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Abstract 
Debates over the scope of environmental impact, life-cycle, and cost-benefit analysis frequently 
revolve around disagreements on the causal structure of complex sociotechnical systems. 
Environmental advocates in the United States have claimed that new electrical interties with 
Canada increase development of Canadian hydroelectric resources, leading to environmental and 
health impacts associated with new reservoirs. Assertions of such second-order impacts of two 
recently proposed 9.5 TWh year-1 transborder transmission projects played a role in their 
suspension. We demonstrate via Bayesian network modeling that development of Canadian 
hydroelectric resources is stimulated by price signals and domestic demand rather than increased 
export capacity per se. However, hydropower exports are increasingly arranged via long-term 
power purchase agreements that may promote new generation in a way that is not easily modeled 
with publicly available data. Overall, this work suggests lesser consideration of generation-side 
impacts in permitting transborder transmission infrastructure while highlighting the need for 
higher resolution data to model the Quebec-New England-New York energy system at the 
project scale. More broadly, Bayesian analysis can be used to elucidate causal drivers in evolving 
sociotechnical systems to develop consensus for the scope of impacts to consider in 
environmental impact, life cycle, and cost-benefit analysis.  
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1. Introduction 
Quebec, Canada has 41 GW of installed hydropower generation accounting for 94% of all 
electrical generation in the province (Canada Energy Regulator, 2024a). These resources are a 
large and generally growing source of electricity for the northeastern United States: net exports 
to the U.S. averaged 22.5 TW·h year-1 between 2018-2023, compared to 11.9 TW·h year-1 
between 1998-2003, and accounted for roughly half of Canada’s net electricity exports to the 
U.S. in that period (Canada Energy Regulator, 2024b). Energy systems models find that 
increased intertie capacity with Canada generally lowers overall costs of decarbonization in the 
United States, with Canadian hydropower either buffering intermittent supply of U.S. wind and 
solar or supplying base load (Dimanchev et al. 2021, Calder et al. 2022).  
Newly proposed transmission projects have however generated considerable controversy, with 
three ~1GW corridors through New England having been cancelled or suspended in 2018, 2021, 
and 2024 (Appeal of Northern Pass Transmission, LLC & a., 2019; NECEC Transmission LLC 
et al. V. Bureau of Parks and Lands et al., 2022; Dalton, 2024; Gronendyke, 2018; Maine 
Department of Environmental Protection, 2021; U.S. Department of Energy, 2017). Legal, 
political, and social opposition to these projects has been animated by concerns over 
environmental and health impacts associated with the transmission infrastructure itself and with 
the large reservoirs that supply hydroelectricity (Appalachian MTN Club, 2018; Forest Society, 
n.d.; Natural Resources Council of Maine, 2018; Peggy Kurtz et al., 2018; Riverkeeper, n.d.). 
This is consistent with the experience of the United States more broadly, wherein renewable 
energy projects are frequently challenged on the adequacy of environmental impact assessments 
(EIAs) mandated by the National Environmental Policy Act (NEPA) and/or by state-level 
analogues. Such challenges accounted for 643 out of 2124 lawsuits across 31 categories 
inventoried by the U.S. Climate Change Litigation database as of November 2023 (Sabin Center 
for Climate Change Law, 2023). The land-use needs of renewable energies suggest that EIA will 
play an increasing role in debates over decarbonization decisions. For example, Lovering et al. 
(2022) calculate future global land use requirements of roughly 207 Mha by 2050 to achieve the 
International Energy Agency’s 2ºC warming scenario compared to 97 Mha in 2017, not counting 
land required for transmission infrastructure. 
NEPA requires evaluation of “reasonably foreseeable” environmental consequences with a 
“reasonably close” causal link to a federal action (e.g., permit issuance) even if these 
consequences fall outside the U.S., and even if they are second-order or indirect effects (Border 
Power Plant Working Group v. Department of Energy, 2003; Council on Environmental Quality, 
2021). Recent updates to the regulations governing NEPA implementation reaffirm that relevant 
impacts may occur at a different time or place than the covered action while clarifying that 
simple “but-for” causation is generally an insufficient standard (Council on Environmental 
Quality, 2020). Executive agencies generally have broad discretion and latitude to apply their 
own judgments in scoping and interpreting EIA, even while their actions and findings under 
NEPA can be (and frequently are) reviewed by the courts (Colburn, 2016).  
Disagreements over the required scope of EIA for transborder transmission projects have 
highlighted the need for methods to objectively assess the range of impacts to which they are 
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causally connected. Opposition has been animated by (among other factors) the claim that 
increased transborder transmission will lead to expanded generation in Canada, exacerbating 
diverse impacts such as greenhouse gas emissions from reservoirs and accumulation of 
methylmercury in the traditional foods of Indigenous communities (Calder et al., 2016; 
Rosenberg et al., 1997). Legal filings have cast generation-side environmental and health 
impacts of reservoirs as second-order consequences of transborder transmission projects that 
must be included in the scope of EIAs mandated by NEPA (Birchard, 2017).  
More broadly, life cycle assessment and cost-benefit analysis methodologies are subject to 
subjective judgments as to the causal network to overlay on complex, evolving socio-technical 
systems and may be improved by transparent methodologies for causal attribution. For example, 
“attributional” assessment (Ekvall, 2019), whereby a fraction of the life cycle emissions of 
existing reservoirs is assigned to energy imported over new electrical interties, is common, even 
among prospective cost-benefit analyses (New York State Energy Research and Development 
Authority, 2021). We have previously argued that this has the effect of underestimating net 
benefits from incremental expansion in transmission when these projects have no causal 
connection to new reservoir development (Calder et al., 2022). Indeed, a “consequentialist” 
perspective, whereby alternative interventions are compared in terms of the impacts causally 
connected to each candidate intervention, is better suited to decision support but rarely used in 
energy systems analysis due in part to difficulties in causal analysis (Curran et al., 2005).  
There is increasing interest in the application of statistical causal inference tools to scope the 
range of environmental impacts attributable to biophysical perturbations (Arif & MacNeil, 2022; 
Paul, 2011). We have not however identified any research that examines how these methods may 
elucidate impacts mediated through complex social or economic systems, such as the renewable 
energy transition. Indeed, impacts mediated through social systems, i.e., those which are 
conditional on an unknown future individual or social response, are virtually never addressed in 
EIA due to a lack of integrated modeling capacity or efforts by project proponents to limit EIA 
scope. This includes results of economic phenomena such as the “rebound effect”, where 
projects improving efficiency accelerate rather than arrest depletion of natural resources or 
environmental degradation (Owens et al., 2022), and market actions of electricity suppliers 
following projects that increase transmission capacity, which is the focus of the present analysis 
(Border Power Plant Working Group v. Department of Energy, 2003). 
Here, we conceptualize the Quebec–New England–New York electricity market as generation, 
demand, transmission, and price phenomena connected via a causal network with uncertain 
structure. We develop a rich dataset covering the period 1979 to 2021, which we use to evaluate 
the plausibility of alternative causal structures represented by Bayesian networks (BNs). BNs are 
directed acyclic graphs (DAGs) used to evaluate the evidential support for the presence and 
directionality of causation among system variables (Hernan & Robins, 2023; Nogueira et al., 
2022; Pearl, 1995, 2000; Spirtes et al., 2001; Su et al., 2013). Specifically, we interrogate the 
claim that transborder transmission infrastructure stimulates hydroelectric development in 
Canada. As described above, this claim has been the basis for legal filings arguing that DOE is 
required to consider generation-side environmental impacts in permitting transmission 
infrastructure and has contributed to opposition to these projects. We also characterize evidence 
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for other asserted or hypothesized causal relations in this system and identify challenges inherent 
in the use of causal inference methodologies for complex sociotechnical systems more broadly. 

2. Methods 
2.1. Study area 

Quebec, Canada has 37,590 MW of installed hydroelectric capacity (plus an exclusive power 
purchase agreement for 5,428 MW of generation at Churchill Falls in Labrador), accounting for 
91% of total generation (Hydro-Québec, 2022a). Quebec shares a border with the U.S. states of 
Maine, New Hampshire, New York, and Vermont and is a major exporter of electricity through 
interties with the latter three states. Development of large (>245 MW) hydroelectric facilities 
began with La Tuque (entry into service in 1955) and has continued to present day with 
Romaine-4 (2022). Locations of 
existing interties and large 
generation facilities are plotted in 
Figure 1. The U.S. accounts for 
the large majority (i.e., >70% over 
2018-2023) (Canada Energy 
Regulator, 2024a; Hydro-Québec, 
2018–2023) of net exports from 
Quebec and is the site of the most 
significant controversy regarding 
transmission infrastructure and is 
thus the focus of our analysis. 
The six states of New England 
share a common transmission 
system operator, ISO New 
England, though each state has 
different renewable energy targets 
and has historically managed 
renewable energy procurements 
individually. The electrical grid in 
New York is managed by ISO 
New York. We refer to New 
England and New York 
collectively as the northeastern 
United States (NE USA). 
Historically, surplus generation 
from Quebec has been sold on 
the short-term spot market to 
neighboring states and provinces 
(i.e., 90% of exports between 
2014-19). However, recently, 
longer-term export contracts tied to large purpose-built infrastructure have been pursued. This 

Figure 1: Large (>245 MW) generation and transborder transmission 
infrastructure in Quebec, Canada including Churchill Falls in 
Labrador due to exclusive power purchase agreement. New York 
(NY), New England states Connecticut (CT), Massachusetts (MA), 
Maine (ME), New Hampshire (NH), Rhode Island (RI), and 
Vermont (VT), and Quebec, Canada, are highlighted. Years of entry 
into service and installed capacity from  Hydro-Québec (2023). 
Locations of infrastructure from Hydro-Québec (2020). Intertie 
locations represent 4300 MW capacity expansion projects 
undertaken since 1979.   
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includes a 10.4 TWh year-1 (1.3 GW) corridor through New York recently completed, two 9.5 
TWh year-1 (~1 GW) corridors to Massachusetts via New Hampshire (cancelled) and Maine 
(suspended), and a ~1 GW corridor through Vermont and New Hampshire (cancelled) (Appeal of 
Northern Pass Transmission, LLC & a., 2019; Dalton, 2024; Gronendyke, 2018; Maine 
Department of Environmental Protection, 2021; NECEC Transmission LLC et al. V. Bureau of 
Parks and Lands et al., 2022; U.S. Department of Energy, 2017). 
Electricity trade between Quebec and Ontario display a balanced bilateral trade pattern that 
follows a seasonal cycle. Ontario's exports during the winter in Quebec help improve reliability 
and meet high electricity demands. In contrast, in the summer, there is a rise in exports from 
Quebec to Ontario due to the high demand for air conditioning (Independent Electricity System 
Operator, n.d.).  

2.2. Model conceptualization 
We developed a conceptual model for generation, demand, transmission, and price variables, 
representing assumed and disputed causal connections in the Quebec and NE USA electricity 
markets (Figure 2). Installed hydropower generation capacity is a function of current and 
projected demand and factors of safety 
to reflect uncertainties in future 
generation (governed by hydrologic 
conditions) and demand (Stedinger et 
al., 1984; U.S. Department of Energy, 
2016). High-consequence dams require 
higher factors of safety for such 
uncertainties, increasing the probability 
of overdesign (Fell et al., 2005; Herza et 
al., 2018). Exports are meanwhile 
determined by generation capacity, price 
signals resulting from the balance of 
supply and demand domestically and in 
export markets, and the capacity of 
available transmission infrastructure. 
Investments are necessary for increases 
in both installed generation and 
transmission. To our knowledge, these 
basic dynamics are not in debate and we 
have represented them as “asserted 
relationships” in Figure 2. 
Development of transborder 
transmission capacity stimulated by U.S. 
electricity demand may accelerate the 
development of Canadian hydroelectric 
resources by enhancing opportunities for 
export. Historically, higher prices for 

Figure 2: Conceptual diagram showing asserted and 
hypothesized relationships between generation, transmission, 
and demand variables in New York/New England (NE USA) 
and Quebec, Canada. Investments are a subset of revenues 
(omitted). Asserted and hypothesized relationships are 
described in the text. System variables are shaded red for 
Quebec, blue for the NE USA, and red/blue for transborder.  
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electricity in the U.S. than in Canada have played a major role in the pursuit of export 
opportunities by Canadian utilities (Warner & Coppinger, 1999). These export opportunities 
continue to be acknowledged in decision-making around new projects, for example, coupling the 
Maritime Link transmission project with the 824-MW Muskrat Falls hydroelectric project in 
Newfoundland & Labrador, developed in the 2010s (Government of Newfoundland and 
Labrador, 2012). Meanwhile, public statements by Hydro-Québec, the government-owned utility 
that manages electrical generation and distribution in Quebec, Canada, suggest that the export 
market is necessary for profitability (Snyder, 2018).  
However, it is not clear that investments in transmission infrastructure decisions are themselves 
stimulating new generation beyond key drivers such as domestic demand and the export 
opportunities allowed by existing transmission. It is therefore not understood if, in the context of 
proposed transmission projects, potential new generation (and its associated environmental and 
social effects) can be construed as second-order consequences within the meaning of 
environmental impact, life cycle, or cost benefit analysis. Likewise, it is not clear how opposition 
to transborder transmission infrastructure affects the viability of new generation projects in 
Canada. While capacity expansion models can simulate the economics of new hydroelectric 
generation under different transborder transmission scenarios, currently available tools do not 
have the resolution to allow for simulations conditioned on individual projects (Calder et al. in 
prep). Therefore, we apply causal inference to available data to better understand these questions. 
The claim that increased transborder infrastructure leads to increased generating capacity in 
Canada is the central focus of this analysis and is represented as Hypothesis # 1 in Figure 2. An 
affirmative finding would support the argument that generation-side impacts are “reasonably 
foreseeable” consequences of transmission infrastructure and hence reviewable under 
environmental impact assessments mandated by NEPA for federal permitting as previously 
argued to DOE (Birchard, 2017). Conversely, a negative (or null) finding may increase support 
among stakeholders who currently oppose transmission infrastructure on the basis of a supposed 
stimulating effect on generation (Webster, 2022).  
Beyond this central question, we evaluate other, non-mutually-exclusive relationships. 
Relationship # 2 holds that installed hydroelectric capacity is instead stimulated by the price 
difference between Quebec and the northeastern U.S. Other relationships evaluated represent 
potential drivers of transborder intertie capacity: Relationship # 3 hypothesizes that intertie 
capacity is stimulated by the same price difference, and Relationship # 4 hypothesizes that 
intertie capacity is stimulated by U.S. demand. These alternative hypotheses have fewer 
immediate implications for environmental impact assessment but may provide an alternative 
causal framework by which to understand the temporal evolution of this system. 

2.3. Variable definition and data aggregation  
Table 1 summarizes the raw variables aggregated for this analysis with reference to the original 
data sources. Some variables are then transformed to reflect likely lags (represented in Figure 2 
and described in Section 2.3). We selected the period 1979–2021, which maximizes data 
availability for relevant variables while covering all periods of major expansion of transborder 
transmission capacity.  
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Hydro-Québec’s annual reports were consulted to acquire information regarding the company's 
generation capacity, its sales to the domestic market, its exports to outside markets, its annual 
revenues, and its investments in transmission and generation infrastructure. We quantify the 
rated capacity of transmission infrastructure developed (in MW) as a measure of transmission 
rather than the power exported in a given year (MW·h) because this is more consistent with the 
physical properties of the infrastructure subjected to permitting and environmental review. 
Capacity of transmission lines was often reported in kV, which is not directly comparable to 
generation or transmission in MW. We converted transmission capacity to MW using the 
transmission line power-transfer capability curve commonly known as the St. Clair curve 
presented in supplemental information (SI) Figure S1 (Gutman et al., 1979), calibrated using 
eight available data points and applied to seven remaining points where capacity in MW was 
unknown (Equation 1). R2 for the calibration curve was 0.998. Calibration and prediction data are 
included in SI Table S1. The calibrated St. Clair curve is written as: 

𝑃 = α!𝑉" + α"𝑉 + 	β Eq. 1 

In Equation 1, 𝑃 is the maximum loadability (capacity) in MW; 	𝑉 is the maximum voltage in 
kV;	𝛼! is a constant calculated via calibration as 0.004431; 	𝛼" is a constant calculated via 
calibration as -0.5154; and 	β is a constant calculated via calibration as 20.82. 
To represent the disparities in electricity prices between these regions, we calculated the retail 
price difference between Quebec vs. NE USA based on average electricity price per kWh from 
both regions. We used retail price difference as a proxy for wholesale price difference since data 
for wholesale market prices was not available for the full period of our study (1979–2021). This 
approximation is justified by the strong correlation between retail and wholesale prices (Castro 
Pérez & Flores, 2023). A causal connection between other variables in the proposed network 
(Figure 2) and retail price would thus very likely imply a causal connection with wholesale price 
(or vice-versa). We tabulated other data related to climate, hydrology, and electricity sales to 
explore possible other correlations and identify potentially overlooked variables. These variables 
are described in SI Table S2 but are not retained in the final causal model described below. 
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Table 1: Summary of data aggregated for causal analysis, 1979-2021. Bolded variables correspond to conceptual 
Figure 2 and include values derived from underlying data sources. Unbolded variables allow calculation of certain 
derived variables. 
Variable name Units Description References 

EXPORTS TWh 
year-1 Hydro-Québec’s total exports Hydro-Québec 

(1979–2021) 

DEMAND_QC TWh 
year-1 

Hydro-Québec’s electricity sales to the Québec’s 
market; equates to generation net of transmission 
losses 

Idem 

DEMAND_US TWh 
year-1 

Annual electricity sales to ultimate customers for 
NE USA (New England and New York). 

U.S. Energy 
Information 
Administration 
(2022) 

INVESTMENT $CAD 
year-1 

Total investments in generation and transmission 
infrastructure made by Hydro-Québec 

Hydro-Québec 
(1979–2021) 

INSTALLED MW Installed hydroelectric generation capacity in 
Quebec, Canada Idem 

INTERTIE MW Transborder intertie transmission capacity (see text 
for method to convert from kV) 

U.S. DOE 
(1979–2021) 

PRICE $CAD 
kWh-1 

Price difference between U.S. and Quebec [= 
PRICE_US × EX_RATE – PRICE_QC] – retail 
price used as a correlate for wholesale price 

n/a 

PRICE_QC $CAD 
kWh-1 

Annual average retail electricity prices for 
electricity in Quebec 

(Hydro-Québec, 
2022b) 

PRICE_US $USD 
kWh-1 

Annual estimate of average electricity price in NE 
USA 

U.S. Energy 
Information 
Administration 
(2022) 

EX_RATE $CAD 
$USD-1 Exchange rate between Canadian and U.S. dollars Federal Reserve 

Board (2023) 

2.4. Variable transformations 
Intertie capacity and installed generation capacity reflect large civil infrastructure projects with 
lead times of an average of 8.6 years between announcement and completion (Ansar et al., 
2014). We therefore expect that responses in the form of infrastructure expansion may be lagged 
with respect to their predictor variables (as represented in Figure 2). However, infrastructure 
decisions are also made on the basis of forecasts and may be pursued in parallel with 
complementary components (intertie may expand in anticipation of new generation or vice 
versa). While many decades can elapse between first discussion of a hydroelectric project and its 
ultimate completion, the time between official sanction and project completion is substantially 
shorter; for example, the financing for Muskrat Falls was finalized in 2013 and the first power 
was generated in 2020. Therefore, for infrastructure outcomes, we consider lags in potential 
predictor variables of both 5 and 8 years. Because a lag period of t years reduces the size of the 
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dataset by t-1 years, consideration of longer lag periods interferes with the ability of the model 
algorithm to identify coherent networks; nevertheless we also explored the use of lag periods up 
to 15 years.  
Furthermore, we expect many variables represented in Figure 2 to respond not necessarily to the 
absolute value of upstream nodes (i.e., their parents) but rather to changes in those variables over 
some preceding time period. For example, sudden increases in intertie capacity may stimulate 
expansion in generation (Hypothesis 1). Therefore, both generation and transmission were 
represented as the 5- or 8-year running average of changes (which serve as predictors lagged 5 or 
8 years as described above). A lag is implemented for infrastructure variables serving as 
predictors but not when the same variable serves as an outcome. Thus, some variables may have 
more than one representation. 
Table 2: Asserted and hypothesized causal relations indicating lagged (5 or 8 years), Box-Cox transformed and 
discretized variables. Relations are summarized in Figure 2. Expanded figure showing all representations of 
variables included in SI Figure S2A. 

Response variable Asserted causal (parent) variable(s) Hypothesized causal (parent) 
variable(s) 

INSTALLEDa,b DEMANDQC
c, INVESTMENTd,e INTERTIEf,h,1, PRICEg,b,2 

INTERTIEa,h INVESTMENTd,e, INSTALLEDi,e
 PRICEg,b,3, DEMANDUS

c,4 

EXPORTSj PRICEj,b, INSTALLEDa,b, INTERTIEa,h n/a 

INVESTMENTd,e EXPORTSc,k, DEMANDQC
c n/a 

PRICEj,b DEMANDUS
j,e, DEMANDQC

j,e n/a 
a Total expansion in 5- or 8-year period up to year t  
b Box-Cox transformed variable 
c 5- or 8-year lag of the 5 or 8-year moving average for the incremental expansion, i.e., value in year t minus value in 
year t-1 

d Average total investment in 5- or 8-year period up to year t 
e Discretized variable ("low", "medium", "high") 
f 5- or 8-year lag of the total intertie capacity expansion in 5- or 8-year period up to year t  
g 5- or 8-year lag of price difference in 5- or 8-year period up to year t  
h Discretized variable (“non-significant”, “significant”) 
i 5- or 8-year lag of the total installed capacity expansion in 5- or 8-year period up to year t  
j Average expansion in 5- or 8-year period up to year t 
k Discretized variable ("negative", "positive") 
1,2,3,4 Hypotheses 1, 2, 3 and 4 

Finally, variables were transformed to respect the underlying assumptions for the structure and 
parameters of the BN approach used. BN models can be learned from data on continuous 
variables that are normally distributed, or on categorical variables. Therefore, if they are not 
already normally distributed, data may either be transformed to respect the assumption of 
normality or discretized. We thus evaluated each variable for normality using the Shapiro-Wilk 
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test with a significance level of 0.05. Non-Gaussian variables (i.e., those that failed the Shapiro-
Wilk test) were transformed using the Box-Cox method with the boxcox() function in the MASS 
package in R (Ripley & Venables, 2003) to achieve normality where possible in order to retain 
maximum information. 
After transforming the non-Gaussian variables, we reapplied the Shapiro-Wilk test to evaluate 
the effectiveness of the transformation. Variables that failed the Shapiro-Wilk test post-
transformation were then discretized. Discretization of variables was done manually using the 
ordered cut() function in R; this means that continuous variables were converted to ordinal 
discrete variables. We used histogram plots to determine the cutting points for each variable to 
ensure a roughly equal distribution of observations across variable levels. Depending on the 
variable’s definition (Table 1) and its histogram, we discretized the variables according to three 
different schema: 1. "low", "medium", or "high", 2. “non-significant” or “significant” and 3. 
“negative” or “positive”. Implementation of a manual discretization protocol helps ensure 
production of meaningful and interpretable BN models (Beuzen et al., 2018). All transformations 
are reported in Table 2. Code for all variable manipulations and transformations is included in 
the reproduction information (RI). 

2.5. Bayesian network modeling and evaluation of causal relations 
We used BN modeling to test alternative model structures against data in order to evaluate the 
plausibility of asserted and hypothesized causal relations (Section 2.1). BNs are probabilistic 
graphical models that represent sets of variables and their conditional dependencies in the form 
of DAGs (Scutari & Denis, 2021). DAG representation of these networks aids in illuminating 
possible causal relationships between variables, providing a clear illustration of how one variable 
or factor can affect others. BN models contain two major components: the network structure, 
which maps nodes and directed edges to create a DAG; and conditional probability distributions 
for each node, which are represented using parameters, describing the relative likelihood of 
values of response variables conditioned on the values of its direct causes.  
Two types of data-training algorithms are available to evaluate network structures against a 
dataset: score-based and constraint-based (Su et al., 2013). Score-based methods calculate a 
score for alternative structures, and the score reflects the ability of that structure to explain the 
observed data. Score-based methods are commonly favored for datasets that are small and 
contain noise (Cheng et al., 2002). In score-based methods, the objective is to identify the 
configurations that yield high scores. Conversely, constraint-based methods seek to identify 
conditional independence (i.e., Markov condition) among variables. These methods use data to 
perform hypothesis testing regarding conditional independence to eliminate edges from a fully 
connected undirected graph. Subsequently, directions are assigned to edges in accordance with 
the d-separation criterion (Pearl, 2000). It is also common to use hybrid algorithms that integrate 
the two types of methods to capture the benefits of each as a function of the properties of the 
dataset and the strength of hypotheses (Tsamardinos et al., 2006).  
We rely on a score-based method to evaluate the network structure against data because our 
dataset does not have a sufficient number of observations to effectively perform the hypothesis 
tests required of constraint-based methods. For example, many variables had to be discretized, 
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resulting in a loss of information, and some variables were lagged, resulting in a loss of some 
years (described in Section 2.3 and summarized in Table 2). The score-based method employed 
uses the log-likelihood scoring criterion and employed a hill-climb (HC) algorithm using the hc() 
function in the bnlearn package for R to identify the highest scoring network (Scutari et al., 
2023). Generally, the log-likelihood criterion is the least restrictive (will admit the most 
relations), enabling us to most confidently rule out hypothesized (or asserted) relations if they do 
not appear in the best-fitting model structures.  
To further assess the degree of confidence in returned relations, we also applied alternative 
scoring criteria (Akaike information criterion, or AIC, and Bayesian information criterion, or 
BIC) that penalize for the number of edges in the network. AIC and BIC results are discussed in 
greater detail in the SI. In all cases, the algorithm was initialized using the hypothesized network 
presented in Table 2 and was constrained by a blacklist consisting of all illogical relations 
between variables (e.g., contemporary variables cannot influence lagged variables).  
To interpret the network relations (i.e., assign a direction of effect) and measure the goodness of 
model fit for each variable in our DAG, we used the predict() function with the bayes-lw method 
(Needham et al., 2007). The bayes-lw method performs both causal prediction and noncausal 
Bayesian inference using Monte Carlo methods. Further likelihood weighting ensures that 
predictions account for all possible values of variables accounting for their relative likelihood. 
To assess goodness of fit for continuous numerical variables, we calculated the coefficient of 
determination (r squared), while for discretized variables we calculated the proportion of correct 
predictions as a measure of model accuracy.  
Finally, to further interrogate specific relations of interest, we used the d-separation criterion.  
Informally, the d-separation criterion states that, “Each variable is independent of its non-
descendants in the network given its parents” (Ding & Rebai, 2010). More formally, the d-
separation criterion specifies the set of conditional dependences and independences that are 
implied by a particular graph and subject to statistical hypothesis testing. Specifically, we used 
our data to test the independence of pairs of nodes by conditioning each pair on the pair's 
parents. If the p-value for an independence test is greater than the high threshold of 0.95, then the 
two variables are interpreted as "Conditionally Independent". If the p-value is smaller than the 
low threshold of 0.05, then this is labeled "Potential Missing Link". If the p-value is between the 
low and high thresholds, then the analysis is inconclusive. All functions mentioned in this section 
are reported in RI, including the functions that were developed by authors. 

3. Results and discussion 
3.1. Model structures returned by Bayesian network analysis 

Using the log-likelihood criterion, the DAGs of the best fitting BNs were identical for the 5-year 
and 8-year formulations. Figure 3 shows the relations included in the best fitting BN (log-
likelihood criterion) in comparison with the conceptual model presented in Figure 2, where 
relations not included in the fitted BN are greyed out. Table 3 provides an indication of the 
accuracy of the fitted relations. As described in Section 2.5, the log-likelihood criterion is 
generally more permissive than AIC and BIC and thus less likely to falsely rule out relationships. 
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Thus, hypotheses rejected using the 
log-likelihood criterion are unlikely 
to exist. The identical model 
structure returned by both 5- and 8-
year model formulations suggests 
that results are not sensitive to the 
averaging/lag period retained. 
The best fitting BN does not indicate 
that installed generation capacity 
depends on intertie capacity 
(Hypothesis 1). The best fitting BN 
does indicate that price difference 
between the northeastern U.S. and 
Quebec has an influence on installed 
generation capacity (Hypothesis 2), 
but not on intertie capacity 
(Hypothesis 3). Intertie capacity also 
does not seem to be influenced by 
U.S. electricity demand (Hypothesis 
4). D-separation results (Table 4) 
confirm the conditional independence 
between intertie capacity and 
installed generation (Hypothesis 1). 
Other results are the same as 
presented in Figure 3, with the 
exception of the relationship between 
electricity demand in Quebec and 
investments. 
Therefore, the assertion that 
transborder intertie capacity directly 
“causes” expansion of hydroelectric 

generation in Quebec is not supported by our analysis. We note, however, that expanded intertie 
capacity does influence electricity exports, which influences investments, and investments in 
turn influence installed capacity. Thus, expanded transborder intertie capacity appears to be one 
part of a broader evolving technological system with mutual interdependencies rather than a 
trigger of installed hydropower capacity per se. Yet, as described below, the ambiguous direction 
of effect along the causal path does not necessarily support the interpretation that expanded 
generation capacity is even a second- or higher-order result of expanded transmission.  
 

 

Figure 3: DAG that maximizes the log-likelihood scoring 
criterion (black lines) in comparison with the conceptual model 
in Figure 2 (including light grey lines). The same structure 
applies to both 5-year and 8-year models. Intertie à Exports has 
an ambiguous direction of effect as described in Section 3.2. 
Concept nodes are shaded red for Quebec, blue for the NE USA, 
and red/blue for transborder. Corresponding DAG is included in 
SI Figure S2B. 
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Table 3: Summary of our BN modeling results: fitted relationships and corresponding performance metrics. Results 
generated using the AIC and BIC criteria are available in SI Tables S3 & S4 (AIC), and S5 & S6 (BIC). Variables 
are transformed following footnotes in Table 2.  

Response Causal (parent) variable(s) 5-year model 8-year model 
r squared Accuracy r squared Accuracy 

INSTALLED DEMANDQC, 
INVESTMENT, PRICE 0.76 - 0.96 - 

INTERTIE INVESTMENT, 
INSTALLED - 0.70 - 0.89 

EXPORTS PRICE, INSTALLED, 
INTERTIE 0.78 - 0.92 - 

INVESTMENT EXPORTS - 0.76 - 0.96 

PRICE DEMANDUS
 0.60 - 0.76 - 

Table 4: Summary of the results when conditioning on parents for the unsupported links presented in Figure 2. 
Variables are transformed following footnotes in Table 2. 
Response Causal (parent) variable Conditional independence results 
INSTALLED INTERTIE Conditionally independent 
INTERTIE DEMANDUS

 Conditionally independent 
INTERTIE PRICE Conditionally independent 
INVESTMENT DEMANDQC Potential missing link 
PRICE DEMANDQC Conditionally independent 

 

AIC and BIC models broadly agree with the results presented here. In AIC and BIC models, 5-
year formulations were more detailed, likely because fewer observations were discarded in the 
creation of 5-year-lagged variables than 8-year-lagged variables. In the BIC models, Hypothesis 
1 was supported, but the direction of effect was negative. Model structures generated using the 
AIC and BIC criteria are available in SI Figures S3 (AIC) and S4 (BIC). These figures 
demonstrate how stricter criteria, such as AIC or BIC, limit the model’s ability to identify edges 
that can be discovered using our data.  
For all methods evaluated here, we explored the use of longer lag periods to account for longer 
average lead times between project sanction and development (e.g., up to 15 years). However, 
these models returned only fragmentary network structures, likely due to the significant amounts 
of data that must be discarded to calculate the first averaging period (see Section 2.3). All code 
for these (and other) averaging periods is available via GitHub. 
Figure 3 shows the signs of the fitted relations, indicating that most variables are positively 
influenced by their causal predictors. Supplemental figures characterizing the direction of effect 
of the different relations are included in the SI. SI Figure S5 shows that installed generation 
capacity increases if any of its predictors increase. SI Figure S6 shows that intertie capacity is 
positively impacted by increases in installed generation capacity and investment levels. SI Figure 
S7 shows that price difference is positively impacted by increases of average demand in the NE 
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USA. By contrast, investments are negatively influenced by total exports in the previous time 
step, which in turn is negatively influenced by installed capacity (thus leading to an indirect 
positive relation between installed capacity and subsequent investments) as shown in SI Figure 
S8. SI Figure S9 shows that the relation between intertie capacity and total exports is ambiguous, 
being positive or negative depending on the values of the other predictors of total exports: 
installed generation capacity and price difference. 

3.2. Temporal evolution of the generation-transmission system 
Our analysis suggests that there is no direct association between increased intertie capacity and 
increased generation capacity (Hypothesis 1). There is an indirect link through exports and 
investment, meaning that increased exports facilitated by increased intertie capacity allows 
investments in both generation and transmission infrastructure. Therefore, intertie capacity 
appears to play at most an indirect, ancillary role in decisions around generation expansion. 
Instead, this analysis reveals that investments in installed capacity are driven by a combination of 
domestic demand and price signals in the form of a difference between electricity prices in the 
northeastern United States and Quebec (Hypothesis 2). These price signals also drive export 
decisions over existing infrastructure. The significant reserve capacity of Hydro-Québec (up to 
177 TWh) allows for selective exports at times of relative greater prices in the U.S (Hydro-
Québec, 2020).  
While intertie capacity does not directly drive installed generation capacity, our analysis reveals 
that installed generation may partially drive intertie capacity. This may correspond to Hydro-
Québec’s seeking markets for excess supply; hydropower projects are likely to be overdesigned 
in order to guarantee the ability to meet local demand and to supply existing contracts, 
potentially posing a choice between non-revenue spills and pursuit of export opportunities. We 
do not find evidence that intertie capacity is the direct consequence of price signals (Hypothesis 
3) or U.S. demand (Hypothesis 4). However, it may be a second-order consequence of these 
variables via the role of price signals on installed capacity. 
As described earlier, the premise that increased transborder transmission capacity stimulates 
increased generation in Quebec has been used to argue for increased scope of environmental 
impact assessment under NEPA (Birchard, 2017) and to attribute greenhouse gas emissions from 
reservoirs to proposed transmission projects (New York State Energy Research and 
Development Authority, 2021). This premise has also adversely affected support for such 
projects among environmental stakeholders whose support is important for achieving 
decarbonization of the electrical sector (Webster, 2022). Overall, this analysis supports a 
contrary view, i.e., that new transborder transmission projects should be considered 
independently from the suite of environmental and health impacts associated with reservoir 
construction.  
Historically, electricity exports from Quebec have been overwhelmingly settled on the short-term 
spot market (i.e., between 86–91% every year since 2001), which are the market behaviors 
captured by the causal model developed here. By contrast, several recently proposed projects tie 
long-term power purchase agreements to purpose-built infrastructure (Appeal of Northern Pass 
Transmission, LLC & a., 2019; BloombergNEF, 2023; Maine Department of Environmental 
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Protection, 2021). It is possible that power commitments via these long-term contracts will 
stimulate reservoir development in a way that we do not observe with historic export patterns, for 
example, by creating commitments that cannot be satisfied without new generation. 
Theoretically, capacity expansion models can simulate how individual transmission projects 
affect the overall economics of new generation projects (and vice-versa) but in practice there are 
no publicly available models with project-scale resolution. Because Hydro-Québec does not 
publish reservoir levels, capacity factors, or other key statistics on the generation fleet, impacts 
of new long-term power purchase agreements on build-out of generation or on exports to other 
markets are currently speculative (Calder et al. 2022). Overall, this analysis suggests that the new 
transmission infrastructure is not driving build-out of hydroelectric generation in Canada per se, 
but that a shift to long-term power purchase agreements may introduce pressures on electrical 
supply that are not currently easily modeled. 

3.3. Implications for causal inference methodologies in sociotechnical systems 
This analysis suggests that formal causal inference methodologies may be used to understand 
evolving sociotechnical systems more broadly, for example, to scope environmental impact, life 
cycle, and cost-benefit analysis by building consensus on the range of relevant second-order 
effects. Because sociotechnical systems in general feature complex feedbacks, plausible narrative 
claims can be advanced for many alternative causal interpretations across a wide range of 
settings including the energy system (studied here), urban housing supply and affordability (Li, 
2021), and investments in resource conservation and protection of environmental resources 
(Owens et al., 2022). We posited earlier that formal causal inference methodologies could help 
resolve debates around and build consensus over the most parsimonious causal structures to 
overlay on complex systems where “everything is connected”.  
We have demonstrated several modeling and interpretation approaches that may facilitate the use 
of Bayesian network analysis in other contexts. This includes the consideration of multiple BN 
algorithms, models and the interpretation of evidentiary support for hypothesized relationships 
on the basis of (1) agreement across models for a given hypothesized relationship and (2) 
whether it manifests as part of a causal structure with a plausible mechanistic interpretation. We 
have endeavored to describe evidence in support of potential causal relationships on the basis of 
a holistic analysis that considers multiple modeling choices and alternative causal structures, 
accepting that certain subjective choices may have significant effects on certain conclusions.  
In certain cases, conclusions about features of the causal network may be robust to a wide variety 
of modeling choices. This was illustrated in this case study by our conclusion that hydroelectric 
generation in Canada is not the outcome of increased transborder intertie capacity, despite a 
plausible narrative claim advanced by expert stakeholders. In that case, our conclusions are 
robust to all possible models considered and thus seem robust enough to dismiss this assertion. 
For example, we failed to find evidence for this assertion across model formulations that varied 
in averaging/lag periods assumed and BN algorithm retained.  
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Conversely, our analysis 
suggests that these modeling 
choices can affect network 
structure in ways that could 
change the interpretation of 
causal dynamics in other 
settings. For example, our 
analysis based on the BIC 
criterion returns subtly different 
network structures when 5-year 
lag/averaging periods are 
considered vs. 8-year periods (SI 
Figure S10). In this analysis, 
data availability and the 
objective of ruling out asserted 
links suggested the BIC criterion 
was not well-suited. As in other 
types of quantitative modeling, professional judgment is required to exercise subjective decisions 
to interpret potentially contradictory results across model formulations.  
The data available to parameterize a model clearly influence model predictions, and data are 
usually fragmentary and incomplete. In the setting of BNs, this may manifest as an unobserved 
counterfactual, creating uncertainties around a causal relationship between two nodes. For 
example, in the period 1979-2021, the price difference between Quebec and New York/New 
England was always positive (Figure 4), even while the magnitude of this difference varied. This 
limits the range of conditions over which the model may be valid. The shapes of the distributions 
of available data furthermore required extensive transformation to respect the assumptions of 
Bayesian analysis as summarized in Table 2 and described in Section 2.2. These transformations, 
though necessary to respect the assumptions of Bayesian analysis, result in a loss of information 
that increase uncertainties in any model returned.  
BN analysis is subject to the same limitations as any graphical modeling strategy, and the use of 
these tools to describe evolving sociotechnical and socioenvironmental systems presents several 
inherent challenges. In particular, such systems have no inherent temporal beginning or end, 
feature multiple feedbacks across temporal and spatial scales, are characterized by evidence 
generated by a range of methodological traditions, and feature “mechanisms” that can be 
articulated at arbitrary levels of detail (Calder et al., 2020). Conceptual models for such systems 
thus necessarily reflect the judgments and specific decision context of the people who create 
these conceptual models.  
As we have demonstrated here, these challenges can be compounded by the application of 
quantitative analysis, which necessarily embeds decisions made by modelers. This includes 
approaches to transforming and normalizing data and the selection of models, but also subjective 
elements of interpretation, for example, the description of results that conflict across model 
implementations with different BN learning algorithms. These are likely to be compounded by 

Figure 4: Time series of installed generation capacity and intertie 
capacity, and of retail electricity price differences between Quebec and 
New York and New England (average) 1979-2021.  
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disagreements over the precise meaning of “reasonably foreseeable” and “reasonably close” in 
the application of NEPA and other institutional features that govern the interpretation of 
quantitative information, but that is outside the scope of this analysis.  
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