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Abstract

Purpose - Improve the air movement operations planning heuristic in the literature to generate
better solutions in a shorter time period.

Design/Methodology/Approach - Through a rigorous design of experiments, we make significant
heuristic improvements by evaluating alternative modular methodologies and tuning heuristic parameters
for two scenarios. This includes a new approach to considering refueling operations.

Findings - We find the fine-tuned heuristic averages a 33% objective improvement and 70% reduction
in computation time over the heuristic with original parameters for one of the scenarios. Additionally,
we analyze the heuristic’s quality of solution over time.

Research limitations/implications - Further analysis is required to generalize heuristic settings,
which would require significant access to operational data or a portfolio of scenarios of interest.

Originality/value - This research provides novel vehicle assignment and routing heuristic improve-
ment alternatives and demonstrates a design of experiments-based heuristic tuning procedure.

Practical implications - Tuned heuristic parameters reduce the computation time from hours to
minutes. This also makes it practically feasible to adjust parameters in the objective function to generate
multiple courses of action for a given instance.

Keywords: design of experiments, heuristic improvement, dial-a-ride problem, multiple refuel nodes,
demand priority, helicopter routing, aircraft, military aviation

1 Background

US Army units solicit helicopter support from Army Aviation units using an Air Mission Request (AMR)
process (Department of the Army [DA], 2020a) to support air movement operations which move personnel,
supplies, and equipment throughout an area of operations (Department of the Army [DA], 2020b). The unit
requesting support routes the AMR through their chain of command where higher echelons conduct quality
control and consolidates the requests for onward submittal to the next echelon. At the brigade level, the
brigade aviation element (BAE) provides aviation subject matter expertise for filtering and prioritizing the
AMRs to best employ helicopter assets. The BAE submits the final AMRs to the next headquarters, usually
a division. The division tasks the AMRs to the aviation unit for execution. Standard processing times from
the BAE’s receipt of the tasking to the planned air movement is 96 hours, though dynamic requirements
often involve requests submitted within 24 hours of the desired movement.

The aviation unit tasks the AMRs to the appropriate subordinate aviation battalions and/or task forces
based on mission type, required equipment, aircraft needed, and other factors. These aviation battalions
must task each AMR to an aircraft team and generate routes for the aircraft team to complete all assigned
AMRs and associated requirements. No later than 12 hours prior to the desired time of air movement, the
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aviation unit publishes a daily air movement table to convey the results of the planning process back to the
unit requesting aviation support.

Aviation mission planners have 12 hours (although often less) to task and route aircraft teams to support
the AMRs based on AMR priority levels, locations, number of personnel, and pickup/dropoff time windows.
According to a current general support aviation battalion commander, the current process can take a team
of planners over five hours to generate a plan for a single day (Espinoza, 2022). Nelson et al. (2023a)
introduce two models to task air mission requests (AMRs) to rotary wing aircraft teams and generate the
required routes in order to minimize unsupported AMRs by priority level, number of helicopter teams used
by utilization penalty, and total flight hours. A mixed integer linear program (MILP) is developed which
generates optimal solutions but proves intractable for application-sized instances with 30–100 AMRs. A
heuristic approach is developed which generates feasible solutions within a tactically useful time, but the
authors note future work to potentially improve the heuristic. In this paper we investigate methodologies to
improve the aviation air movement operations planning heuristic in order to generate superior solutions in less
time. We make improvements by incorporating several alternative modular methodologies and optimizing
heuristic parameters. The findings result from data collected during a rigorous design of experiments (DOE).
This paper demonstrates its value in its final presentation of solution quality and time for various application-
sized problems and compares the performance to Nelson et al. (2023a).

2 Literature Review

Related Literature. This research is not the first to envision new systems or tools to improve military
decision-making, planning and dynamic re-planning, or resource-allocation with automation (McConnell
et al., 2021; McQueary et al., 2005; Rogers et al., 2018; Schwartz et al., 2019) including aviation support use
cases (Ghigliotti et al., 2022; Nelson et al., 2022). Much of the military aviation planning literature centers
on Flight and Maintenance Planning (FMP) to identify which aircraft to fly and which aircraft should enter
maintenance over a given planning horizon with the stated objective to maximize fleet availability and meet
both flight and maintenance requirements (Kozanidis et al., 2010; Marlow and Dell, 2017; Pippin, 1998).
MILP approaches are common (Kozanidis et al., 2014; Marlow and Dell, 2017; Pippin, 1998; Verhoeff and
Verhagen, 2023; Verhoeff et al., 2015) though some use heuristics and metaheuristics (Balakrishnan et al.,
2021; Kozanidis et al., 2014; Steiner, 2006; Winata, 2011), simulation (Marlow et al., 2019), or approximate
dynamic programming (Powell, 2014). Notably in our problem, the planners are not concerned with the
maintenance or future demand planning.

Similar Work. The most closely related literature is the dial-a-ride problem (DARP) (Ho et al., 2018b;
Nasri et al., 2021) and military studies assigning assets to missions while considering the associated op-
erational capacities, demands, routes, time windows, etc. These studies examine heterogeneous mobility
rotary-wing units (Kim and Kim, 2011; Mogensen, 2014; Nelson, 2023; Nelson et al., 2023a); fixed-wing
fleets (Brown et al., 2013); amphibious ready groups with multiple ship types, marines, and different air-
craft (Yakıcı et al., 2018); and matching air assets to tactical air requests (Noble et al., 2015). Common
approaches in these problems include MILP models (Brown et al., 2013; Nelson et al., 2023a; Yakıcı et al.,
2018), heuristics (Kim and Kim, 2011; Mogensen, 2014; Nelson et al., 2023a; Yakıcı et al., 2018), and meta-
heuristics (Cordeau and Laporte, 2003; de Alvarenga Rosa et al., 2016; Ho et al., 2018a; Noble et al., 2015);
mixed approaches are common.

In a closely related study, Kim and Kim (2011) also focus on the air movement operations problem, but
they minimize the time by which all missions are completed and assume aircraft have the fuel capacity to
handle all assigned missions for the day. Their experimentation includes problem instances of 5–20 aircraft
and 5–25 missions per day; however, their problem instances use randomly generated mission start/end points
using the uniform distribution in a square plane. Brown et al. (2013) address a fixed-wing DARP problem
over both single day and seven day time horizons for Iraq and Afghanistan-based scenarios, assuming that
airplanes may refuel at any landing node.

The MILP model in Nelson et al. (2023a) solves the US Army aviation air movement operations planning
problem (Nelson et al., 2022) by formulating it as a DARP where refueling is available at some but not
all helicopter landing zones. The paper’s research draws heavily on DARP research from Cordeau and
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Laporte (2007), Ho et al. (2018b), and Nasri et al. (2021). The MILP includes additional features such
as capacitated helicopter routing and multi-node refueling (de Alvarenga Rosa et al., 2016; Sundar and
Rathinam, 2012; Sundar et al., 2016). However, Nelson et al. (2023a) show that optimal solutions cannot be
found in a reasonable amount of time for more than around 3 aircraft teams and 10 AMRs. The air movement
operations planning heuristic is an adaptation of the insertion algorithm for the single vehicle DARP (Häme,
2011) into a multi-helicopter team heuristic to find quality feasible solutions to application-sized instances
of the problem with 10 aircraft teams and 90–100 AMRs.

The purpose of this research is to improve the air movement operations planning heuristic solution quality
and computation time. In this paper, we demonstrate improvement through parameter tuning. Research
in parameter tuning involves numerous methods, including teacher-learner optimizing algorithms (Rao and
Kalyankar, 2013; Yang et al., 2018), robust observer approaches (Beelen et al., 2020), and data analysis
parameter approximation techniques (Wang et al., 2020).

Similar to this paper’s methodology, there is ample research using DOE to tune model parameters. Lujan-
Moreno et al. (2018) use DOE to screen the most important machine learning hyperparameters followed by
a response surface methodology to fine-tune the hyperparameters. Shankar et al. (2022) use DOE and
response surface design to ascertain the key synthesis parameters and develop synthesized O-doped boron
nitride models. O’Connor and English (2021) demonstrate a systematic factorial-design DOE to estimate
optimal parameters of empirical water models. We use a methodology adapted from Gunawan et al. (2011)
in creating a DOE approach to fine-tune algorithm parameters.

3 Air Movement Operations Planning Heuristic

3.1 Fixed Time Heuristic

Nelson et al. (2023a) employ a heuristic that terminates when no improvement is made to the objective in
subsequent improvement cycles, which then returns the best solution found. To compare performance for
varying heuristic settings, Figure 1 presents the heuristic modified to run for a fixed amount of time.

Figure 1: Fixed Time Heuristic Concept.
Conceptualization by authors.

Similar to the heuristic in Nelson et al. (2023a), the fixed time heuristic starts with loading model inputs
and determining which helicopter teams can support each AMR through the AMR assignment filter. The
set of individually feasible AMRs per aircraft team is then sent to the initial AMR assignment module where
it generates a set number of random assignments. In the original heuristic, the initial AMR assignment
module randomly assigns AMRs to any helicopter team in the feasible AMR set. In this paper, we introduce
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a parameter to control the percentage of initial assignments that allow for unsupported AMRs or assignments
to high-cost helicopter teams. High-cost aircraft teams are defined by the user when evaluating each aircraft
team’s utilization penalty, β. This parameter is further discussed in Section 4.2. The set of initial assignments
then goes through the aircraft team routing algorithm adapted from the single vehicle DARP adaptive
insertion algorithm (Häme, 2011). This paper introduces an additional aircraft team routing algorithm
that has the capability of inserting refueling stops at helicopter landing zones (HLZs) that do not have an
associated AMR pickup or drop-off. Section 4.3 goes into further detail regarding the differences in the
two aircraft team routing algorithms considered. Additionally, Section 4.4 evaluates the performance of the
feasible route limit objectives described in Nelson et al. (2023a).

For each initial assignment, the aircraft team routing algorithm outputs either a feasible routing for each
aircraft team or determines that the AMR assignment is infeasible. If there are no feasible assignments, the
heuristic returns to the initial AMR assignment module and generates a new set of random assignments.
If there is at least one assignment with a feasible routing solution, the heuristic then sets the number of
feasible solutions y to the minimum of the initial y value and the number of assignments with feasible routing
solutions.

During the first improvement cycle, the stopping criteria are met if the assignment and routing solution
with the lowest objective value supports all AMRs and the high-cost aircraft teams are not utilized. If
the stopping criteria are not met during the first improvement cycle, the heuristic attempts to improve
y assignments by redistributing unsupported AMRs to aircraft teams. The aircraft team routing module
attempts to generate feasible routes for the improved assignments. The improved assignments with feasible
routes are evaluated to determine objective values. Upon completion of the first improvement cycle, the
stopping criteria are met when the lowest objective value of the improved assignments is the same as seen
in the previous improvement cycle. For the fixed time heuristic, once the stopping criteria are met, the best
solution is saved and the heuristic returns to the initial AMR assignment module. Upon every full iteration
of the heuristic, the lowest objective value solution is maintained. As the predetermined computation time
elapses, the heuristic outputs the solution with the lowest objective value. This solution consists of AMR
assignments and aircraft team routing that meets all feasibility constraints from Nelson et al. (2023a).

3.2 Heuristic Limitations

Performance of the air movement operations planning heuristic compared to optimal solutions is addressed
in Nelson et al. (2023a). A key takeaway from the paper’s analysis is that the MILP model failed to generate
a feasible solution for problems consisting of 20 or more AMRs after 96 hours of run time. In contrast, the
heuristic generated feasible solutions to support all AMRs for the same-sized problems in an average of 16
minutes. The paper demonstrated the heuristic’s ability to generate quality solutions within a time frame
that is useful for aviation mission planners within the air movement operations planning process.

In order to generate quality feasible solutions in near real-time, the heuristic must decrease the decision
space using two key methods. These reductions may generate non-optimal but feasible and potentially
useful solutions for mission planning applications. The first reduction involves assigning AMRs to aircraft
teams. With n AMRs and |K| aircraft teams, there are |K|n ways to assign AMRs to helicopter teams.
For a military application, the full enumeration of assignments is not achievable. Even after the heuristic’s
AMR assignment filter, large-scale problems still retain a set of potentially feasible assignments too large to
evaluate comprehensively. Consequently, the heuristic can only attempt to generate feasible routing solutions
for a sample of potential feasible assignments.

The second reduction in decision space occurs during the aircraft team routing module after AMRs have
been assigned to each helicopter team. The heuristic’s AMR insertion algorithm constructs routes through
numerous iterations of adding AMRs to feasible routing solutions. At each insertion step, the algorithm
generates every possible combination of pickup and drop off insertions for the new AMR into a set of feasible
routes from the previous insertion. While considering every past feasible route ensures the optimal route for
the AMR assignment, this approach becomes impractical as the number of AMRs assigned to aircraft teams
increases. To address this scalability challenge, the air movement operations planning heuristic introduces
a feasible route limit, τ , to limit the number of feasible routes to carry forward after every insertion. This
enables the heuristic to reduce the routes considered while still producing quality feasible routes.

4



4 Heuristic Parameters

The purpose of this paper is to improve the air movement operations planning heuristic by tuning heuristic
parameters in order to produce the solutions with the lowest objective values. There are six heuristic
parameters that are considered. In order of heuristic execution, the heuristic parameters are as follows: initial
AMR assignment quantity, unrestricted assignment percent parameter, aircraft team routing algorithm,
feasible route limit, feasible route objective, and assignment improvement quantity ratio. To assist the
reader, Table 9 in Appendix A provides a notation guide.

4.1 Initial AMR Assignment Quantity

The intent of the initial AMR assignment is to conduct a broad search of the feasible assignment space
established by the AMR assignment filter. An increase in the initial AMR assignment quantity, ζ ∈ Z+ =
{1, 2, 3, . . .}, increases the likelihood of the aircraft team routing algorithm receiving sufficient assignments
to generate feasible routes. Only assignments with feasible routes can enter the improvement cycle. On the
other hand, an increase in ζ increases computation time in the aircraft team routing algorithm that might
be more efficiently used in the heuristic’s improvement cycle.

4.2 Unrestricted Assignment Percent Parameter

For the Army aviation air movement mission assignment, utilization, and routing problem, the best case
solution is to support all AMRs with only low-cost helicopter teams. Of course, this is not possible for all
scenarios. However, in an effort to explore the assignment space with an emphasis on assignments with all
AMRs supported on low-cost helicopter teams, we introduce the unrestricted assignment percent parameter,
η ∈ [0, 100]. This parameter specifies a percentage of the initial AMR assignment quantity, ζ, to allow random
AMR assignment to any individually feasible helicopter team or to leave the AMR unsupported. For example,
for an initial AMR assignment quantity ζ = 1000 and unrestricted assignment percent parameter η = 25,
only 250 of the initial AMR assignments would have the ability to assign AMRs to any individually feasible
helicopter team, regardless of cost class, or leave some AMRs unsupported. The remaining 750 assignments
would be restricted to assigning AMRs to only individually feasible low-cost helicopter teams.

4.3 Aircraft Team Routing Algorithm

The two aircraft team routing algorithms considered are the AMR insertion algorithm discussed in Nelson
et al. (2023a) and the AMR insertion algorithm with fuel insertion presented in this paper. The latter
algorithm is an adaptation of the AMR insertion algorithm to increase refueling options. Both algorithms
build on the advanced insertion algorithm described in Häme (2011). At each AMR insertion in the AMR
insertion algorithm, the route’s feasibility of AMR time windows, maximum passenger ride time, aircraft
flight duration, aircraft capacity, aircraft latest return to the airport, and aircraft fuel level is checked. If
one of these constraints is deemed infeasible, the route is not considered in the next AMR insertion. The
AMR insertion algorithm assumes helicopter teams fully refuel at every HLZ with refuel capabilities. The
algorithm creates a route with refuel stops only if an associated AMR pickup or drop-off at an HLZ with refuel
capabilities exists. This feature reduces potential feasible routes and possible feasible AMR assignments.

The AMR insertion algorithm with fuel insertion (see Algorithm 1) introduced in this paper addresses
the rigid refueling feature by allowing for refuel stops at HLZs with refuel capabilities regardless if there is an
associated AMR pickup or drop-off at the HLZ. The AMR insertion algorithm with fuel insertion introduces
two separate feasibility checks. Similar to the AMR insertion algorithm, the first-stage feasibility occurs after
each AMR insertion. Unlike the AMR insertion algorithm, this adapted algorithm does not verify aircraft
fuel level feasibility in the first-stage feasibility check. Instead, the first-stage feasibility check includes AMR
time windows, maximum passenger ride time, aircraft flight duration, aircraft capacity, and aircraft’s latest
return to the airport feasibility. Only feasible routes are considered for the next AMR insertion. Upon
insertion of all AMR pickups and drop-offs for the assigned AMRs to helicopter team k ∈ K, the algorithm
produces a set of complete first-stage feasible routes Sk

|Nk|, whereN
k is the set of AMRs assigned to helicopter

team k.
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For each complete first-stage feasible route s ∈ Sk
|Nk|, the algorithm checks for aircraft team fuel feasibility.

This is accomplished by ensuring that at every node j in complete route s, there is sufficient fuel to travel
to node j + 1. If there is insufficient fuel to travel to the next node, the algorithm inserts a refueling stop
between nodes j and j + 1. The algorithm selects the HLZ with refuel capabilities, not at node j or j + 1
which minimizes the travel time from node j to the refuel node plus the travel time from the refuel node to
node j + 1 as the refuel stop. If there is not sufficient fuel at node j to travel to any HLZs with refueling
capabilities, the complete route s is removed from Sk

|Nk|.

The fuel insertion function generates a set of fuel-feasible complete routes, but the potential fuel insertions
may have changed the time structure of the route. The fuel-feasible complete routes must go through a
second-stage feasibility check to ensure the feasibility of AMR time windows, maximum passenger ride time,
aircraft flight duration, and aircraft’s latest return to the airport. Notice that the second-stage feasibility
differs from the first in that the aircraft capacity need not be checked. The algorithm assumes no passengers
board or deplane at the refuel insertions. Upon completion of the second-stage feasibility check, the algorithm
either has a set of fully feasible complete routes to calculate routing costs or an empty set of fully feasible
complete routes in which the algorithm assigns infinite cost to the route associated with the AMR assignment.

Algorithm 1 AMR Insertion Algorithm with Fuel Insertion

1: Set Sk
0 = {∅}; (Sk

i = set of feasible service sequences for helicopter team k with the first AMR pickup
at AMR i, i ∈ {ik1 , . . . , ik|Nk|}, k ∈ K)

2: for each i ∈ {ik1 , ..., ik|Nk|} do

3: for each s ∈ Sk
i−1 do

4: for each h ∈ {1, ..., |s|+ 1} do
5: for each j ∈ {h+ 1, ..., |s|+ 2} do
6: Set r = I(s, i, h, j); (I= the insertion function)
7: if service sequence r is 1st stage feasible then
8: Sk

i = Sk
i ∪ {r}

9: end if
10: end for
11: end for
12: end for
13: if Sk

i = ∅ then
14: BREAK: Assign an infinite cost to route;
15: end if
16: end for
17: for each s ∈ Sk

NK do
18: Set s = F (s); (F= the fuel insertion function)
19: if service sequence s is 2nd stage feasible then
20: else
21: Sk

NK = Sk
NK\{s}

22: end if
23: end for
24: if Sk

NK = ∅ then
25: BREAK: Assign an infinite cost to route;
26: end if
27: for each s ∈ Sk

NK do
28: Calculate routing cost C(s)
29: Save minimum C(s) as route cost for helicopter team k in assignment
30: Save route associated with minimum C(s)
31: end for
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4.4 Feasible Route Limit and Objective

Both the AMR insertion algorithm (Nelson et al., 2023a) and the AMR insertion algorithm with fuel insertion
in Section 4.3 have the ability to create the optimal helicopter team routing for a given AMR assignment.
This is due to the fact that both algorithms can generate and evaluate every possible AMR route sequencing.
However, the number of routes to evaluate becomes intractable as the number of assigned AMRs increases.
The largest instances encountered in practice correspond to approximately 100 AMRs (Nelson et al., 2023a).
Including fuel insertion does not add to the time complexity of the original AMR insertion algorithm because
it occurs outside of its main iterative loop. In order to solve larger problems, it is necessary to limit the
number of feasible routes carried forward for the next AMR insertion.

The methodology in which we select τ feasible routes after each AMR insertion iteration to carry forward
to the next iteration builds on the work done by Häme (2011) and is discussed in Nelson et al. (2023a).
As the value of τ increases, so does the probability of generating a feasible route with a lower routing cost,
but at an increased computational cost. We chose three candidate feasible route objectives to select the τ
feasible routes to build upon at the next AMR insertion iteration. The first method chooses the τ routes
with the smallest flight times. This is aligned with the third term of the problem’s overall objective (Nelson
et al., 2023a, see Equation (1)) simplified here as,

min α(total unfulfilled AMRs) +
∑

all teams

(βkhelicopter team usage) +
∑

all teams

γk(flight time per team) (1)

and is shown in Equation (2). The other two feasible route objectives attempt to allow more flexibility
in subsequent AMR insertions by choosing τ routes with either the maximum total slack time (3) or the
maximum of the minimum slack times (4).
Given the routing sequence, r = (r1, . . . , rm), we wish to minimize the time of flight (TOF),

fTOF(r) =

m∑
j=1

tkj−1,j , (2)

maximize the total slack time (TST),

fTST(r) =

m∑
j=1

lj −Ak
j (r), (3)

or maximize the minimum slack time (MST),

fMST(r) = min
j∈{1,...,m}

lj −Ak
j (r), (4)

where tkj,j′ is the time between nodes j and j′ for helicopter team k, lj is the latest arrival time for the AMR

j, and Ak
j (r) is the calculated time of arrival at node j.

4.5 Assignment Improvement Quantity Ratio

The improvement cycle attempts to improve y assignments with the lowest overall objective values by
attempting to shift unsupported AMRs to helicopter teams. An increase in y provides a greater opportunity
to improve more initial assignments and therefore increase the potential to result in a better overall solution.
A larger y also results in increased computation time and potentially less of the assignment space explored.
We control the value of y by using parameter θ ∈ [0, 1] such that y = ⌊θζ⌋, where ζ is the initial AMR
assignment quantity and ⌊x⌋ = max{z ∈ Z|z ≤ x}.

5 Heuristic Improvement Design of Experiments

5.1 Sequential Experiments

Gunawan et al. (2011) describe a sequential experimental approach to tune algorithm parameters. The
approach includes screening, exploration, and exploitation phases to further tune parameters in order to im-
prove algorithm performance. Figure 2 illustrates the air movement operations planning heuristic parameter
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tuning DOE procedure. The purpose of the design of experiments (DOE) is to analyze heuristic performance
while varying the heuristic parameters in order to identify the best heuristic parameter settings. We design
two scenarios with dissimilar HLZ networks and AMR demand to represent utility helicopter unit air move-
ment operations. We tune the heuristic parameters under each scenario and compare the resulting heuristic
with tuned parameter settings performance. The interested reader can find the DOEs, phase results, and
additional details in Nelson (2023) (see Ch. 3 and App C).

Figure 2: Air Movement Operations Planning Heuristic Parameter Tuning DOE Procedure. Conceptualiza-
tion by authors.

The heuristic improvement DOE is a controlled set of tests designed to model and explore the relationship
between the heuristic parameters and response variable (JMP and Proust, 2017; Montgomery, 2017). The
primary response variable is the resulting overall objective value. Further analysis of the components of the
overall objective value includes quantity and priority level of unsupported AMRs, aircraft team utilization
penalty, and total flight time. The DOE sizes allow for 80% power for all main effects, second-degree
interactions, and quadratic effects of all discrete numeric and continuous effects with 95% confidence for
each phase.

Table 1: Parameters to Tune

Parameter Data Type
Initial AMR Assignment Quantity (ζ) Discrete Numeric
Unrestricted Assignment Percent Parameter (η) Continuous
Aircraft Team Routing Algorithm Categorical
Feasible Route Limit (τ) Discrete Numeric
Feasible Route Objective Categorical
Assignment Improvement Ratio (θ) Continuous

5.1.1 Heuristic Objective and Penalty Weights

The objective of the heuristic is to minimize the sum of weighted penalties of unsupported AMRs, helicopter
team utilization, and flight time. A heuristic objective formula that represents the mixed integer linear
programming objective in Nelson et al. (2023a) is shown in Equation (5). The first summation in the
objective accounts for the penalty of leaving AMRs unsupported. Let α be the unsupported penalty weight,
bi be the transformed AMR priority for AMR i, and Πi be the binary variable with value 1 if AMR i is
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unsupported and 0 if supported. The second summation in the objective describes the penalties for helicopter
team utilization and total flight time. Let βk represent the utilization penalty for helicopter team k and Υk

be the binary variable with value 1 if helicopter team k is assigned one or more AMRs and 0 if assigned zero
AMRs to support. Let γk be the flight hour penalty for helicopter team k and Φk be the total flight hours
for helicopter team k.

minα
∑
i∈n

biΠi +
∑
k∈K

(βkΥk + γkΦk) (5)

Similar to the practical application in Nelson et al. (2023a), the AMR priority level in this DOE is
transformed through an exponential function with base B = 2. This implies that an AMR of one higher
level priority is twice as important as an AMR of the priority level below. Let pi be the priority level of
AMR i as referenced in Table 10. Then bi = 2(9−pi). We set the unsupported penalty weight α = 100,
which can be interpreted as leaving an unsupported priority level 9 AMR as equivalent to logging 100 flight
hours on a helicopter team with γk = 1. Setting α at a high value sets a priority of supporting all AMRs.
The utilization penalty for each aircraft team βk is a calculated value used to balance the commander’s
assessed cost of committing an aviation asset versus leaving an AMR unsupported. The calculation follows
as αbi = αB(9−pi) = βk. Given the commander’s AMR priority level threshold to launch a particular aircraft
team for support, it is possible to calculate βk. This concept is discussed further in Section 6.2.2.

We define the expected AMR flight time for a given scenario as

E[flight time] =
∑
j∈H

∑
j′∈H

P (pickup = j)P (drop = j′|pickup = j)tjj′ , (6)

where the HLZs are in the set H, P (pickup = j) is the probability an AMR will originate at HLZ j,
P (drop = j′|pickup = j) is the conditional probability the AMR drops off at HLZ j′ given the AMR picks
up at HLZ j, and tjj′ is the flight time from HLZ j to HLZ j′.

6 Scenarios

6.1 Summary

We design two scenarios to tune the heuristic procedure with key differences in HLZ network scale and
overall AMR volume. For each scenario, we define the HLZ network, refuel nodes, helicopter fleets, and
AMR demand characteristics with identical distribution assumptions from Nelson et al. (2023a). The first
scenario is a low-density operational environment set in Afghanistan whereas the second scenario features a
small urban environment set in Baghdad, Iraq, serving a higher AMR volume. The expected AMR flight time
of the Baghdad scenario is 0.1335 hours, which differs significantly from that of the Afghanistan scenario’s
expected AMR flight time of 0.51 hours. Table 2 summarizes the major differences between the scenarios
with the subsequent sections providing specific details.

Table 2: Scenario Summary

Scenario Feature RC-N, Afghanistan Baghdad, Iraq
AMR Quantity 30 50
Expected AMR Flight Time (hrs) 0.5100 0.1335
Max Flight Time (hrs) 2.389 0.282
Number of HLZs 10 10
Number of Refuel Nodes 5 2

6.2 Low-density Scenario: Regional Command-North, Afghanistan

6.2.1 HLZ Network

The HLZ network is a two-thirds scaled representation of Regional Command North, Afghanistan. The
scaling is in order to allow the helicopter fleet to support a larger number of AMRs and thus further test
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the heuristic’s capabilities. As seen in Figure 3, there are ten helicopter landing zones, of which five have
refueling capabilities. HLZs M and Z are hubs, serving as the pickup or drop-off HLZ for many AMRs.

Figure 3: (color online) HLZ network for the scenario set in Regional Command North, Afghanistan (note:
two-thirds scale).
Figure by authors adapted from Google Maps.

6.2.2 Helicopter Fleet

The helicopter fleet consists of six UH-60 Blackhawk helicopter teams stationed at HLZ M. Table 3 displays
the helicopter team features. All teams have identical maximum passenger capacity, average cruising speed,
and fuel capacity. There are two teams designated as AM with a flight window of 0700–1500. The two PM
teams have a flight window of 1500–2100. Note that we assume the PM teams fly part of their mission under
night vision goggles and therefore have a maximum duration of 6 hours as opposed to the day-only AM team
with a maximum duration of 8 hours. The Quick Reaction Force (QRF) teams straddle the AM and PM
teams’ time windows with a flight window from 1100–1900 and an 8-hour maximum duration.

Table 3: Regional Command - North Scenario Helicopter Fleet

Team Earliest Departure Latest Arrival Max Duration Max Capacity Speed (km/hr) Fuel (hours) Utilization Penalty (β) Flight Hour Penalty (γ)
UH AM A 0700 1500 8 22 222.2 2 1 1
UH AM B 0700 1500 8 22 222.2 2 1 1
UH PM A 1500 2100 6 22 222.2 2 1 1
UH PM B 1500 2100 6 22 222.2 2 1 1
UH QRF A 1100 1900 8 22 222.2 2 400 1
UH QRF B 1100 1900 8 22 222.2 2 400 1

The two helicopter teams designated with QRF can be considered high-cost teams. QRF helicopter
teams are commonly used teams held in reserve, with crews that can rapidly react to any commander-
directed missions. QRF teams are given air movement operation missions only when the commander deems
the mission is of high enough priority to commit the reserve QRF asset. For this reason, the QRF helicopter
teams are given a utilization penalty βk = 400, ∀k. This utilization penalty can be interpreted as the
commander setting the QRF launch threshold equivalent to not supporting a level 7 priority (O-6 Colonel
or Equivalent), two priority level 8 AMRs, or four priority level 9 AMRs since βk = 400 = (100)2(9−7) =
(100)(2)2(9−8) = (100)(4)2(9−9), ∀k.

6.2.3 Air Mission Requests

For each run in the DOE, the number of AMRs is n = 30. The number of AMRs is set to stretch the limits
of the low-cost helicopter teams in their ability to support the demand in a moderately large HLZ network.
While each run has a fixed number of AMRs, the features of each run’s AMRs will differ. HLZs M and Z
are hub HLZs serving as the pickup or drop off HLZ for many AMRs. The AMR feature distributions follow
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the practical application in Nelson et al. (2023a). Table 11 displays the Afghanistan scenario’s AMR HLZ
pickup and drop-off probabilities.

The number of passengers per AMR is equally distributed between the integers from one to eleven. Each
AMR has a 25% probability of having a priority level of 9, and a 25% probability of having a priority level
of 8, with the remaining probability equally distributed among priority levels 1 to 7. Finally, each AMR is
assigned a time window with equal probability for windows 0700–2100, 1200–1700, or 1700–2100. Finally,
the maximum passenger ride time L is set at 4 hours.

6.3 High-density Scenario: Baghdad, Iraq

6.3.1 HLZ Network

The Baghdad scenario HLZ network is a true-to-scale representation of the Multi-National Division-Baghdad,
Iraq. As seen in Figure 4, the network consists of ten HLZs of which HLZs T and B have refueling capabilities.
HLZs T, B, and L are hubs, serving as the pickup or drop-off HLZs for many AMRs.

Figure 4: (color online) HLZ network for the scenario set in Baghdad, Iraq (note: true-to-scale).
Figure by authors adapted from Google Maps.

6.3.2 Helicopter Fleet

The helicopter fleet consists of six UH-60 Blackhawk helicopter teams stationed at HLZ T. The fleet is
identical to the Afghanistan Scenario fleet shown in Table 3 with speed as an exception. Due to the condensed
nature of the HLZ network, helicopters travel slower on average in Baghdad than in a more spread-out HLZ
network with speeds for all aircraft teams set to 185.2 (km/hr).

6.3.3 Air Mission Requests

For each run in the design of experiments, the number of AMRs is n = 50. The number of AMRs is set to
stretch the limits of the helicopter teams in their ability to support the demand even with high-cost QRF
aircraft teams. HLZs T, B, and L are hub HLZs, serving as the pickup and drop-off HLZ for many AMRs.
Due to the proximity of HLZs B and L and the fact they share a common forward operating base, there are
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no AMRs between the two HLZs. Table 12 depicts the AMR HLZ pickup and drop-off probabilities for the
Baghdad scenario. The expected AMR flight time of the Baghdad scenario is 0.1335 hours, which differs
significantly from that of the Afghanistan scenario’s expected AMR flight time of 0.51 hours.

The assignment of the number of passengers, priority level, and flight window for each AMR follows the
Afghanistan scenario methodology as discussed in Section 6.2. Additionally, like the Afghanistan scenario,
the maximum passenger ride time L is set at 4 hours.

7 Heuristic Improvement Results

The heuristic improvement DOE sought to tune heuristic parameter settings in order to produce superior
solutions to the Army aviation air movement mission assignment, utilization, and routing problem and im-
prove on the heuristic presented by Nelson et al. (2023a). During the initial experiments for the Afghanistan
scenario, a feasible route limit (τ) of 1 was not considered a good value and thus excluded in the initial
screening range. Subsequent exploration phases showed τ = 1 to be the best value. With this in mind, the
Screening phase for the Baghdad scenario included this value in the initial DOE range for τ . The impact of
this change removed any reason to do a second Explore phase for the Baghdad scenario.

As shown Tables 4–5, the rigorous DOE process arrived at heuristic parameters tuned to two separate
scenarios. The heuristic with tuned parameter settings resulted in solutions with lower objective values
than those with its original settings. The tuned parameter settings in both scenarios provided statistically
significant evidence of superior performance. Furthermore, the tuned parameter settings gained through
separate scenario data sets, although slightly different, proved to produce similar solutions for both scenarios.
Hence, using parameter settings tuned with Afghanistan scenario or Baghdad scenario training data is equally
beneficial. The interested reader may consult Appendix B for details on solution quality over time.

The motivated reader may find the instances for these DOEs and associated heuristic solutions in Nelson
(2023, Appendix C, pp.114–136).

Table 4: Heuristic Tuning Results for the Afghanistan Scenario. Final tuned values are shown in the
“Validate” column.

Parameter Screening Phase Explore I Explore II Validate
Initial AMR Assignment Quantity (ζ) [500, 10000] [3000, 7000] 7000 7000
Unrestricted Assignment Percent Parameter (η) [50, 100] 75 75 75
Aircraft Team Routing Algorithm Constructive, Fuel Insertion Fuel Insertion Fuel Insertion Fuel Insertion
Feasible Route Limit (τ) [10, 500] [5, 50] [1, 5] 1
Feasible Route Objective TOF, TST, MST TST, MST TST TST
Assignment Improvement Ratio (θ) [0.01, 0.1] 0.01 0.01 0.01
Scenario Runs 100 40 40 30
Time per Run (min) 60 60 60 60

Table 5: Heuristic Tuning Results for the Baghdad Scenario. Final tuned values are shown in the “Validate”
column.

Parameter Screening Phase Explore Validate
Initial AMR Assignment Quantity (ζ) [500, 10000] 10000 10000
Unrestricted Assignment Percent Parameter (η) [50, 100] 50 50
Aircraft Team Routing Algorithm Constructive, Fuel Insertion Constructive, Fuel Insertion Fuel Insertion
Feasible Route Limit (τ) [1, 500] [1, 10] 1
Feasible Route Objective TOF, TST, MST TOF, TST, MST TOF
Assignment Improvement Ratio (θ) [0.01, 0.1] 0.01 0.01
Scenario Runs 100 40 30
Time per Run (min) 60 60 60

To measure the improvement, we measure the objective value of the original heuristic from Nelson et al.
(2023a) and the tuned validation settings for each of the 30 validation instances. Let D be the associated
difference in objective values using Equation (5) and let µD be the true mean difference. The results of
a paired t-test (Devore, 2016) for both scenarios strongly support that the objective value of the original
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Table 6: Original heuristic settings from Nelson et al. (2023a) and final tuned settings for each scenario.

Parameter Original (Nelson et al., 2023a) Afghanistan Tuned Baghdad Tuned
Initial AMR Assignment Quantity (ζ) 5000 7000 10000
Unrestricted Assignment Percent Parameter (η) 100 75 50
Aircraft Team Routing Algorithm Constructive Fuel Insertion Fuel Insertion
Feasible Route Limit (τ) 10 1 1
Feasible Route Objective TOF TST TOF
Assignment Improvement Ratio (θ) 0.01 0.01 0.01

settings is greater than the tuned settings (i.e., µD > 0). Table 7 provides the paired t-test results showing
both sets of parameters result in improvement over the original parameters.

For the Afghanistan scenario, 19 of 30 instances result in the tuned settings using one less high-cost
QRF helicopter. The tuned parameters result in a lower objective value overall in 26 instances; in the four
instances where this was not the case, the average difference was only 0.867 flight hours. On average the
Baghdad-tuned settings supported all AMRs in all 30 instances where the original settings left 2.33 AMRs
unsupported on average.

Numerical experiments with both tuned settings show similar performance both in terms of number
of AMRs supported and total flight time. Using parameter settings tuned with either the Afghanistan or
Baghdad scenario seems to be equally beneficial. The interested reader can review the numerical experiments
in Nelson (2023, App C).

Table 7: Paired T-test results comparing validation heuristic settings for each scenario to the original heuristic
parameters from Nelson et al. (2023a).

Improvement Over Original:
Afghanistan Scenario

Improvement Over Original:
Baghdad Scenario

D p-value D p-value
259 1.54× 10−8 344.4 3.66× 10−12

8 Application-Sized Problem

8.1 Overview

Nelson et al. (2023a) provide an application-sized problem as a proof of concept of the heuristic’s ability to
generate feasible assignment and routing solutions in a time period useful to aviation mission planners. We
now seek to generate comparable solutions in a condensed time period with tuned parameter settings on the
identical scenario from Nelson et al. (2023a). The heuristic uses the Afghanistan scenario tuned parameter
settings described in Table 4. Actual problem instances are available from Daniels et al. (2023).

8.2 Results

Table 8 provides the results and performance of the heuristic with original parameter settings—taken from
Nelson et al. (2023a)—and the heuristic with Afghanistan scenario-tuned parameter settings (this paper)
on identical application-sized problems. Both heuristics were able to find feasible solutions, supporting all
AMRs for all instances in both 90 AMR and 100 AMR quantity-sized problems. The utilization and AMR
support were identical for both heuristics. On average, the heuristic with tuned parameter settings arrived
at assignment and routing solutions with 1.46 more hours of flight time, a 7.1% average increase. However,
the heuristic with tuned parameter settings arrived at a solution in 22 minutes on average compared to
the average 221-minute execution time for the heuristic with original parameter settings. The drastically
reduced execution time with minimal solution quality degradation provides aviation mission planners with
opportunities to generate multiple courses of action and perform additional mission analysis in a shortened
mission planning cycle.

13



Table 8: Application sized problem results with (left) heuristic from Nelson et al. (2023a) and (right) tuned
settings from this paper. Problem instance data available from Daniels et al. (2023).

n Instance
Heuristic with Original Parameter Settings from Nelson et al. (2023a) Heuristic with Afghanistan Scenario Tuned Parameter Settings
Time (s) Objective Unsupported Utilization Route Time Time (s) Objective Unsupported Utilization Route Time

90 1 13326 30.80 0 10 20.80 1616 31.34 0 10 21.34
90 2 10364 29.87 0 10 19.87 954 32.09 0 10 22.09
90 3 5086 31.15 0 10 21.15 689 30.62 0 10 20.62
90 4 12134 29.10 0 10 19.10 1681 31.29 0 10 21.29
90 5 10085 30.51 0 10 20.51 1048 30.99 0 10 20.99
90 6 3654 31.73 0 10 21.73 405 34.60 0 10 24.60
90 7 11996 30.48 0 10 20.48 1288 31.36 0 10 21.36
90 8 7375 29.77 0 10 19.77 801 32.84 0 10 22.84
90 9 11304 29.36 0 10 19.36 1239 30.36 0 10 20.36
90 10 8280 28.88 0 10 18.88 800 31.00 0 10 21.00
100 1 14755 31.59 0 10 21.59 1180 33.06 0 10 23.06
100 2 19265 30.81 0 10 20.81 2404 32.26 0 10 22.26
100 3 15124 30.57 0 10 20.57 1461 31.78 0 10 21.78
100 4 19538 29.11 0 10 19.11 2145 31.42 0 10 21.42
100 5 19929 33.83 0 10 23.83 1107 35.23 0 10 25.23
100 6 20680 30.23 0 10 20.23 2416 31.06 0 10 21.06
100 7 20360 32.17 0 10 22.17 943 33.64 0 10 23.64
100 8 8531 32.52 0 10 22.52 803 34.38 0 10 24.38
100 9 15634 31.28 0 10 21.28 786 32.62 0 10 22.62
100 10 17654 29.49 0 10 19.49 2214 30.54 0 10 20.54

9 Conclusion

This paper sought to improve the air movement operations planning heuristic in order to generate supe-
rior solutions in less time. Through developing alternative modular methodologies and a rigorous design
of experiments based heuristic parameter tuning, we arrived at a fine-tuned heuristic with an average 33%
objective improvement over the original heuristic described in Nelson et al. (2023a). The bulk of the ob-
jective improvement resulted from the reduced utilization of high-cost helicopter teams in the Afghanistan
validation data set and through superior AMR support in the Baghdad validation data set. Improvements
of this nature preserve costly and scarce Army aviation, maintenance, and personnel assets while providing
more services to supported units. Reduced high-cost aircraft team utilization frees the teams to conduct
other command-directed missions and ultimately provides superior capabilities to the supported ground
commanders. Additionally, during the Afghanistan scenario validation phase, the fine-tuned heuristic was
able to provide a feasible solution in an average of 8.03 minutes, which is a 70% reduction in time compared
to the original heuristic. Rapidly generated solutions enhance aviation mission planners’ ability to quickly
generate courses of action to meet the commander’s requirements. The dramatically reduced computation
time also makes it feasible to employ distinct parameter sets for the objective function (e.g., α,B, βk, γk) to
quickly generate multiple courses of action (COAs) for further analysis and/or refinement by the planners
(Nelson et al., 2022).

Parameter Tuning Recommendations In lieu of performing a full DOE approach to air movement
operations planning heuristic parameter tuning, several general guidelines can be derived from experimen-
tation. In operational scenarios where the number and type of AMRs exceed the support capabilities of
the aircraft fleet, planners may encounter challenges in efficiently assigning and routing aircraft to support
all AMRs or minimize the number of unsupported AMRs based on priority. The ability of the heuristic to
generate feasible solutions would greatly aid in planning. To generate feasible solutions for such operational
scenarios, users should configure the parameters to evaluate as many assignments as possible. Consequently,
it is advisable to set the initial AMR assignment quantity (ζ) high, the unrestricted assignment percent
parameter (η) to 100, the feasible route limit (τ) to 1, and minimize the assignment improvement quantity
ratio (y).

Alternatively, if the aircraft fleet can accommodate numerous assignments with feasible routing, it may be
advantageous to minimize helicopter team utilization and route time. This can be accomplished by reducing
the unrestricted assignment percent parameter (η) and increasing the feasible route limit (τ) and assignment
improvement quantity ratio (y).
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Future Work. There are many opportunities to further improve the air movement operations planning
heuristic. It is reasonable to believe parallelization of the aircraft team routing process would significantly im-
prove computational speed. Additionally, the heuristic should output useful products for the Army aviation
mission planner and operator. To add additional sophistication, the heuristic could introduce flight charac-
teristics associated with altitude and air temperature. Future efforts should consider approaches to adapt
the heuristic parameters dynamically, or based on scenario characteristics. Machine learning techniques may
be worth exploring to improve heuristic sub-modules shown in Figure 1. Also, meta-heuristic techniques
could be used to more effectively utilize improvements to instances found using the insertion algorithm. For
example, evolutionary programming could combine the best portions of several instances to generate better
solutions, while tabu search could more efficiently use the results of the insertion improvement algorithm.
Future research should also consider designing a robust hyperparameter study focused on finding minimal
regret hyperparameters for this heuristic across a broad range of operational scenarios (Eldar and Merhav,
2004; Yu and Zhu, 2020).

Finally, beyond solving the Army aviation air movement mission assignment, utilization, and routing
problem, this heuristic has the potential to be integrated into additional decision support or planning models
where estimating aviation demands or utilization is an important consideration. For example, the heuristic
could assist in determining the best allocation of aviation resources to task forces (Nelson et al., 2023b).
More generally, future efforts could apply similar types of refueling constraints to problems related to routing
battery-powered vehicles that require regular recharging.
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A Additional Information

A.1 Notation Guide

Table 9: Notation Guide (in order of appearance within category)

Sets
K set of helicopter teams
Nk set of AMRs assigned to helicopter team k, Nk = {ik1 , . . . , ik|Nk|}
Sk
Nk set of complete feasible routes for helicopter team k

H set of HLZs
Indices

i index for AMRs, e.g., i ∈ {ik1 , . . . , ik|Nk|}, in Algorithm 1

j, j′ ∈ H indices for nodes in the HLZ network, j′ ̸= j
k ∈ K index for helicopter teams
s index for route, s ∈ Sk

|Nk|
Parameters

n number of AMRs
βk utilization penalty for aircraft team k, βk = αB(9−pi) = αbi
ζ ∈ Z+ initial AMR assignment quantity
η ∈ [0, 100] unrestricted assignment percent parameter
θ ∈ [0, 1] assignment improvement quantity ratio
α unsupported AMR penalty
γk flight hour penalty for helicopter team k
B base for exponential transformation of doctrinal AMR priority level
L maximum ride time (hours)

Computational Variables
y number of assignments to attempt to improve, y = ⌊θζ⌋
τ number of feasible routes after each AMR insertion iteration to carry forward to the next iteration
r = (r1, . . . , rm) routing sequence
fTOF(r) time of flight (TOF) for route sequence r
fTST(r) total slack time (TST) for route sequence r
fMST(r) minimum slack time (MST) for route sequence r
lj latest arrival time for AMR j
tkj,j′ time between nodes j and j′ for helicopter team k

Ak
j (r) calculated time of arrival at node j

bi transformed AMR priority for AMR i, bi = B(9−pi)

Πi binary variable with value 1 if AMR i is unsupported and 0 otherwise
Υk binary variable with value 1 if helicopter team k is assigned one or more AMRs and 0 otherwise
Φk total flight hours for helicopter team k
pi doctrinal AMR priority level from Table 10

Table 10: Air Mission Request Priority (pi) (Mogensen, 2014).

AMR Mission Priority (pi)

Downed Aircraft Recovery 1 (highest)
Emergency Leave 2
General Officer Movement 3
Military Working Dog 4
Critical Equipment Repair 5
Religious Services 6
O-6 Colonel or Equivalent 7
Rest & Recovery Leave 8
Other 9 (lowest)
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A.2 Scenario Details

Additional scenario descriptions are available in Nelson (2023).

Table 11: Afghanistan Scenario AMR HLZ Pickup and Drop Off Probabilities.

HLZ Probability Pickup
Probability Drop Off Given Pickup HLZ

M A S U G Z T N K F
M 1/4 0 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
A 1/16 1/4 0 1/14 1/14 1/14 1/4 1/14 1/14 1/14 1/14
S 1/16 1/4 1/14 0 1/14 1/14 1/4 1/14 1/14 1/14 1/14
U 1/16 1/4 1/14 1/14 0 1/14 1/4 1/14 1/14 1/14 1/14
G 1/16 1/4 1/14 1/14 1/14 0 1/4 1/14 1/14 1/14 1/14
Z 1/4 1/9 1/9 1/9 1/9 1/9 0 1/9 1/9 1/9 1/9
T 1/16 1/4 1/14 1/14 1/14 1/14 1/4 0 1/14 1/14 1/14
N 1/16 1/4 1/14 1/14 1/14 1/14 1/4 1/14 0 1/14 1/14
K 1/16 1/4 1/14 1/14 1/14 1/14 1/4 1/14 1/14 0 1/14
F 1/16 1/4 1/14 1/14 1/14 1/14 1/4 1/14 1/14 1/14 0

Table 12: Baghdad Scenario AMR HLZ Pickup and Drop Off Probabilities.

HLZ Probability Pickup
Probability Drop Off Given Pickup HLZ

T B L W F G R S J H
T 1/6 0 1/4 1/4 1/14 1/14 1/14 1/14 1/14 1/14 1/14
B 1/6 1/3 0 0 2/21 2/21 2/21 2/21 2/21 2/21 2/21
L 1/6 1/3 0 0 2/21 2/21 2/21 2/21 2/21 2/21 2/21
W 1/14 1/6 1/6 1/6 0 1/12 1/12 1/12 1/12 1/12 1/12
F 1/14 1/6 1/6 1/6 1/12 0 1/12 1/12 1/12 1/12 1/12
G 1/14 1/6 1/6 1/6 1/12 1/12 0 1/12 1/12 1/12 1/12
R 1/14 1/6 1/6 1/6 1/12 1/12 1/12 0 1/12 1/12 1/12
S 1/14 1/6 1/6 1/6 1/12 1/12 1/12 1/12 0 1/12 1/12
J 1/14 1/6 1/6 1/6 1/12 1/12 1/12 1/12 1/12 0 1/12
H 1/14 1/6 1/6 1/6 1/12 1/12 1/12 1/12 1/12 1/12 0
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B Solution Quality Over Time

B.1 Overview

During heuristic improvement through parameter tuning design of experiments, we fixed each run at 60
minutes. Throughout the run time, the heuristic had the ability to update the solution and improve the
overall objective. We chose the 60-minute run time as a time frame that would be acceptable for an aviation
air mission operations planner during typical operational conditions. We also analyze how the quality of
the solution improves over a longer period of time. This will give further insight into how the mission
planner could choose to use the air movement operations planning heuristic based on mission and planning
conditions.

In this analysis, we use the heuristic with Afghanistan scenario tuned heuristic parameter settings as
described in Table 6. We allow the heuristic to run for six hours on each of the thirty Afghanistan Scenario
validation data runs described in Section 6.2.

B.2 Results

Figure 5 displays the results of the quality of solution over time analysis. The lines show the best objective
values for each of the 30 runs over the six-hour execution time. An objective value decrease of 400 or more
represents a solution that uses one less high-cost QRF helicopter team. Smaller objective value decreases
are gained through route time improvements. The graph shows five runs that had significant objective value
improvements (a decrease of at least 400) after the 60-minute mark. This leaves the heuristic obtaining the
best solution for twenty-five of the thirty runs within the first hour. Furthermore, the heuristic obtained
its best solution for all runs within 150 minutes. Following the results of this analysis, the aviation mission
planner should have confidence that a 60-minute run time will have greater than 83% probability (confidence
interval [65.3%, 94.4%]) of finding the best heuristic solution and even greater probability (confidence interval
[88.4%, 100%]) with a 150 minute run time.

Figure 5: Afghanistan Validation Runs Quality of Solution Over Time. Source: authors.
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