are finer-grained than the relativistic 

natural numbers and that approaching any integer representation factors through complex steps. 

We can argue informally here that integer representations should take more work/energy to 

resolve than complex ones and any problem which naturally demands that all factors should 

immediately be an integer one should require more spacetime to resolve. If all satisfiable circuits 

represent complex division/factoring this way, then we can assume that among all running times, 

integer circuits will take the longest. A more formal proof may involve a type of dynamic sphere 



packing argument borrowing from and/or enhancing the arithmetization/number system we 

have laid out here. 

    The way in which we have treated this is similar to the concept of complex multiplication, with 

multiplication by the imaginary, over some endomorphism ring and so this formulation may be 

interesting to those working on Hilbert’s twelfth and other related problems. 

 

5 The Riemann Hypothesis And The Hodge Conjecture 
 

    Following up on our insight about how the cohomology at every point in our manifold is a 

differential (Pfaffian) combination of dual space homologies, suggesting a differentially algebraic 

variant of the Hodge theory, we can promote this to a full algebraic version by considering the 2 

SAT case, which we have shown is purely algebraic. We can reason in the following way: 

i. Any satisfiable 3 SAT problem is isomorphic to a 2 SAT problem. 

ii. Since descent down to any solution is one time-step from a * space, the element is a 

proper dual. 

iii. Any differential combination of homologies is isomorphic to an algebraic one, 

constructively as follows: For all satisfiable formulae, we can construct a satisfiable 

sub-formula that consists of ANY two variables from each clause. This resulting 2-SAT 

formula has algebraic assignment values associated to each possible variable 

assignment over n variables. For any 3-SAT formula, we always assign in order, and for 

the first 2 assignments in each 3 clause is algebraic, we can rewrite each clause in our 

3 SAT formula as a “dynamic” 2-SAT formula consisting of the value of the algebraic 

assignment of the first two assignments in each clause (which also is a proposition) 

DISJUNCTED with the 3rd variable (also a proposition). This dynamic 2 SAT for any 

possible assignment order on a 3-SAT formula is also dynamically algebraic – precisely 

the disjunction is isomorphic to a linear difference equation between the algebraic 

values of the first and the second variables in each clause. 

iv. The Hodge Conjecture is trivially satisfied in this finite case. 

    Now let us look at a natural counterpart to the Hodge conjecture in our system, the finite 

Riemann Hypothesis.  

    In the case of the finite Hodge structure, every metric can be rewritten (using the language of 

sheaf theory/cohomology) as a valued stalk fp where f is the initial function germ. These powers 

have to be related to each other by relative number forms which need not themselves be whole 

numbers, which would make p a field characteristic. For the sake of initial abstraction, let us 

assume that these values are whole and are positive integers.  The powers themselves need not 

be whole numbers in our case but are positively valued. In fact, if scalar values of f are taken to 



be (relativistic) integers, the powers have to be (differentially) complex numbers. We can surmise 

that the initial sum representing any 2 SAT clause is a linear sum of these inverted powers. 

 

    f = 1/ fp + 1/ f2p 

    The entire formula is a product form and so the summations for each clause must lay side by 

side as product terms, by isomorphic analogy, for any k-sat formula, k ∈ ℤ+: 

    (1/ fp + 1/ f2p + … + 1/ fkp)(1/ gp + 1/ g2p + … + 1/ gkp) … f, g, … ∈ P (the set of co-

primes (field ideals)) 

    Since all product terms (functions of types f’s and g’s whose stalks are the unique p-powered 

stalks, where p  is the complex-valued field characteristic) are relatively prime (ideals of 

the underlying ring), what we have here is a type of finite L function in Euler product form.  We 

can justify the “rounding” up of factors between powers to integers as follows: Each term along 

any stalk is Pfaffian, which is a derivative of a previous function and can be written in terms of 

this function. Each power of progression along a stalk (f, g, …) also eliminates other progression 

stalks (mapped to a unique power) by a Pfaffian factor (other than the unit factor being computed 

on the normed stalk). This means that the evaluation of every stalk can be rewritten in terms of 

the evaluations of every other stalk. We can in some sense, “squash” up the positions of the non-

integer function derivatives (on the non-integer stalks) into the positions of the integer terms in 

our expansion while maintaining the integrity of the computation, thus allowing us to express the 

function as just a sum between integer terms. In fact, we can use this to informally support our 

integer sphere packing assumption we made for integer factorization – that requiring an integer 

factor-only circuit somehow involves physically eliminating the possibility of the intermediate 

rational terms in this Euler expansion. To obtain a ”squashed” sum that matches the Euler product 

expansion, we can follow the following recipe: 

i. In a linearly ordered enumeration of finite elements, every element, on the contact 

manifold, is the derivative of the preceding derivative, which is the function being 

differentiated. As such, each (Pfaffian) derivative can be written as this preceding term 

(differentiable function) multiplied by some constant: dx = Φ (d(x – 1)).  

ii. The value of Φ is relatively fixed for any differentiation interval but the angular 

distance (since we are in isotropic space) covered by each total derivation is still given 

a norm of 1.  We note that these angular distances can be weighted in such a way as 

to respect the order on the derivatives. These distances will correspond to the value 

expansion terms in the denominator of each term in our L function and act more like 

values on a clock since as we stated, we are working in an evenly spaced, isotropic 

manifold. 

iii. Let us refer to the distances (weights on the norm) attached to a point x and a point 

x - 1 as ρx and ρx-1, respectively. 



iv. Assume positions are also related by a constant c such that ρx = c( ρx-1). Note that this 

constant need not be fixed like Φ but can represent a choice of curvature as we show 

below. 

v. Assume the distances are members of a number field of 0 up to some integer n, that 

is, in between our rationally valued distance values, we have integer-valued distances 

from 0 to n. 

vi. Let us fix the value of c, the relational ratio between distances to 1/2. This 

essentially implies, for the convenience of our computations, that lower derivatives 

cover a larger distance than higher-ordered derivatives. On absorption of a previous 

term, the scalar value associated with a positional variable in our L function 

contraction,  doubles. Let us also assume that we will be skipping odd-valued positions 

(odd numbers in the field) and only squashing into even-valued positions. 

vii. If we squash up all the terms less than the first even integer, 2, which is the first prime 

in the first function expansion, f, we now get the first new term as a doubled term: 

2/2p. The necessary choice of 2 as the first index also numerically justifies fixing c at 2: 

if we assume a curve of constantly hyperbolic (see v. and vi. below for explicit 

reasoning behind this) curvature, that is, a sphere, over the numbers. 

viii. We could perform the same for the second even-valued derivative 4, except now the 

first integer has absorbed half its value. To obtain the same doubling effect as the first 

integer, we need to double the interval from (2 – 0) to 2*(2 – 0) which is 22. 

ix. To obtain this integer-valued Euler product, we will need to double this interval as we 

progress down the chain infinitely, that is at every nth index of our new operation, we 

will need to squash the previous 2n elements into the current one. 

x. This rewritten product, in the end, now looks like:    (1/ 1p + 1/ 2p  + … + + 2/ 2fj
p… 

)( 1/ 1p + 1/ 2p  + …  + 2/ 2fj
p+ …) where fj ≡ f(j) ≡ j for all j ∈ ℤ+ . 

xi. Notice that the use of 2 as the value of c is a transcendental usage (is algebraically 

independent) and is comparable to the use of e in the circle group with the n power 

mapping to iθ (eiθ). This now gives us a curve (of a section of the surface of a sphere 

with a hyperbolic generating group) which computes the above product. We notice 

that the first term in the second function expansion is wrong (should be 3 by 

definition) and so the nth term is also wrong (not a g term). Could this be fixed by 

altering the curvature for infinitely small sections so that the result is correct to a high 

numerical degree? Say, for example, to fix (remove) the first sub-term in each product 

term, we can fix an analog of c = 4. If such a valid mathematical process could be 

formulated, we would have a single definition of a curve that satisfies the Riemann 

hypothesis in an analytic/approximate sense. Another way to make this exact is to 

consider the original function not as just one curve but as a product of curves, 

infinitely countable perfect spheres with different curvature constants (one for each 

prime in a continuous p-adic fashion). 



    If like we have done, assume this to be a field of numbers and also take the valid convention of 

valuing satisfying solutions with positive numbers and negative solutions with negative numbers, 

we can conclude the following: 

    The L function is solved exactly on the inner product of the vector space of characteristic power 

vectors, which is quantitatively (half) a step from the p-norm of 1 or the smallest positive 

valuation, that is, where the real part of the power can be considered to have a fixed “half” value. 

When it is not satisfied, its solutions lay in the negatively valued space. This is especially supported 

by the 2 SAT conversion if we take it that the chain values are initialized at 1/2 and the coefficients 

at -1/2 (consistent with the negative valuation of entropy), and we simply add a half value to both 

fields to compute final values of 0 (symplectic) and 1 (complex). In fact, one can formally write 

our nullstellensatz equation from [1] over the symplectic manifold for satisfiable formulae as: 

        -1/2(ω) + ∑figi =  0 

   Or alternatively as: 

       -1/2(ω) + ∑( fn ) ( ∂n g(x) / ∂nt ) =  0 

    Where ω is some relative unknown constant weight that is twice the sum of the multiplied  

(unknown and implicit) functions f and (derivations of) g. 

    Any finite 3 SAT formula can be rewritten as a finite 2 SAT formula and so the finite versions of 

both of these conjectures are true. 

    One can easily extend this argument to a function of infinite f’s and g’s, (on some infinite 

alphabet) that is, infinitely (sized) satisfiability formulae of infinitely many disjunctions and 

conjunctions, if such can be imagined as an ∞-sat equation. In that case, we assume the formula 

still has an infinite conversion to 3 SAT, and that the nature of zeroes will still hold. In that case 

the infinite versions of both the Riemann Hypothesis (approximate or exact depending on how 

we construe the function, as described) and the Hodge(exact) Conjecture then also hold. 

    While both of these formulations could be regarded as abstract and relativistic simulations of 

the original conjectures, the point is to show that computing with spin the way we do is powerful 

for calculating concrete values where needed (satisfying assignments) and also in providing a 

more homo-iconic frame of computation for better understanding the semantics of complex 

mathematical problems and their possible syntactic realizations and resolutions. For example, 

because of the arithmetical nature of our theorem and the way it mimics an étale structure, it can 

be used to investigate, say the Tate Conjecture in number theory, a conjecture with which it shares 

many other similarities like a twist in the coefficient space. In another possible use case, we can 

show that since we have a solid demonstration of automorphy, a morphism from a topological 

group onto the complex numbers, we can generally study things like automorphic forms, which 

generalize elliptic forms.  



    The approach taken here mirrors the development of Connes’ work, beginning with an 

approach inspired by non-commutative geometry (reflected in our work) and culminating in the 

definition of a non-commutative scaling site along with Consani [12] (topos theory, see [1] for 

analogy) associated with a given arithmetic geometry[13] and associated scaling functions via this 

geometry[14]. This also very much ties in with Connes’ et al work on Von Neumann algebras (of 

which ours can be considered a special complex case) and their scaling laws [15]. Connes’ works 

very much used tropical semirings whereas in our case we use "tropicalized” rings, a benefit that 

comes from the (relativistic) entropy-based quantization of the fully invertible topological 

structure of our classifying space. As a case in point, linked to the spherical nature of these 

algebras, note that we also work with the same type of hyperbolic groups for which we can 

compute definite word distances. We hope that these correlations can spur more complete and 

formal work on these problems and others of similar complexity, extending our approach. 

 

6 Conclusions 

    Holography promises to be an exciting juncture of fields. Understanding differential 

(differentially algebraic) spin will be key to this. In this paper, we have scratched the surface of 

what looks like a rich Differential Galois theory for what we may call a variant of automatic 

differentiation [16. 17, 18] implemented over multiple indices using a type of hyperdual 

differentiation [19]. We hope this will help boost this field as it is known to be a notoriously 

difficult one. Our approach to this topic follows the approach taken in [20] for strongly normal 

group extensions based on (differential) schemes. We add localization to this approach and also 

embed the scheme in a reflexively twisted quantum algebraic structure. The two groups 

identified, by way of their structure, can, as we stated in [1], be viewed as elements of a 2-sorted 

combinatorial species [21] along with the specified operations on the function space.  

    As elucidated in [1], another main thrust of this theory seems to be in shedding light on nature 

and intelligence via forms of mechanical reasoning. This is an area in which we wish to make 

contributions in the future using this holographic theory. We also followed up on [1] by expanding 

on the twisted  (hyper) K�̈�hler structure of the presented manifold. Our opinion is that the metric 

exposed on this form is a powerful and native form of natural perception. We also hope to take 

this idea further in future work.  

    Finally comes the question of quantum computation and how our procedure may help shed 

light on practical quantum computation. We hope to show in future work on information 

theoretic gravity that we have an equivalent of a quantum field computer [22] or rather, a 

quantum holographic computer, as the computation utilizes the holographic principle which 

studies the intersection of two quantum fields in the form of a complex scalar-tensor field theory. 
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