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Abstract
Environmental impact assessment (EIA), life cycle analysis (LCA), and cost benefit analysis 
(CBA) embed crucial but subjective judgments over the extent of system boundaries and the 
range of impacts to consider as causally connected to an intervention, decision, or technology of 
interest. EIA is increasingly the site of legal, political, and social challenges to renewable energy 
projects proposed by utilities, developers, and governments, which, cumulatively, are slowing 
decarbonization. Environmental advocates in the United States have claimed that new electrical 
interties with Canada increase development of Canadian hydroelectric resources, leading to 
environmental and health impacts associated with new reservoirs. Assertions of such second-
order impacts of two recently proposed 9.5 TWh year-1 transborder transmission projects played 
a role in their cancellation. We recast these debates as conflicting mental models of 
decarbonization, in which values, beliefs, and interests lead different parties to hypothesize 
causal connections between interrelated processes (in this case, generation, transmission, and 
associated impacts). We demonstrate via Bayesian network modeling that development of 
Canadian hydroelectric resources is stimulated by price signals and domestic demand rather than 
increased export capacity per se. However, hydropower exports are increasingly arranged via 
long-term power purchase agreements that may promote new generation in a way that is not 
easily modeled with publicly available data. We demonstrate the utility of causal inference for 
structured analysis of sociotechnical systems featuring complex mechanisms that are not easily 
modeled mechanistically. In the setting of decarbonization, such analysis can fill a gap in 
available energy systems models that focus on long-term optimum portfolios and do not 
generally represent questions of incremental causality of interest to stakeholders at the local 
level. More broadly, these tools can increase the evidentiary support required for consequentialist 
(as opposed to attributional) LCA and CBA, for example, in calculating indirect emissions of 
renewable energy projects.

Keywords
Renewable energy, Causal inference, Cost benefit analysis, Life cycle assessment, 
Sociotechnical systems, Energy policy
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1. Introduction
To limit global climate warming to within 1.5ºC of preindustrial averages, total greenhouse gas 
emissions will need to be offset by removal and sequestration (“net-zero”) by 2050 (Dafnomilis 
et al., 2024; Huang & Zhai, 2021; United Nations, 2024; van Soest et al., 2021). This in turn will 
require investments in electrical generation and transmission infrastructure on the order of $4 
trillion to $6 trillion beyond a business-as-usual scenario over the same period in the United 
States alone (National Academies of Sciences, Engineering, and Medicine, 2021). Yet, in the 
United States and internationally, governments, utilities, and other stakeholders have faced major 
obstacles in achieving the rate of build-out of renewable energies necessary to meet these targets. 
As we describe below, a significant fraction of projects proposed for development are challenged 
using Environmental Impact Assessment (EIA) legislation.

In this section, we recast EIA-centered debates as disagreements over causal “mental models” 
and describe how causal inference methodologies may be used to evaluate the extent to which 
competing mental models are supported by available data. We describe how this may 
complement existing energy systems models which are not designed to elucidate questions of 
incremental causality at the local scale, and how these methods add to the literature on 
sociotechnical analysis of energy systems. We introduce the case study of controversial electrical 
interties between the United States and Canada, which provides a timely setting for 
characterization of advantages and limitations of these methods. We introduce the central claim 
we test in this analysis, that new electrical interties stimulate new reservoir development in 
Canada, and we describe why this question cannot be answered with currently available energy 
systems models.

1.1. Local sociopolitical dynamics complicate decarbonization planning

Notwithstanding major recent developments such as the U.S. Inflation Reduction Act, the pace 
of build-out of wind, solar, storage, and associated transmission infrastructure remains highly 
uncertain in the United States and internationally. These uncertainties arise from (1) quantifiable 
differences in model assumptions in the national and international economic and technological 
parameters driving technology uptake and the range of projects that are proposed (e.g., future 
costs for battery storage, availability of tax credits, etc.) (Batel, 2020; Bistline et al., 2024; 
Moore et al., 2022); and (2) the cumulative effect of less predictable sociopolitical processes at 
the individual to global scales that determine (among other things) the pace at which proposed 
projects are actually built (Batel, 2020; Moore et al., 2022), which is the focus of this analysis.

Realization of climate targets is jeopardized by the cumulative effects of localized rejection of 
renewable energy projects. In the United States and Canada, 17% and 18% respectively of wind 
projects proposed between 2000 and 2016 faced significant opposition, with this fraction 
increasing over time (Stokes et al., 2023). Weise and Bhat (2024) report that 15% of U.S. 
counties have effectively halted new wind and/or solar projects, with half of solar bans having 
been passed in 2023 alone. Restrictions at the state level have more than doubled between 2023 
and 2024 (Eisenson et al., 2024). Environmental protection legislation the most common vehicle 
for these challenges, accounting for 1,316 of the 2,328 legal challenges against U.S. renewable 
energy projects inventoried by the Sabin Center for Climate Change Law as of September 2024 
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(Sabin Center for Climate Change Law, 2024). Of these, challenges to under federal or state 
environmental impact assessment (EIA) legislation account for the majority (706 out of 1,316). 
The land-use needs of renewable energies suggest that EIA will play an increasing role in 
debates over decarbonization decisions. For example, Lovering et al. (2022) calculate future 
global land use requirements of roughly 207 Mha by 2050 to achieve the International Energy 
Agency’s 2ºC warming scenario compared to 97 Mha in 2017, not counting land required for 
transmission infrastructure.

1.2. Disputes over Environmental Impact Assessment reflect conflicting beliefs about 
causal relationships in environmental, social, and technical systems

EIA provides a mechanism by which infrastructure and other projects will be evaluated in terms 
of foreseeable environmental impacts and is now required in some form for major generation, 
transmission, and many other types of projects in most countries (Glasson & Therivel, 2013; 
Morgan, 2012). In the United States, the National Environmental Policy Act (NEPA) requires 
evaluation of “reasonably foreseeable” environmental consequences with a “reasonably close” 
causal link to a federal action (e.g., permit issuance) even if these consequences fall outside the 
U.S., and even if they are second-order or indirect effects (Border Power Plant Working Group 
v. Department of Energy, 2003; Council on Environmental Quality, 2021). Recent updates to the 
regulations governing NEPA implementation reaffirm that relevant impacts may occur at a 
different time or place than the covered action while clarifying that simple “but-for” causation is 
generally an insufficient standard (Council on Environmental Quality, 2020). Executive agencies 
have broad discretion and latitude to apply their own judgments in scoping and interpreting 
environmental assessments and impact statements, even while their actions and findings under 
NEPA can be (and frequently are) reviewed by the courts (Colburn, 2016).

There is increasing interest in (1) the extent to which EIA, life-cycle analysis (LCA), and similar 
tools embed critical but subjective and often inadequately justified judgments of developers or 
regulators, notably, in decisions over the geographic, temporal, and causal scope of the analysis 
(Cederlöf & Hornborg, 2021; Das, 2024; Dubois-Iorgulescu et al., 2018); and (2) techniques to 
consider second- and higher-order effects in EIA, and particularly social effects or effects 
mediated through social responses (Börjesson Rivera et al., 2014; Nilsson et al., 2021; Pohl et 
al., 2019). These questions are becoming increasingly urgent as widespread disagreements 
around EIA scope and adequacy combine to slow progress to decarbonization, but 
methodologies to resolve these controversies or build consensus among stakeholders remain 
elusive (Dutta et al., 2021; Hall et al., 2022; Larsen et al., 2018; Zarzavilla et al., 2022).

This work reports on controversies over the scope of EIA for transmission projects proposed to 
increase U.S. import capacity of Canadian hydropower in terms of contested “mental models” 
and proposes causal inference methodologies as an avenue of resolution and consensus-building. 
Mental models encode beliefs about deterministic or probabilistic causal relations among 
physical and social phenomena and are increasingly deployed to analyze conflicts over 
environmental systems (Gaus et al., 2023; Khemlani et al., 2014; Kolkman et al., 2007; Olofsson 
et al., 2023). To our knowledge, this is the first work to evaluate how competing causal beliefs 
may be evaluated quantitatively in the setting of disputed EIA.  
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1.3. Debates over United States – Canada energy integration provide a case study for the 
use of Bayesian inference methodologies to address controversies in EIA

In the northeastern United States, state decarbonization plans have sought to leverage Canadian 
hydroelectric resources as firm lower-carbon capacity and to buffer intermittent wind and solar 
generation; however, of four (~1 GW) large intertie projects proposed since 2018, two have been 
cancelled (2018 and 2024) and one was suspended in 2021 before a legal challenge allowed 
construction to resume (Appeal of Northern Pass Transmission, LLC & a., 2019; NECEC 
Transmission LLC et al. V. Bureau of Parks and Lands et al., 2022; Dalton, 2024; Gronendyke, 
2018; Maine Department of Environmental Protection, 2021; U.S. Department of Energy, 2017). 

A key feature of the opposition to these transmission projects is the claim that increased 
transborder transmission will stimulate increased generation in Canada and hence increase the 
environmental, social, and health impacts of large-reservoir hydropower (Calder et al., 2016; 
Rosenberg et al., 1997); this has been the basis for legal filings to the U.S. Department of Energy 
and others during the EIA process for these projects (Appalachian Mountain Club, 2018; 
Birchard, 2017; Forest Society, n.d.; Natural Resources Council of Maine, 2018; Peggy Kurtz et 
al., 2018; Riverkeeper, n.d.). Thus, debate over transborder electrical interties is in effect a 
debate over how to understand the causal relationship between transmission and generation 
infrastructure and whether to construe generation-side impacts as causally downstream from 
decisions over transmission. This is an example of a much broader category of disputes over EIA 
which center on the range of impacts that can be plausibly attributed to the action under 
consideration which differ between parties according to the mental model of each.

1.4. Quantitative tools are needed to bridge the gap between technical and sociotechnical 
conceptions of the evolving energy system

Such questions are not easily addressed by currently available mechanistic energy systems 
models. Available capacity expansion models (at least in the transborder context) do not have the 
resolution to describe, for example, how a decision about a transmission corridor affects the 
probability of new generation (Calder et al., 2024). In general, energy systems research has 
tended to develop models that characterize optimal portfolios of assets without regard to 
contingencies or path-dependencies introduced at intermediate steps along the path to these 
portfolios (e.g., at the project-specific level) (Ba et al., 2024; Bouffard et al., 2018; Dimanchev et 
al., 2021; Rodríguez-Sarasty et al., 2021). This work may acknowledge social “barriers” to 
implementation and support characterization of uncertainties around economic (but usually not 
other social) constraints or trends (Geels et al., 2017; Sovacool et al., 2015). 

Conversely, a socio-technical framing interrogates the political, perceptual, legal, and behavioral 
mechanisms that combine to constrain and determine the evolution of the energy system in ways 
that are often overlooked in quantitative research (Sovacool, 2009). In reality, the energy system 
evolves as a function of complex interdependencies between social (political, economic, etc.) 
and technical processes that are difficult to simulate mechanistically (e.g., as in traditional energy 
systems models) (Geels, 2005; Hess & Sovacool, 2020, 2020), though the present work posits 
that retrospective quantitative analysis may nonetheless be possible. At the same time, there is 
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increased interest in understanding conflict over renewable energy projects in terms of the set of 
tools used by, and range of projects proposed by, governments, developers, and utilities, notably 
with respect to public priorities, values, and interests (Calder et al., 2024; van de Grift & 
Cuppen, 2022).

There is a need for tools that allow for structured analysis of alternative worldviews as they 
pertain to the evolution of sociotechnical systems (notably, the range of impacts to consider in 
EIA, as analyzed here) in a way that provides empirical evidence for or against competing 
mental models. Such tools can provide a transparent basis for regulators to justify decisions over 
(for example) the scope of an analysis and can help other actors decide whether they will support 
or oppose a given project (for example, transmission projects that are contentious given their 
uncertain range of impacts). Here, we propose a role for tools that (1) complement rather than 
imitate the range of disciplinary-specific tools available to understand the performance of 
technical systems (e.g., tools to simulate the current electrical grid that operates almost 
independently of social dynamics) and (2) leverage data to describe the range of social and 
technical systems and sectors that combine to describe the evolution of energy systems using a 
sociotechnical framing. 

There is for example increasing interest in the application of statistical causal inference tools to 
scope the range of environmental impacts attributable to biophysical perturbations (Arif & 
MacNeil, 2022; Paul, 2011). We have however not identified work exploring the use of these 
methodologies in the setting of impacts mediated by social systems, for example, to arrive at 
consensus of the range of second-order impacts that can plausibly be attributed to renewable 
energy projects. We demonstrate by way of case study that Bayesian inference methodologies 
can bridge the gap between (1) energy systems analysis, which is overwhelmingly quantitative 
and focused on the optimization of select technical endpoints, and (2) analysis of controversies 
regarding the scope of social and environmental impacts to consider. 

This responds to a growing call within sociotechnical systems research to integrate causal 
inference methodologies to examine the intricate cause-and-effect relationships inherent in 
energy transitions (Andersen & Geels, 2023; Geels et al., 2016; Köhler et al., 2019). By 
employing causal inference models, we can quantitatively assess how non-technical factors 
influence technical developments and vice versa, providing empirical evidence to support or 
challenge competing mental models (Pearl, 2000; Sovacool et al., 2021). This enables (1) a more 
nuanced understanding of contingencies and path dependencies (e.g. secondary impacts) that 
shape energy systems which is often neglected in mental models, and (2) the ability to curate 
effective and socially responsive energy policies by identifying critical causal relationships and 
potential intervention points to accelerate decarbonization (Kern & Rogge, 2016).

More broadly, we posit that such methods may be informative for understanding the evidence 
underpinning competing mental models in other types of disputes. Impacts mediated through 
social systems, i.e., those which are conditional on an unknown future individual or social 
response, are virtually never addressed in EIA due to a lack of integrated modeling capacity or 
efforts by project proponents to limit EIA scope. This includes results of economic phenomena 
such as the “rebound effect”, where projects improving efficiency accelerate rather than arrest 
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depletion of natural resources or environmental degradation (Owens et al., 2022), and market 
actions of electricity suppliers following projects that increase transmission capacity, which is 
the focus of the present analysis (Border Power Plant Working Group v. Department of Energy, 
2003).

2. Methods
2.1. Study area

Quebec, Canada has 37,590 MW of installed hydroelectric capacity (plus an exclusive power 
purchase agreement for 5,428 MW of generation at Churchill Falls in Labrador), accounting for 
94% of total generation (Canada Energy Regulator, 2024a; Hydro-Québec, 2022a). These 
resources are a large and generally growing source of electricity for the northeastern United 
States across borders with Maine, New Hampshire, New York, and Vermont: net exports to the 
U.S. averaged 22.5 TW·h year-1 

between 2018-2023, compared to 
11.9 TW·h year-1 between 1998-
2003, and accounted for roughly 
half of Canada’s net electricity 
exports to the U.S. in that period 
(Canada Energy Regulator, 
2024b). Energy systems models 
find that increased intertie 
capacity with Canada generally 
lowers overall costs of 
decarbonization in the United 
States, with Canadian 
hydropower either buffering 
intermittent supply of U.S. wind 
and solar or supplying base load 
(Calder et al., 2022; Dimanchev 
et al., 2021). 

Development of large (>245 
MW) hydroelectric facilities 
began with La Tuque (entry into 
service in 1955) and has 
continued to present day with 
Romaine-4 (2022). Locations of 
existing interties (corresponding 
to 25 incremental expansion 
projects undertaken since 1979) 
and large generation facilities 
are plotted in Figure 1. The U.S. 
accounts for the large majority 

Figure 1: Large (>245 MW) generation and transborder transmission 
infrastructure in Quebec, Canada including Churchill Falls in 
Labrador due to exclusive power purchase agreement. New York 
(NY), New England states Connecticut (CT), Massachusetts (MA), 
Maine (ME), New Hampshire (NH), Rhode Island (RI), and 
Vermont (VT), and Quebec, Canada, are highlighted. Years of entry 
into service and installed capacity from  Hydro-Québec (2023). 
Locations of infrastructure from Hydro-Québec (2020). Intertie 
locations represent 25 capacity expansion projects (~ 4300 MW) 
undertaken since 1979.  
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(i.e., >70% over 2018-2023) (Canada Energy Regulator, 2024a; Hydro-Québec, 2018–2023) of 
net exports from Quebec and is the site of the most significant controversy regarding 
transmission infrastructure and is thus the focus of our analysis.

The six states of New England share a common transmission system operator, ISO New 
England, though each state has different renewable energy targets and has historically managed 
renewable energy procurements individually. The electrical grid in New York is managed by 
ISO New York. We refer to New England and New York collectively as the northeastern United 
States (NE USA). Historically, surplus generation from Quebec has been sold on the short-term 
spot market to neighboring states and provinces (i.e., 90% of exports between 2014-19). 
However, recently, longer-term export contracts tied to large purpose-built infrastructure have 
been pursued. This includes a 10.4 TWh year-1 (1.3 GW) corridor through New York recently 
completed, two 9.5 TWh year-1 (~1 GW) corridors to Massachusetts via New Hampshire 
(cancelled) and Maine (suspended), and a ~1 GW corridor through Vermont and New Hampshire 
(cancelled) (Appeal of Northern Pass Transmission, LLC & a., 2019; NECEC Transmission LLC 
et al. V. Bureau of Parks and Lands et al., 2022; Dalton, 2024; Gronendyke, 2018; Maine 
Department of Environmental Protection, 2021; U.S. Department of Energy, 2017).

Electricity trade between Quebec and Ontario display a balanced bilateral trade pattern that 
follows a seasonal cycle. Ontario's exports during the winter in Quebec help improve reliability 
and meet high electricity demands. In contrast, in the summer, there is a rise in exports from 
Quebec to Ontario due to the high demand for air conditioning (Independent Electricity System 
Operator, n.d.). 

2.2. Model conceptualization

We conceptualize the Quebec–New England–New York electricity market as generation, 
demand, transmission, and price phenomena connected via a causal network with uncertain 
structure and test structures corresponding to alternative mental models of various stakeholders. 
We develop a rich dataset covering the period 1979 to 2021, which we use to evaluate the 
plausibility of alternative causal structures represented by Bayesian networks (BNs). BNs are 
directed acyclic graphs (DAGs) used to evaluate the evidential support for the presence and 
directionality of causation among system variables (Hernan & Robins, 2023; Nogueira et al., 
2022; Pearl, 1995, 2000; Spirtes et al., 2001; Su et al., 2013). 

Specifically, we interrogate the claim that transborder transmission infrastructure stimulates 
hydroelectric development in Canada. As described above, this claim has been the basis for legal 
filings arguing that DOE is required to consider generation-side environmental impacts in 
permitting transmission infrastructure and has contributed to opposition to these projects. We 
also characterize evidence for other asserted or hypothesized causal relations in this system and 
identify challenges inherent in the use of causal inference methodologies for complex 
sociotechnical systems more broadly.
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As illustrated in Figure 2, alternative model 
structures are composed of diverse 
hypothesized relationships. In general, 
evaluation of BNs test entire model 
structures rather than one-way relationships 
as in classical statistical methods.  

We developed a conceptual model for 
generation, demand, transmission, and price 
variables, representing assumed and 
disputed causal connections in the Quebec 
and NE USA electricity markets (Figure 2). 
Installed hydropower generation capacity is 
a function of current and projected demand 
and factors of safety to reflect uncertainties 
in future generation (governed by 
hydrologic conditions) and demand 
(Stedinger et al., 1984; U.S. Department of 
Energy, 2016). High-consequence dams 
require higher factors of safety for such 
uncertainties, increasing the probability of 
overdesign (Fell et al., 2005; Herza et al., 
2018). Exports are meanwhile determined 
by generation capacity, price signals 
resulting from the balance of supply and 
demand domestically and in export markets, 
and the capacity of available transmission 
infrastructure. Investments are necessary for 
increases in both installed generation and transmission. To our knowledge, these basic dynamics 
are not in debate and we have represented them as “asserted relationships” in Figure 2.

Development of transborder transmission capacity stimulated by U.S. electricity demand may 
accelerate the development of Canadian hydroelectric resources by enhancing opportunities for 
export. Historically, higher prices for electricity in the U.S. than in Canada have played a major 
role in the pursuit of export opportunities by Canadian utilities (Warner & Coppinger, 1999). 
These export opportunities continue to be acknowledged in decision-making around new 
projects, for example, coupling the Maritime Link transmission project with the 824-MW 
Muskrat Falls hydroelectric project in Newfoundland & Labrador, developed in the 2010s 
(Government of Newfoundland and Labrador, 2012). Meanwhile, public statements by Hydro-
Québec, the government-owned utility that manages electrical generation and distribution in 
Quebec, Canada, suggest that the export market is necessary for profitability (Snyder, 2018). 

However, it is not clear that investments in transmission infrastructure decisions are themselves 
stimulating new generation beyond key drivers such as domestic demand and the export 
opportunities allowed by existing transmission. It is therefore not understood if, in the context of 

Figure 2: Conceptual diagram showing asserted and 
hypothesized relationships between generation, transmission, 
and demand variables in New York/New England (NE USA) 
and Quebec, Canada. Investments are a subset of revenues 
(omitted). Asserted and hypothesized relationships are 
described in the text. System variables are shaded red for 
Quebec, blue for the NE USA, and red/blue for transborder. 
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proposed transmission projects, potential new generation (and its associated environmental and 
social effects) can be construed as second-order consequences within the meaning of 
environmental impact, life cycle, or cost benefit analysis. Likewise, it is not clear how opposition 
to transborder transmission infrastructure affects the viability of new generation projects in 
Canada. While capacity expansion models can simulate the economics of new hydroelectric 
generation under different transborder transmission scenarios, currently available tools do not 
have the resolution to allow for simulations conditioned on individual projects (Calder et al. in 
prep). Therefore, we apply causal inference to available data to better understand these questions.

The claim that increased transborder infrastructure leads to increased generating capacity in 
Canada is the central focus of this analysis and is represented as Hypothesis # 1 in Figure 2. An 
affirmative finding would support the argument that generation-side impacts are “reasonably 
foreseeable” consequences of transmission infrastructure and hence reviewable under 
environmental assessments and/or impact statements required by NEPA for federal permitting as 
previously argued to DOE (Birchard, 2017). Conversely, a negative (or null) finding may 
increase support among stakeholders who currently oppose transmission infrastructure on the 
basis of a supposed stimulating effect on generation (Webster, 2022). 

Beyond this central question, we evaluate other, non-mutually-exclusive relationships. 
Relationship # 2 holds that installed hydroelectric capacity is instead stimulated by the price 
difference between Quebec and the northeastern U.S. Other relationships evaluated represent 
potential drivers of transborder intertie capacity: Relationship # 3 hypothesizes that intertie 
capacity is stimulated by the same price difference, and Relationship # 4 hypothesizes that 
intertie capacity is stimulated by U.S. demand. These alternative hypotheses have fewer 
immediate implications for EIA but may provide an alternative causal framework by which to 
understand the temporal evolution of this system.

2.3. Variable definition and data aggregation 

Table 1 summarizes the raw variables aggregated for this analysis with reference to the original 
data sources. Some variables are then transformed to reflect likely lags (represented in Figure 2 
and described in Section 2.3). We selected the period 1979–2021, which maximizes data 
availability for relevant variables while covering all periods of major expansion of transborder 
transmission capacity. 

Hydro-Québec’s annual reports were consulted to acquire information regarding the company's 
generation capacity, its sales to the domestic market, its exports to outside markets, its annual 
revenues, and its investments in transmission and generation infrastructure. We quantify the 
rated capacity of transmission infrastructure developed (in MW) as a measure of transmission 
rather than the power exported in a given year (MW·h) because this is more consistent with the 
physical properties of the infrastructure subjected to permitting and environmental review. 
Capacity of transmission lines was often reported in kV, which is not directly comparable to 
generation or transmission in MW. We converted transmission capacity to MW using the 
transmission line power-transfer capability curve commonly known as the St. Clair curve 
presented in supplemental information (SI) Figure S1 (Gutman et al., 1979), calibrated using 
eight available data points and applied to seven remaining points where capacity in MW was 
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10

unknown (Equation 1). R2 for the calibration curve was 0.998. Calibration and prediction data are 
included in SI Table S1. The calibrated St. Clair curve is written as:

𝑃 = α1𝑉2 + α2𝑉 +  β Eq. 1

In Equation 1, 𝑃 is the maximum loadability (capacity) in MW; 𝑉 is the maximum voltage in kV;
 𝛼1 is a constant calculated via calibration as 0.004431; 𝛼2 is a constant calculated via calibration 
as -0.5154; and  β is a constant calculated via calibration as 20.82.

To represent the disparities in electricity prices between these regions, we calculated the retail 
price difference between Quebec vs. NE USA based on average electricity price per kWh from 
both regions. We used retail price difference as a proxy for wholesale price difference since data 
for wholesale market prices was not available for the full period of our study (1979–2021). This 
approximation is justified by the strong correlation between retail and wholesale prices (Castro 
Pérez & Flores, 2023). A causal connection between other variables in the proposed network 
(Figure 2) and retail price would thus very likely imply a causal connection with wholesale price 
(or vice-versa). We tabulated other data related to climate, hydrology, and electricity sales to 
explore possible other correlations and identify potentially overlooked variables. These variables 
are described in SI Table S2 but are not retained in the final causal model described below.
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Table 1: Summary of data aggregated for causal analysis, 1979-2021. Bolded variables correspond to conceptual 
Figure 2 and include values derived from underlying data sources. Unbolded variables allow calculation of certain 
derived variables.
Variable name Units Description References

EXPORTS TWh year-1 Hydro-Québec’s total 
exports

Hydro-Québec (1979–
2021)

DEMAND_QC TWh year-1

Hydro-Québec’s 
electricity sales to the 
Québec’s market; 
equates to generation 
net of transmission 
losses

Idem

DEMAND_US TWh year-1

Annual electricity sales 
to ultimate customers 
for NE USA (New 
England and New 
York).

U.S. Energy 
Information 
Administration (2022)

INVESTMENT $CAD year-1

Total investments in 
generation and 
transmission 
infrastructure made by 
Hydro-Québec

Hydro-Québec (1979–
2021)

INSTALLED MW
Installed hydroelectric 
generation capacity in 
Quebec, Canada

Idem

INTERTIE MW

Transborder intertie 
transmission capacity 
(see text for method to 
convert from kV)

U.S. DOE (1979–2021)

PRICE $CAD kWh-1

Price difference 
between U.S. and 
Quebec [= PRICE_US 
× EX_RATE – 
PRICE_QC] – retail 
price used as a correlate 
for wholesale price

n/a

PRICE_QC $CAD kWh-1
Annual average retail 
electricity prices for 
electricity in Quebec

(Hydro-Québec, 2022b)

PRICE_US $USD kWh-1
Annual estimate of 
average electricity price 
in NE USA

U.S. Energy 
Information 
Administration (2022)

EX_RATE $CAD $USD-1
Exchange rate between 
Canadian and U.S. 
dollars

Federal Reserve Board 
(2023)

2.4. Variable transformations
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Intertie capacity and installed generation capacity reflect large civil infrastructure projects with 
lead times of an average of 8.6 years between announcement and completion (Ansar et al., 
2014). We therefore expect that responses in the form of infrastructure expansion may be lagged 
with respect to their predictor variables (as represented in Figure 2). However, infrastructure 
decisions are also made on the basis of forecasts and may be pursued in parallel with 
complementary components (intertie may expand in anticipation of new generation or vice 
versa). While many decades can elapse between first discussion of a hydroelectric project and its 
ultimate completion, the time between official sanction and project completion is substantially 
shorter; for example, the financing for Muskrat Falls was finalized in 2013 and the first power 
was generated in 2020. Therefore, for infrastructure outcomes, we consider lags in potential 
predictor variables of both 5 and 8 years. Because a lag period of t years reduces the size of the 
dataset by t-1 years, consideration of longer lag periods interferes with the ability of the model 
algorithm to identify coherent networks; nevertheless we also explored the use of lag periods up 
to 15 years. 

Furthermore, we expect many variables represented in Figure 2 to respond not necessarily to the 
absolute value of upstream nodes (i.e., their parents) but rather to changes in those variables over 
some preceding time period. For example, sudden increases in intertie capacity may stimulate 
expansion in generation (Hypothesis 1). Therefore, both generation and transmission were 
represented as the 5- or 8-year running average of changes (which serve as predictors lagged 5 or 
8 years as described above). A lag is implemented for infrastructure variables serving as 
predictors but not when the same variable serves as an outcome. Thus, some variables may have 
more than one representation.
Table 2: Asserted and hypothesized causal relations indicating lagged (5 or 8 years), Box-Cox transformed and 
discretized variables. Relations are summarized in Figure 2. Expanded figure showing all representations of 
variables included in SI Figure S2A.

Response variable Asserted causal (parent) variable(s) Hypothesized causal (parent) 
variable(s)

INSTALLEDa,b DEMANDQC
c, INVESTMENTd,e INTERTIEf,h,1, PRICEg,b,2

INTERTIEa,h INVESTMENTd,e, INSTALLEDi,e PRICEg,b,3, DEMANDUS
c,4

EXPORTSj PRICEj,b, INSTALLEDa,b, INTERTIEa,h n/a

INVESTMENTd,e EXPORTSc,k, DEMANDQC
c n/a

PRICEj,b DEMANDUS
j,e, DEMANDQC

j,e n/a

a Total expansion in 5- or 8-year period up to year t 
b Box-Cox transformed variable
c 5- or 8-year lag of the 5 or 8-year moving average for the incremental expansion, i.e., value in year t minus value in 
year t-1

d Average total investment in 5- or 8-year period up to year t
e Discretized variable ("low", "medium", "high")
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f 5- or 8-year lag of the total intertie capacity expansion in 5- or 8-year period up to year t 
g 5- or 8-year lag of price difference in 5- or 8-year period up to year t 
h Discretized variable (“non-significant”, “significant”)
i 5- or 8-year lag of the total installed capacity expansion in 5- or 8-year period up to year t 
j Average expansion in 5- or 8-year period up to year t
k Discretized variable ("negative", "positive")
1,2,3,4 Hypotheses 1, 2, 3 and 4

Finally, variables were transformed to respect the underlying assumptions for the structure and 
parameters of the BN approach used. BN models can be learned from data on continuous 
variables that are normally distributed, or on categorical variables. Therefore, if they are not 
already normally distributed, data may either be transformed to respect the assumption of 
normality or discretized. We thus evaluated each variable for normality using the Shapiro-Wilk 
test with a significance level of 0.05. Non-Gaussian variables (i.e., those that failed the Shapiro-
Wilk test) were transformed using the Box-Cox method with the boxcox() function in the MASS 
package in R (Ripley & Venables, 2003) to achieve normality where possible in order to retain 
maximum information.

After transforming the non-Gaussian variables, we reapplied the Shapiro-Wilk test to evaluate 
the effectiveness of the transformation. Variables that failed the Shapiro-Wilk test post-
transformation were then discretized. Discretization of variables was done manually using the 
ordered cut() function in R; this means that continuous variables were converted to ordinal 
discrete variables. We used histogram plots to determine the cutting points for each variable to 
ensure a roughly equal distribution of observations across variable levels. Depending on the 
variable’s definition (Table 1) and its histogram, we discretized the variables according to three 
different schema: 1. "low", "medium", or "high", 2. “non-significant” or “significant” and 3. 
“negative” or “positive”. Implementation of a manual discretization protocol helps ensure 
production of meaningful and interpretable BN models (Beuzen et al., 2018). All transformations 
are reported in Table 2. Code for all variable manipulations and transformations is included in 
the reproduction information (RI).

2.5. Bayesian network modeling and evaluation of causal relations

We used BN modeling to test alternative model structures against data in order to evaluate the 
plausibility of asserted and hypothesized causal relations (Section 2.1). BNs are probabilistic 
graphical models that represent sets of variables and their conditional dependencies in the form 
of DAGs (Scutari & Denis, 2021). Compared to alternative approaches like Vector 
Autoregression (VAR), BNs make weaker assumptions about linearity and stationarity and are 
better suited to analysis of smaller datasets (Righetti, 2022). DAG representation of these 
networks aids in illuminating possible causal relationships between variables, providing a clear 
illustration of how one variable or factor can affect others. BN models contain two major 
components: the network structure, which maps nodes and directed edges to create a DAG; and 
conditional probability distributions for each node, which are represented using parameters, 
describing the relative likelihood of values of response variables conditioned on the values of its 
direct causes. 
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Two types of data-training algorithms are available to evaluate network structures against a 
dataset: score-based and constraint-based (Su et al., 2013). Score-based methods calculate a 
score for alternative structures, and the score reflects the ability of that structure to explain the 
observed data. Score-based methods are commonly favored for datasets that are small and 
contain noise (Cheng et al., 2002). In score-based methods, the objective is to identify the 
configurations that yield high scores. Conversely, constraint-based methods seek to identify 
conditional independence (i.e., Markov condition) among variables. These methods use data to 
perform hypothesis testing regarding conditional independence to eliminate edges from a fully 
connected undirected graph. Subsequently, directions are assigned to edges in accordance with 
the d-separation criterion (Pearl, 2000). It is also common to use hybrid algorithms that integrate 
the two types of methods to capture the benefits of each as a function of the properties of the 
dataset and the strength of hypotheses (Tsamardinos et al., 2006). 

We rely on a score-based method to evaluate the network structure against data because our 
dataset does not have a sufficient number of observations to effectively perform the hypothesis 
tests required of constraint-based methods. For example, many variables had to be discretized, 
resulting in a loss of information, and some variables were lagged, resulting in a loss of some 
years (described in Section 2.3 and summarized in Table 2). The score-based method employed 
uses the log-likelihood scoring criterion and employed a hill-climb (HC) algorithm using the hc() 
function in the bnlearn package for R to identify the highest scoring network (Scutari et al., 
2023). Generally, the log-likelihood criterion is the least restrictive (will admit the most 
relations), enabling us to most confidently rule out hypothesized (or asserted) relations if they do 
not appear in the best-fitting model structures. 

To further assess the degree of confidence in returned relations, we also applied alternative 
scoring criteria (Akaike information criterion, or AIC, and Bayesian information criterion, or 
BIC) that penalize for the number of edges in the network. AIC and BIC results are discussed in 
greater detail in the SI. In all cases, the algorithm was initialized using the hypothesized network 
presented in Table 2 and was constrained by a blacklist consisting of all illogical relations 
between variables (e.g., contemporary variables cannot influence lagged variables). 

To interpret the network relations (i.e., assign a direction of effect) and measure the goodness of 
model fit for each variable in our DAG, we used the predict() function with the bayes-lw method 
(Needham et al., 2007). The bayes-lw method performs both causal prediction and noncausal 
Bayesian inference using Monte Carlo methods. Further likelihood weighting ensures that 
predictions account for all possible values of variables accounting for their relative likelihood. 
To assess goodness of fit for continuous numerical variables, we calculated the coefficient of 
determination (r squared), while for discretized variables we calculated the proportion of correct 
predictions as a measure of model accuracy. 

Finally, to further interrogate specific relations of interest, we used the d-separation criterion.  
Informally, the d-separation criterion states that, “Each variable is independent of its non-
descendants in the network given its parents” (Ding & Rebai, 2010). More formally, the d-
separation criterion specifies the set of conditional dependences and independences that are 
implied by a particular graph and subject to statistical hypothesis testing. Specifically, we used 
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our data to test the independence of pairs of nodes by conditioning each pair on the pair's 
parents. If the p-value for an independence test is greater than the high threshold of 0.95, then the 
two variables are interpreted as "Conditionally Independent". If the p-value is smaller than the 
low threshold of 0.05, then this is labeled "Potential Missing Link". If the p-value is between the 
low and high thresholds, then the analysis is inconclusive. All functions mentioned in this section 
are reported in RI, including the functions that were developed by authors.

3. Results and discussion
3.1. Model structures returned by Bayesian network analysis

Using the log-likelihood criterion, the 
DAGs of the best fitting BNs were 
identical for the 5-year and 8-year 
formulations. Figure 3 shows the 
relations included in the best fitting 
BN (log-likelihood criterion) in 
comparison with the conceptual 
model presented in Figure 2, where 
relations not included in the fitted 
BN are greyed out. Table 3 provides 
an indication of the accuracy of the 
fitted relations. As described in 
Section 2.5, the log-likelihood 
criterion is generally more 
permissive than AIC and BIC and 
thus less likely to falsely rule out 
relationships. Thus, hypotheses 
rejected using the log-likelihood 
criterion are unlikely to exist. The 
identical model structure returned by 
both 5- and 8-year model 
formulations suggests that results are 
not sensitive to the averaging/lag 
period retained.

The best fitting BN does not indicate 
that installed generation capacity 
depends on intertie capacity 
(Hypothesis 1). The best fitting BN 
does indicate that price difference 
between the northeastern U.S. and 
Quebec has an influence on installed 

generation capacity (Hypothesis 2), but not on intertie capacity (Hypothesis 3). Intertie capacity 
also does not seem to be influenced by U.S. electricity demand (Hypothesis 4). D-separation 

Figure 3: DAG that maximizes the log-likelihood scoring 
criterion (black lines) in comparison with the conceptual model 
in Figure 2 (including light grey lines). The same structure 
applies to both 5-year and 8-year models. Intertie  Exports has 
an ambiguous direction of effect as described in Section 3.2. 
Concept nodes are shaded red for Quebec, blue for the NE USA, 
and red/blue for transborder. Corresponding DAG is included in 
SI Figure S2B.
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results (Table 4) confirm the conditional independence between intertie capacity and installed 
generation (Hypothesis 1). Other results are the same as presented in Figure 3, with the exception 
of the relationship between electricity demand in Quebec and investments.

Therefore, the assertion that transborder intertie capacity directly “causes” expansion of 
hydroelectric generation in Quebec is not supported by our analysis. We note, however, that 
expanded intertie capacity does influence electricity exports, which influences investments, and 
investments in turn influence installed capacity. Thus, expanded transborder intertie capacity 
appears to be one part of a broader evolving technological system with mutual interdependencies 
rather than a trigger of installed hydropower capacity per se. Yet, as described below, the 
ambiguous direction of effect along the causal path does not necessarily support the 
interpretation that expanded generation capacity is even a second- or higher-order result of 
expanded transmission. 
Table 3: Summary of our BN modeling results: fitted relationships and corresponding performance metrics. Results 
generated using the AIC and BIC criteria are available in SI Tables S3 & S4 (AIC), and S5 & S6 (BIC). Variables 
are transformed following footnotes in Table 2. 

5-year model 8-year model
Response Causal (parent) variable(s)

r squared Accuracy r squared Accuracy

INSTALLED DEMANDQC, 
INVESTMENT, PRICE 0.76 - 0.96 -

INTERTIE INVESTMENT, 
INSTALLED - 0.70 - 0.89

EXPORTS PRICE, INSTALLED, 
INTERTIE 0.78 - 0.92 -

INVESTMENT EXPORTS - 0.76 - 0.96

PRICE DEMANDUS 0.60 - 0.76 -

Table 4: Summary of the results when conditioning on parents for the unsupported links presented in Figure 2. 
Variables are transformed following footnotes in Table 2.

Response Causal (parent) variable Conditional independence 
results

INSTALLED INTERTIE Conditionally independent

INTERTIE DEMANDUS Conditionally independent

INTERTIE PRICE Conditionally independent

INVESTMENT DEMANDQC Potential missing link

PRICE DEMANDQC Conditionally independent
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AIC and BIC models broadly agree with the results presented here. In AIC and BIC models, 5-
year formulations were more detailed, likely because fewer observations were discarded in the 
creation of 5-year-lagged variables than 8-year-lagged variables. In the BIC models, Hypothesis 
1 was supported, but the direction of effect was negative. Model structures generated using the 
AIC and BIC criteria are available in SI Figures S3 (AIC) and S4 (BIC). These figures 
demonstrate how stricter criteria, such as AIC or BIC, limit the model’s ability to identify edges 
that can be discovered using our data. 

For all methods evaluated here, we explored the use of longer lag periods to account for longer 
average lead times between project sanction and development (e.g., up to 15 years). However, 
these models returned only fragmentary network structures, likely due to the significant amounts 
of data that must be discarded to calculate the first averaging period (see Section 2.3). All code 
for these (and other) averaging periods is available via GitHub.

Figure 3 shows the signs of the fitted relations, indicating that most variables are positively 
influenced by their causal predictors. Supplemental figures characterizing the direction of effect 
of the different relations are included in the SI. SI Figure S5 shows that installed generation 
capacity increases if any of its predictors increase. SI Figure S6 shows that intertie capacity is 
positively impacted by increases in installed generation capacity and investment levels. SI Figure 
S7 shows that price difference is positively impacted by increases of average demand in the NE 
USA. By contrast, investments are negatively influenced by total exports in the previous time 
step, which in turn is negatively influenced by installed capacity (thus leading to an indirect 
positive relation between installed capacity and subsequent investments) as shown in SI Figure 
S8. SI Figure S9 shows that the relation between intertie capacity and total exports is ambiguous, 
being positive or negative depending on the values of the other predictors of total exports: 
installed generation capacity and price difference.

3.2. Temporal evolution of the generation-transmission system

Our analysis suggests that there is no direct association between increased intertie capacity and 
increased generation capacity (Hypothesis 1). There is an indirect link through exports and 
investment, meaning that increased exports facilitated by increased intertie capacity allows 
investments in both generation and transmission infrastructure. Therefore, intertie capacity 
appears to play at most an indirect, ancillary role in decisions around generation expansion.

Instead, this analysis reveals that investments in installed capacity are driven by a combination of 
domestic demand and price signals in the form of a difference between electricity prices in the 
northeastern United States and Quebec (Hypothesis 2). These price signals also drive export 
decisions over existing infrastructure. The significant reserve capacity of Hydro-Québec (up to 
177 TWh) allows for selective exports at times of relative greater prices in the U.S (Hydro-
Québec, 2020). 

While intertie capacity does not directly drive installed generation capacity, our analysis reveals 
that installed generation may partially drive intertie capacity. This may correspond to Hydro-
Québec’s seeking markets for excess supply; hydropower projects are likely to be overdesigned 
in order to guarantee the ability to meet local demand and to supply existing contracts, 
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potentially posing a choice between non-revenue spills and pursuit of export opportunities. We 
do not find evidence that intertie capacity is the direct consequence of price signals (Hypothesis 
3) or U.S. demand (Hypothesis 4). However, it may be a second-order consequence of these 
variables via the role of price signals on installed capacity.

As described earlier, the premise that increased transborder transmission capacity stimulates 
increased generation in Quebec has been used to argue for increased scope of 
assessments/statements under NEPA (Birchard, 2017) and to attribute greenhouse gas emissions 
from reservoirs to proposed transmission projects (New York State Energy Research and 
Development Authority, 2021). This premise has also adversely affected support for such 
projects among environmental stakeholders whose support is important for achieving 
decarbonization of the electrical sector (Webster, 2022). Overall, this analysis supports a 
contrary view, i.e., that new transborder transmission projects should be considered 
independently from the suite of environmental and health impacts associated with reservoir 
construction. 

Historically, electricity exports from Quebec have been overwhelmingly settled on the short-term 
spot market (i.e., between 86–91% every year since 2001), which are the market behaviors 
captured by the causal model developed here. By contrast, several recently proposed projects tie 
long-term power purchase agreements to purpose-built infrastructure (Appeal of Northern Pass 
Transmission, LLC & a., 2019; BloombergNEF, 2023; Maine Department of Environmental 
Protection, 2021). It is possible that power commitments via these long-term contracts will 
stimulate reservoir development in a way that we do not observe with historic export patterns, for 
example, by creating commitments that cannot be satisfied without new generation. In recent 
work, we described model and data gaps that make such situations difficult to identify and 
identified this as a priority area for model development given its importance in debates over 
environmental and social impacts (Calder et al., 2024).

Theoretically, capacity expansion models can simulate how individual transmission projects 
affect the overall economics of new generation projects (and vice-versa) but in practice there are 
no publicly available models with project-scale resolution. Because Hydro-Québec does not 
publish reservoir levels, capacity factors, or other key statistics on the generation fleet, impacts 
of new long-term power purchase agreements on build-out of generation or on exports to other 
markets are currently speculative (Calder et al., 2022, 2024). Overall, this analysis suggests that 
the new transmission infrastructure is not driving build-out of hydroelectric generation in Canada 
per se, but that a shift to long-term power purchase agreements may introduce pressures on 
electrical supply that are not currently easily modeled.

3.3. Strengths and limitations of causal inference methodologies for analysis of other 
socially mediated systems 

This analysis suggests that formal causal inference methodologies may be used to understand 
evolving sociotechnical systems more broadly, for example, to scope environmental impact, life 
cycle, and cost-benefit analysis by building consensus on the range of relevant second-order 
effects. Because sociotechnical systems in general feature complex feedbacks, plausible narrative 
claims can be advanced for many alternative causal interpretations across a wide range of 
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settings including the energy system (studied here), urban housing supply and affordability (Li, 
2021), and investments in resource conservation and protection of environmental resources 
(Owens et al., 2022). We posited earlier that formal causal inference methodologies could help 
resolve debates around and build consensus over the most parsimonious causal structures to 
overlay on complex systems where “everything is connected”. 

We have demonstrated several modeling and interpretation approaches that may facilitate the use 
of Bayesian network analysis in other contexts. This includes the consideration of multiple BN 
algorithms, models and the interpretation of evidentiary support for hypothesized relationships 
on the basis of (1) agreement across models for a given hypothesized relationship and (2) 
whether it manifests as part of a causal structure with a plausible mechanistic interpretation. We 
have endeavored to describe evidence in support of potential causal relationships on the basis of 
a holistic analysis that considers multiple modeling choices and alternative causal structures, 
accepting that certain subjective choices may have significant effects on certain conclusions. 

In certain cases, conclusions about features of the causal network may be robust to a wide variety 
of modeling choices. This was illustrated in this case study by our conclusion that hydroelectric 
generation in Canada is not the outcome of increased transborder intertie capacity, despite a 
plausible narrative claim advanced by expert stakeholders. In that case, our conclusions are 
robust to all possible models considered and thus seem robust enough to dismiss this assertion. 
For example, we failed to find evidence for this assertion across model formulations that varied 
in averaging/lag periods assumed and BN algorithm retained. 

Conversely, our analysis 
suggests that these modeling 
choices can affect network 
structure in ways that could 
change the interpretation of 
causal dynamics in other 
settings. For example, our 
analysis based on the BIC 
criterion returns subtly different 
network structures when 5-year 
lag/averaging periods are 
considered vs. 8-year periods (SI 
Figure S10). In this analysis, 
data availability and the 
objective of ruling out asserted 
links suggested the BIC criterion 
was not well-suited. As in other 
types of quantitative modeling, professional judgment is required to exercise subjective decisions 
to interpret potentially contradictory results across model formulations. 

The data available to parameterize a model clearly influence model predictions, and data are 
usually fragmentary and incomplete. In the setting of BNs, this may manifest as an unobserved 

Figure 4: Time series of installed generation capacity and intertie 
capacity, and of retail electricity price differences between Quebec and 
New York and New England (average) 1979-2021. 
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counterfactual, creating uncertainties around a causal relationship between two nodes. For 
example, in the period 1979-2021, the price difference between Quebec and New York/New 
England was always positive (Figure 4), even while the magnitude of this difference varied. This 
limits the range of conditions over which the model may be valid. The shapes of the distributions 
of available data furthermore required extensive transformation to respect the assumptions of 
Bayesian analysis as summarized in Table 2 and described in Section 2.2. These transformations, 
though necessary to respect the assumptions of Bayesian analysis, result in a loss of information 
that increase uncertainties in any model returned. 

In the setting of the renewable energy transition, such unobserved counterfactuals may also 
manifest as changes to the relative value of different energy sources such as the increased value 
of hydropower in a heavily decarbonized system (Miller et al., 2022). For a given model 
structure (e.g., Figure 2), such changes may increase probability of hydropower construction all 
else being equal. As described in Section 3.2, changes to the structure of underlying power 
purchase agreements can also change the relationship between variables represented in any 
causal model; however, such changes could be captured with the introduction of a new node. 

BN analysis is subject to the same limitations as any graphical modeling strategy, and the use of 
these tools to describe evolving sociotechnical and socioenvironmental systems presents several 
inherent challenges. In particular, such systems have no inherent temporal beginning or end, 
feature multiple feedbacks across temporal and spatial scales, are characterized by evidence 
generated by a range of methodological traditions, and feature “mechanisms” that can be 
articulated at arbitrary levels of detail (Calder et al., 2020). Conceptual models for such systems 
thus necessarily reflect the judgments and specific decision context of the people who create 
these conceptual models. 

As we have demonstrated here, these challenges can be compounded by the application of 
quantitative analysis, which necessarily embeds decisions made by modelers. This includes 
approaches to transforming and normalizing data and the selection of models, but also subjective 
elements of interpretation, for example, the description of results that conflict across model 
implementations with different BN learning algorithms. These are likely to be compounded by 
disagreements over the precise meaning of “reasonably foreseeable” and “reasonably close” in 
the application of NEPA and other institutional features that govern the interpretation of 
quantitative information, but that is outside the scope of this analysis. 

3.4. Applications to life cycle and cost-benefit analysis 

This analysis has demonstrated evaluated the utility of causal inference methodologies for 
structuring debates around the scope of environmental impact assessment, which frequently 
reflect disagreements over the causal relationship between variables mediated by social systems. 
We note that analogous debates also complicate cost-benefit and life-cycle analysis, with 
subjective judgments of the range of effects to attribute to an intervention, process, or technology 
often driving the outcome (Dubois-Iorgulescu et al., 2018). In the setting of Canadian 
hydropower in northeast U.S. energy transitions, this has manifested as disagreements over the 
valuation of GHG emissions from reservoirs (the “Scope 2” emissions of intertie projects in the 
terminology of the Greenhouse Gas Protocol) (Calder et al., 2020; Sotos, 2015).
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In general, “attributional” assessment of impacts (Ekvall, 2019), whereby a fraction of the life 
cycle emissions of existing reservoirs is assigned to energy imported over new electrical 
interties, is common, even among prospective cost-benefit analyses (New York State Energy 
Research and Development Authority, 2021). We have previously argued that this has the effect 
of underestimating net benefits from incremental expansion in transmission when these projects 
have no causal connection to new reservoir development (Calder et al., 2022). Indeed, a 
“consequentialist” perspective, whereby alternative interventions are compared in terms of the 
impacts causally connected to each candidate intervention, is better suited to decision support but 
rarely used in energy systems analysis due in part to difficulties in causal analysis (Curran et al., 
2005). Thus, causal inference methodologies such as those proposed here may promote the 
uptake of the consequentialist frame of reference in energy systems decision analysis.
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