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ABSTRACT 

A surface tension model has been developed in the finite volume particle method (FVPM). FVPM is a 

conservative, consistent, meshless particle method that incorporates properties of both smoothed 

particle hydrodynamics and the mesh-based finite volume method. Surface tension force is applied only 

on free-surface particles, which are inexpensively and robustly detected using the FVPM definition of 

interparticle area, analogous to cell face area in the finite volume method. We present a model in which 
the direction of the pairwise surface tension force is approximated by the common tangent of free-

surface particle supports. The new surface tension model is implemented in 2D. The method is 

validated for formation of an equilibrium viscous drop from square and elliptical initial states, drops 
on hydrophobic and hydrophilic walls, droplet collision, and impact of a small cylinder on a liquid 

surface. Results are practically free from parasitic current associated with inaccurate curvature 
determination in some methods. 

Key Words: Finite volume particle method, meshless, surface tension, coalescence, wetting, cylinder 
impact on liquid.     

1. INTRODUCTION 

In this article we describe a simple model for surface tension in the finite volume particle method 
(FVPM), with the aim of reducing or eliminating the spurious or parasitic velocity which is a feature of 

many surface tension models in both mesh-based and meshless methods. At present, the model is 

implemented in 2D, with validation in 2D static and dynamic problems.  

Many problems in fluid dynamics are dominated by surface tension, including spray coating, 
aerosolisation, and fuel injection. In mesh-based computational fluid dynamics, the accurate 

determination of interfaces, with or without surface tension, is not straightforward because interfaces 

do not generally conform to the mesh. In particle methods, in contrast, the computational nodes or 
particles are free to move, making it trivial in principle to track the surface of the fluid. In addition, 
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FVPM in particular allows definitive identification of particles at the free surface, greatly simplifying 
the implementation of surface tension models.  

FVPM is a relatively novel numerical technique in computational fluid dynamics, introduced by 
Hietel et al. in 2000 [1]. It preserves the conservative flux-based formulation of the classical finite 

volume method (FVM). FVPM particles are closely analogous to cells in the FVM as they have well-

defined volume and interparticle area, and interact through numerical fluxes. However, they are 

allowed to overlap each other and move freely or arbitrarily, taking advantage of the Arbitrary 

Lagrangian-Eulerian (ALE) nature of FVPM. In the present work, a purely Lagrangian model of 

particle motion is strictly used.  

Particle methods to simulate surface tension may be categorized as microscopic or macroscopic. 

Microscopic methods in smoothed particle hydrodynamics (SPH) are based on application of van der 
Waals (vdW)-like potentials or other attractive-repulsive forces between particles [2,3,4]. This approach 

exploits the particle framework to mimic the molecular physics that underlie surface tension. The 

surface tension coefficient does not appear explicitly, and consequently the model requires calibration 
of coefficients. Van der Waals-based models are also sensitive to temperature. Yang et al. [5] proposed 

a hyperbolic kernel function with central discontinuity to improve particle distribution in this approach. 

Intermolecular forces manifest at macroscopic level as a net tensile stress in the plane of a free surface. 

In a planar free surface, these forces are in equilibrium. The macroscopic continuum surface force (CSF) 
model [6] is therefore based on explicit calculation of the interface curvature in a two-phase system. 

This enables the macroscopically measured surface tension coefficient to be used in the model. Morris 

[7], Muller et al. [8], Liu et al. [9], Adami et al. [10], Breinlinger et al. [11], and Schnabel et al. [12] 
applied this technique in SPH.   The method is sensitive to the numerical calculation of gradients of the 

color function.    

Maertens et al. [13] introduced surface tension modelling in FVPM. They simulated 3D drops in 

isolation and interacting with solid surfaces, using the physical surface tension coefficient, without 

explicitly estimating the curvature of the interface or tuning any parameters. This is possible in FVPM 
because free-surface particles can be identified unambiguously and the free surface itself is well-defined 

in terms of the particle geometry. In this technique, the surface tension force is applied at the 

intersection curves of the free surfaces of spherical particles, tangent to the surface. All the methods 
cited above display some spurious or parasitic velocity.   
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In this article, a variant model for surface tension in FVPM is presented. Section 2 summarizes the 
FVPM formulation for fluid flow computations. In section 3, the new surface tension model in FVPM is 

described. In section 4, numerical results are presented and discussed.  

2. FVPM METHOD  

A.  Governing Equations 

The Navier-Stokes equations without source terms can be written in conservation form as 

∂U(t , x)
∂t

+∇ . F �U(t , x)�=0 , (1) 

U = �
ρ

ρu� , (2) 

F = �
ρu

ρuu+pI� , (3) 

G = �0τ� , (4) 

where U(t , x), F, G, t, and x represent the vector of conserved quantities, inviscid flux, viscous flux, 

time, and position, respectively. ρ, u, p, I, and τ are density, velocity, pressure, identity tensor, and 

viscous stress tensor of the fluid, respectively. Equation (5) is used for pressure calculation: 

p = ρ0c0
2

γ
�� ρ

ρ0
�

γ
-1� , (5) 

where ρ0 , c0 , and γ  are reference density of the fluid, reference sound speed, and a constant, 

respectively. The value of γ is set to 7 in the present work [14]. 

B. Numerical Model 

The FVPM formulation of Eq. (1) for particle i is 

d
dt
�Ui(t)Vi(t)� = -∑ βij . �F �Uij�(t , x) - Uij(t , x) ẋij(t)�N

j=1 -∫Ψi(t , x)F �Uij�(t , x) . dS , (6) 

where N , Vi , βij , Uij(t) , ẋij , Ψi , and dS  are number of neighbours of particle i, particle volume, 

interparticle area vector between particles i and j, vector of conserved quantities at the interface of 

particles i and j, velocity of the interface, test function of the particle, and the surface area vector of the 

support of particle i, respectively. Introducing F(Ui,Uj) to denote a numerical approximation to the 

inviscid numerical flux F(Uij)(t , x) - Uij(t , x) ẋij(t), Eq. (6) is written as  
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d
dt
�Ui(t)Vi(t)� = -∑ βij . �F �Ui , Uj��N

j=1 -βi
b.Fi

b , (7) 

where βi
b and Fi

b are boundary interaction vector and numerical flux approximation respectively.  

Both the flux and the interface velocity depend on the particle transport velocity ẋi, which can be 

chosen arbitrarily. In the present work, we set ẋi=ui, i.e. a purely Lagrangian model. The interparticle 

area is defined as: 

βij = γij - γji , (8) 

where  
γij=∫Ψi(t , x) ∇ Wj(t , x)

σ(t , x) dx . (9) 

In the above, Wj , σ and Ψi are the kernel function, kernel summation and test function, respectively, 

defined as follows: 

Wi(t , x) = mi W(x - xi(t) , h) , (10) 

σ(t , x) =∑ Wj(t , x)N
j=1  , (11) 

Ψi(t , x) = Wi(t , x)
σ(t , x)  . (12) 

In Eq. (10), mi and h are the particle’s mass and the smoothing length of the kernel function, with 

compact support radius 𝑅𝑅𝑐𝑐 equals to 2h. In the present work, W is defined as a top-hat function as the 

following:  

Wi(t , x)= �1           x ∈ Ωi 
0           x ∉ Ωi 

 , (13) 

where Ωi  is the support of particle i. 

To close the system of equations, the evolution of the particle volume is calculated using 

d
dt

Vi(t) =∑ �γij . ẋj(t) - γji . ẋi(t)�N
i=1  , (14) 

where Vi(t)  is defined as Vi(t) =∫Ψi(t , x)dx . In the present work, particle supports are circles of 

constant radius.  

Interparticle inviscid fluxes of Eq. (3) are computed using the AUSM+-up scheme [15]. In first-order 

FVPM, based on the Godunov method, the flux between a pair of particles is computed using a zero-

order consistent reconstruction of particle data from the barycentre to the particle-particle interface. In 

the nominally second-order version [15], based on the MUSCL finite volume approach, linear 

reconstruction is used to compute the fluxes. As discussed by Nestor et al. [16], the viscous terms (Eq. 
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(4)) are computed at each particle-particle and particle-boundary interface. Velocity gradients are 

required to compute the viscous stresses and the linear reconstruction. Following Bonet and Lok [17], 
velocity gradients are calculated by using the consistency-corrected SPH approximation.   

Temporal discritisation of Eqs. (4) and (7) is based on the second-order Runge-Kutta scheme. The 

time step Δt determined by a Courant-Friedrichs-Lewy (CFL) criterion for FVPM is  

∆t = C
Vi

∑ ��
ui+uj

2 � . βij+ �
ci+cj

2 � �βij��j

 , (15) 

where C is the Courant number [18]. For detailed derivation of the FVPM formulation and further 

discussion of the extension of FVPM to viscous flow, readers are referred to [16] and [18] respectively. 

To impose boundary conditions, the integral term in the RHS of Eq. (6) is used.  A numerical flux 

over the boundary segment is prescribed and then the boundary interaction vector βi
b is calculated by 

integration (Eq. (15)) between intersection points Pa and Pb as illustrated in Fig. 1. In Eq. (15), ni
b and 

η are the boundary normal vector and coordinate along the boundary segment, respectively.   

βi
b =∫ Ψini

bdη∂Ω  . (16) 

 
Fig. 1. Boundary normal vector nb

i  of truncated support of particle i. 

C. Free-Surface Detection in FVPM 

Neighbouring particles and their weight functions determine the interparticle area vectors βij , 

computed using Eq. (8) and (9). As illustrated in Fig. 2, particles j, k, m, n, and p are considered as the 

neighbours of particle i, because their compact supports overlap the compact support of particle i. If 

the boundary of a particle’s support is fully covered by neighbouring particles (Fig. 2(a)), it can be 

shown from Eqs. (8) and (9) that its area vectors sum to zero (∑ βij j = 0). In contrast, if the summation 

of the interaction vectors between the particle of interest and its neighbours is not equal to zero 

(∑ βij j ≠ 0) it means that the particle is on the free surface (Fig. 2(b)).  
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By using the top-hat kernel function βij can be calculated exactly [18]. In practice, for fully immersed 

particles, ∑ βij j = 0 is satisfied within some rounding error. Free-surface particles are identified when 

the magnitude of ∑ βij j  is greater than a small tolerance.  

  
(a) (b) 

Fig. 2. Summation of interparticle area vectors between particle i and its neighbours is (a) zero and (b) non-zero. 

3. SURFACE TENSION MODEL 

A. Surface Tension (Cohesion) 

 To calculate the surface tension force, the free-surface particles must be detected, and the 

appropriate force applied between particles. A free-surface particle pair is shown in Fig. 3. The cohesive 

surface tension force may be written as 

Fij
 c= σLVlijn , (17) 

where σLV and lij, are the surface tension coefficient between liquid and gas and the length of the 

intersection curve of the particle surfaces (or unit out-of-plane length in 2D). The unit vector n is the 

direction of the surface tension force, which is to be determined. Particles i and j exert equal and 

opposite cohesion force Fij on each other.  

At macroscale, surface tension acts in a plane tangent to a free surface. In FVPM, the free surface 

is composed of the exposed surfaces of the particle support volumes, giving a bumpy approximation to 

the true free surface. In the present work, the common tangent of particles i and j is taken as an 

approximation for the free surface tangent. If the particles are of equal size, this is parallel to the 
compact supports’ centre-to-centre line. 

The general expression for cohesive force between particle i and its neighbors is then 
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Fi
 c= ∑ σLVlijnij N

j=1 , (18) 

where nij is defined as 𝐱𝐱𝑗𝑗−𝐱𝐱𝑖𝑖
�𝐱𝐱𝑗𝑗−𝐱𝐱𝑖𝑖�

 , and the sum is taken over all neighbours on the free surface. In contrast 

to other macroscopic methods, in FVPM the curvature need not be calculated explicitly.     

 
Fig. 3. Schematic view of surface tension force vectors between particle i and j (cohesive force) at point Pa, and the free-
surface common tangent (dashed line) of the particles.  

Maertens et al. [13] derived the interparticle force in 3D by a different approach, considering 
changes in surface energy of the particles’ exposed spherical surface patches due to motion of the 

particles. This yields forces tangent to the particle support boundaries. For a pair of equally sized 

particles, the resulting force reduces to a centre-to-centre vector between the particles, as in the 

present work, with a geometric correction factor. Maertens et al. employed an ALE particle transport 
velocity correction, while in the present work the particles are advected with purely Lagrangian 

velocity. 
In the present 2D implementation, the interface length lij is 1. To extend it to 3D, spherical particles 

should be considered, following Jahanbakhsh et al. [19], with lij computed as the length of arcs of 

intersection of the particles’ free surfaces. 

B. Surface Tension (Adhesion) 

In the presence of a solid-liquid interface, the adhesive force is applied at the intersection point on 

the wall, point Pf . In Fig. 4, σLV , σSV , and σSL  are the surface tension coefficients of the liquid-gas 

interface, solid-gas interface, and solid-liquid interface respectively. Young’s relation links these 

coefficients with the equilibrium contact angle as follows [20]: 

σSV - σSL= σLV cos(θe) . (19) 

The normal components of the total cohesive and adhesive forces are in balance. Only the tangential 

components are responsible for the movement of the contact line. Defining the tangent vector of the 

wall as nt, the corresponding tangential component of adhesive force in 2D is written as 

Fi,t
 a = �|Fi

 c| cos(θd) - σLV cos(θe)lij�nt , (20) 
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where θd is defined as the instantaneous dynamic contact angle between the cohesive force vector and 

the wall. In equilibrium, the dynamic and equilibrium contact angles are equal. 

  
(a) (b) 

Fig. 4. Schematic diagram of surface tension force between particle i and a solid wall (Fi
a) at point Pf in (a) non-equilibrium 

(b) equilibrium state (Fi
 c is the total cohesive force on particle i here only due to particle k). 

4. NUMERICAL RESUTLS 

The method is applied for initially square 2D droplets in free space and on a solid wall, as problems 

expected to result in static equilibrium. To test the method in strongly dynamic cases, we simulated 
oscillation of an elliptical drop, collision of two similar drops, and impact of a solid cylinder on a liquid 

surface.   

A. Oscillation of a 2D Liquid Square Droplet  

The first test case is formation of a circular drop from an initial square distribution of liquid particles 

(Fig. 5) with surface tension coefficient σ, density ρ, and dynamic viscosity µ. The Reynolds number 

based on the square’s side length L and characteristic velocity σ µ⁄  is 3633. The ratio L ∆x⁄  is 25, where 

∆x is the initial particle spacing. The radius of all particles is 𝑅𝑅𝑐𝑐 = (1.2)∆x. The reference sound speed 

c0 is 80 m/s. The maximum Mach number umax c0⁄  is 0.034.  

In the absence of external forces, the initial square arrangement of the particles becomes a circular 

droplet through a sequence of oscillations. The evolution of the 2D viscous droplet is illustrated in Fig. 
6. For an infinite, inviscid cylindrical drop the period of small-amplitude oscillation is given by Rayleigh 

[2,21] as 

τ = 2π �ρ R3

6 σ
 . (21) 
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The dimensionless time t* is t
τ
 . In steady state (t*=0.049), gaps appear in the particle distribution 

near the initial corners of the drop. However, there is no void inside the drop, i.e. the particles fully 

cover the volume of the drop. The method is reaching equilibrium despite this non-uniform particle 

distribution.   

The dimensionless radius r* is defined as and |xi - x�|
R

, where xi, x�, and R are the particle’s compact 

support centre, the centre of mass of the steady-state droplet, and the droplet radius based on volume, 

respectively. The centre of mass of steady state circular droplet x� is calculated as follows: 

𝑥̅𝑥 =
∑ xiρiVi

N
i=1

∑ ρiVi
N
i=1

 , (22) 

𝑦𝑦� =
∑ yiρiVi

N
i=1

∑ ρiVi
N
i=1

 . (23) 

Pressure error εp
*  is defined as  pNUM - pAN

pAN
 where  pNUM   and  pAN are the steady-state numerical and 

analytical pressure. The analytical internal pressure for an infinitely long cylindrical liquid drop under 
surface tension in zero ambient pressure is given by 

pAN = σ
R
 . (24) 

 

 
Fig. 5. Initial arrangement particles to form a liquid droplet, L ∆x⁄ =25 (red points are free-surface particles). 

     
t*=0.00049 t*=0.00086 t*=0.0016 t*=0.0028 t*=0.0032 

     
t*=0.0047 t*=0.0053 t*=0.0063 t*=0.009 t*=0.049 

Fig. 6. Snapshots of 2D viscous liquid droplet evolution from an initial square shape, L ∆x⁄ =25 (red points are free-surface 
particles). 

Fig. 7 shows the distribution of dimensionless pressure for L ∆x⁄ =25 across drops with various 

Ohnesorge numbers µ �ρσR⁄  based on the drops’ radii R defined in terms of 2D volume as 
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R =�VDrop

π
 , (25) 

where VDrop is ∑ Vii=1  . It is worth noting that the dimensionless radius of the outermost particle is less 

than 1. This is because the plot shows 𝑟𝑟∗ at particle compact support centres, which lie inside the radius 

R . Dimensionless pressure error is approximately 4.6×10–3 or less. Pressure within the drop is 

practically uniform, with normalized pressure range �pNUM
max -pNUM

min � pAN�  less than 4.8×10–11.  

These results show an improvement on prior SPH results. In a 2D two-phase model with a CSF 

method, Adami et al. [10] reported dimensionless pressure error up to 0.07 and with a range of 0.03 for 

L ∆x⁄  = 24 and a density ratio of 1000. Zhang et al. [22] reported error of 0.04 with range of 0.03, for 

similar density ratio of 798 and resolution L ∆x⁄  = 30.  In FVPM simulations of a 3D drop with L ∆x⁄ = 

10, Maertens et al. [13] found error of 0.023. For the same physical and numerical conditions, we have 

obtained a similar level of error. In comparison with other particle methods, the present method results 
in similar or lower error with a practically uniform and steady pressure field.  

Results of a convergence study are shown in Figs. 8 and 9. Pressure error εp
*  decreases linearly as a 

function of dimensionless particle spacing ∆x*= ∆x L⁄ . This is expected, since there is a first-order error 

between the surface of the numerical drop (defined by free-surface arc segments) and the circular 

circumference of the exact solution. 

  
Fig. 7. Normalized error εp

*  between the numerical pressure 
and the Laplace analytical pressure, for all particles, as a 
function of r*(radial position of particles’ compact support 
centres, normalized to final droplet radius) for 2D viscous 
droplets for various Ohnesorge numbers µ �ρσR⁄  evolved 
from square configurations, L ∆x⁄ =25. 

Fig. 8. Pressure error εp
*  (discrepancy between the numerical 

pressure and the Laplace analytical pressure, normalized to 
the analytical pressure) as a function of particle spacing. 
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∆x
L

 = 0.1 
∆x
L

 = 0.05 
∆x
L

 = 0.025 ∆x
L

 = 0.0125 

Fig. 9. Final states of initially square drop for various ∆x L⁄  in a convergence study (red points are free-surface particles). 

Fig. 10 shows the decay of dimensionless kinetic energy KE∗ for viscous fluids with nominally first-

order (zero-order reconstruction) and second-order (linear MUSCL reconstruction) schemes. In the first-

order scheme (Fig. 10(a)), numerical dissipation dominates physical viscosity. In second-order scheme 

(Fig. 10(b)), decay is slower. Oscillation of total kinetic energy is less with the zero-order reconstruction 

than with the MUSCL reconstruction. To avoid excessive numerical dissipation, linear MUSCL 

reconstruction is used in the remainder of this work.  

Figs. 10(a) and (b) show practical elimination of spurious kinetic energy. The normalized kinetic 

energy KE*= KE 2πRσ⁄  (kinetic energy normalized to equilibrium surface energy) at steady state is on 

the order of 10–13 (Fig. 10(b)). Final kinetic energy normalized to maximum kinetic energy has the order 

of 10-11 (Fig. 10(b)). The order of residual dimensionless velocity u*= |u| �σ µ⁄ �⁄  for first-order and second-

order schemes are 10–14 and 10–9 respectively. Detailed results show that this is not due to classical 

parasitic velocity, but rather a rigid-body motion of the drop.  

Adami et al. [10] proposed an approach to obtain a stable and accurate surface-curvature calculation 

based on CSF in SPH. The order of kinetic energy (normalized to the maximum) was 10–3. Liu et al. 
[23], using a hybrid particle-mesh method for 2D drops, found final kinetic energy (normalized to initial 

surface energy) on the order of 10–3 to 10–2, depending on the initial configuration. In the 3D FVPM 
results of Maertens et al. [13], the final kinetic energy (normalized to maximum kinetic energy) ranges 

from 10–2 to 10–3 for a 3D drop, depending on sound speed. For the same fluid properties and particle 
spacing, we have found normalized residual kinetic energy of 10-9 for a 2D drop.      
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(a) (b) 

Fig. 10. Decay of KE*= KE 2πRσ⁄  (kinetic energy normalized to final surface energy) as a function of t* (time normalized to 
period of droplet oscillation) for 2D droplet evolution from square configuration for various methods: (a) viscous fluid and 
first-order FVPM and (b) viscous fluid and second-order FVPM. 

B. Oscillation of a 2D Elliptical Droplet 

The droplet was deformed from its circular final state in the last section to an elliptic configuration 

as the initial condition for a new test, following Nugent and Posch [2] and Yang et al. [5]. The 
deformation is applied using  

�x'

y'� =� 2
sinφ

�
xsin�ϕ

2�

ycos�ϕ
2�
� , (32) 

where ϕ is 𝑒𝑒𝑒𝑒,and x'and y'are new values of x and y. The value of 𝑒𝑒 (eccentricity) is 0.55. Figs. 11 and 

12(a) show the oscillating deformation of the surface of drop. In these figures, R* is the dimensionless 

deformation parameter defined as ∑ �xi,FS - x��NFS
i=1 (RNFS)�  where xi,FS and NFS are the positions of free-

surface particles and their number. In the deformation of the droplet surface the effect of viscosity is 
evident, leading to faster damping of oscillations.  
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(a) (b) 

Fig. 11. Surface deformation of 2D droplet evolved from elliptic configuration versus time: (a) viscous and (b) inviscid. 

  
(a) (b) 

Fig. 12. (a) Three cycles of surface deformation of 2D inviscid droplet evolved from elliptic configuration as a function of time 
and (b) computed and analytical dimensionless oscillation period τ*as a function of surface tension coefficient σ*, where both 
are normalized by the values in the first case τ*=σ*=1.   

To determine oscillation period, sinusoidal curves with decaying amplitude were fitted to the 
numerical results. The results, in Fig. 12(b), show good agreement of the FVPM computed oscillation 

period with the analytical solution (Eq. (21)) for a range of surface tension coefficients.  
The evolution of the 2D viscous droplet from the initial elliptical shape is illustrated in Fig. 13. 

Kinetic energy of the drop is shown in Fig 14. The strong surface tension at the poles of the perturbed 
droplet leads to intense oscillation in kinetic energy. In the viscous drop the energy dissipation is faster 

than the inviscid drop.  
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t*=0 t*=0.0022 t*=0.0064 

   
t*=0.011 t*=0.015 t*=0.054 

Fig. 13. The snapshots of 2D viscous liquid droplet evolution with initial ellipse shape with basic Lagrangian FVPM (red 
points are free-surface particles). 

  

(a) (b) 

Fig. 14. Decay of KE*= KE 2πRσ⁄  (kinetic energy normalized to initial surface energy) as a function of t* (time normalized to 
period of droplet oscillation) for 2D droplet evolved from elliptic configuration: (a) viscous and (b) inviscid. 

C. Collision of Similar Droplets 

The results of binary collisions are presented here. Fig. 15 shows a schematic view of the collision 

modes. The ratios L ∆x⁄  and 𝑅𝑅𝑐𝑐 ∆x⁄  for each drop are 50 and 1.2 respectively. The reference sound speed 

c0 is 150 m/s. In this figure, VL, VR, and R are the velocities and radius of the droplets. The magnitude 

of relative velocity |Vrel| is |VL-VR|, and the dimensionless relative velocity |Vrel| �σ
µ
��  is 0.18. The 

dimensionless time t* used here is t |Vrel| (2R)⁄ . The Mach number |Vrel| c0⁄  is 0.043. The Weber and 

Reynolds numbers based on the relative velocity and the diameter of the droplets are 10 and 56 

respectively. In off-centre collision mode the spacing between the droplet centres, normal to the relative 

velocity, is equal to the radius, as depicted in Fig. 15.  

Results for the head-on collision are shown in Fig. 16. The process of merging starts by forming a 

liquid bridge at the interaction interface. This section elongates in the vertical direction as the droplets 
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continue their motion towards each other. The vertical expansion and horizontal contraction continue 
until the merged liquid reaches its maximum elongation in vertical direction and forms a quasi-

lemniscate droplet. Due to the high surface tension force at the top and end of the formed quasi-

lemniscate, it starts to contract from the poles. The merged droplet then oscillates until it forms a 

circular droplet.  
Fig. 17 shows a binary collision of drops in off-centre mode. The same process is seen in this collision 

as the liquid bridge forms at the initiation of the collision, and then expands in the direction normal to 

the initial centreline of the droplets. In contrast to the head-on collision, rotation of the liquid can be 

seen. The merged liquid forms a quasi-lemniscate droplet, which oscillates and rotates until it reaches 

a circular shape. The same behaviours of these collision modes have been reported by Melean et al. [3] 
and Yang et al. [5].   

 
Fig. 15. Schematic view of droplets collision for head-on and off-centre modes. 

   
 

t*=0 t*=0.0028 t*=0.0039 t*=0.0092 

    
t*=0.012 t*=0.0166 t*=0.024 t*=0.0314 

  
 

 
t*=0.037 t*=0.0406 t*=0.0535 t*=0.365 

Fig. 16. Evolution of 2D head-on binary collision of two similar viscous droplets with |Vrel| �σ
µ
�� =0.18, We=10, and Re=56 (red 

points are free-surface particles). 
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t*=0 t*=0.0042 t*=0.0052 t*=0.0081 

    
t*=0.0129 t*=0.0148 t*=0.0185 t*=0.024 

 
   

t*=0.0369 t*=0.0462 t*=0.148 t*=0.338 

Fig. 17. Evolution of 2D off-centre binary collision of two similar viscous droplets with |Vrel| �σ
µ
�� =0.18, We=10, and Re=56 

(red points are free-surface particles). 

D. Liquid Drop on a Solid Wall 

In this section, the results of droplet formation from an initial truncated circular arrangement of 

particles on hydrophilic (θe=40o, 60o, and 80o ) and hydrophobic (θe=120o and 140o ) solid surfaces are 

presented (Fig. 18). The ratios 2R ∆x⁄  for equivalent circular drop and 𝑅𝑅𝑐𝑐 ∆x⁄  are 50 and 1.2 respectively. 

The reference sound speed c0  is 160 m/s. The test case with a contact angle of 40o  resulted in the 

maximum Mach number umax c0⁄  of 0.015. On the hydrophilic surface (Fig. 18(b), (c), and (d)), the base 

of the droplet extends on the solid surface, increases the contact area between the wall and the liquid, 
while in the hydrophobic case (Fig. 18(e) and (f)), the contact surface is decreased. The contact angles 

for all cases have been checked in the final condition using the coordinates of the particles near the wall 
(Fig. 4), and are in close agreement with the prescribed equilibrium contact angles. Fig. 19 shows the 

decay of the kinetic energy.  

The results in Fig. 19 show practical elimination of spurious residual kinetic energy at contact angles 
40o to 140o. The kinetic energy normalized to maximum kinetic energy for contact angles from 40o to 

140o ranges from 10-7 to 10-11. Breinlinger et al. [11] presented SPH simulations of a 2D drop on a flat 

surface, in which normalized kinetic energy normalized to maximum kinetic energy is 10-3 for contact 
angles 60o and 150o. The SPH method of Liu et al. [23], in a similar test case for contact angles 60o and 

120o, resulted in final kinetic energy, normalized by initial surface tension energy, on the order of 10-3.      
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 18. Evolution of viscous liquid drop with initial truncated circular configuration (a) on hydrophilic (b, c, and d) and 
hydrophobic (e and f) surfaces, 2R ∆x⁄ =50 (red points are free-surface particles). 

 

Fig. 19. Decay of KE*= KE 2πRσ⁄  (kinetic energy normalized to initial surface energy) as a function of t* (time normalized to 
period of droplet oscillation) for a 2D viscous droplet on hydrophilic (θe=40o, 60o, and 80o ) and hydrophobic surfaces 
(θe=120o and 140o). 
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The diameter D of contact area and height H of a two dimensional drop on a flat surface (Fig. 20) in 
the absence of external body forces are given by Breinlinger et al. [11] as follows: 

D= 2δ sin(θe) , (33) 

H= δ (1-cos(θe)) , (34) 

δ= � A
θe-sin(θe)cos(θe)

 , (35) 

where A and δ are the cross-section of circular drop and the radius of curvature. Fig. 21 shows the 

variation of contact diameter and height of the drop with contact angles. The FVPM results agree closely 

with the analytical solution.      

 
 

  

Fig. 20. Schematic diagram of a liquid drop on a solid wall at 
equilibrium state with height H, contact area diameter D, 
and contact angle θe. 

Fig. 21. Normalized contact area diameter D and height H of 
liquid drop on a solid wall at equilibrium state as a function 
of contact angle θe. 

E. Impact of Small Cylinder on a Liquid Surface 

In this section, the new method is used to simulate a strongly dynamic, approximately two-

dimensional experiment with strong surface tension effects. Vella et al. [24] provide experimental data 

and an approximate analytical solution for impact of a horizontal steel cylinder dropped onto a water 
free surface. In the experiment, the terminal velocity of the cylinder in air is much higher than the 

impact speed of the cylinder, so that the cylinder is in the early stages of free fall and aerodynamic 

forces can be neglected. The cylinder is released from rest and impacts with velocity U. The impact 

Froude number is defined as 

F= U
(glc)1 2⁄  , (36) 
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where lc=�σ ρg⁄  is the capillary length. The dimensionless radius R and weight W are defined as 𝑟𝑟 lc⁄  

and πr2ρsg σ⁄  respectively. The parameters r and ρs are the radius and density of cylinder respectively. 

The experiment was carried out with water and isopropanol-water mixtures. The Reynolds number 

based on the diameter of the cylinder and the impact velocity, for cases on the threshold between 
floating and sinking, varies between 151 and 322. The ratio 2r ∆x⁄  is 16. The reference sound speed c0 

is 20 m/s. The Mach number based on the impact velocity, for cases on the threshold between floating 

and sinking, varies between 0.016 and 0.027. The density ratio ρs ρ⁄  is 7.85. The equilibrium contact 

angle θe between the cylinder and the fluid is 80o.    

Test conditions and results are shown in Table 1 and Fig. 22 for the experimental and analytical 
results of Vella et al. and the present FVPM method. FVPM results shown are the maximum Froude 

number for which floating resulted and the minimum that resulted in sinking, at each value of weight 

W. The gap between floating Froude number FF and sinking Froude number FS is due to the interval 

between tested impact velocities. FVPM results for the boundary between sinking and floating regimes 

are close to both analytical calculations and experiments in the lower range of weight. At higher weight, 

FVPM and analytical models are in good agreement, but both predict lower critical Froude number for 
sinking than observed in experiment. Vella et al. [24] suggested that the differences between the 

experiment and the 2D analytical model may be due to surface tension force at the ends of the body, 
which can increase deceleration and allow the body to float for higher impact velocity. The end effects 

are also absent from the present 2D computational model, and may explain the discrepancy from 

experiment. Snapshots of the cylinder motion are presented in Fig. 23. It is seen that after downward 
motion the cylinder rebounds upward until it floats on the surface of the liquid.  

Table 1. Comparison of experimental data [24], FVPM calculations, and analytical results [24]. FF and FS denote the maximum 
Froude number observed for floating and the minimum Froude number for sinking, respectively, at the corresponding W, R 
and Re. 

% 
isopropanol 

(vol.) 
W R Re 

Experiment [24] FVPM Analytical [24] 

FF FS FF FS F 
0 0.25 0.10 299 4.7 4.9 3.303 3.548 3.448 

0 0.3 0.11 306 4.3 4.5 3.120 3.365 3.228 

6.25 0.36 0.12 220 3.5 4.0 3.075 3.342 2.991 

0 0.41 0.13 322 2.7 3.0 2.814 3.059 2.826 

10 0.66 0.16 151 1.7 1.9 2.127 2.401 2.191 
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Fig. 22. Floating-sinking regime diagram of cylinder impact on a liquid surface. 

 
t*=0 

  
t*=0.0042 t*=0.014 

  
t*=0.018 t*=0.024 

  
t*=0.032 t*=0.052 

Fig. 23. Snapshots of the motion of a circular cylinder with Re=220, FF=3.075, FS=3.342, and W=0.36 (red points are free-
surface particles). 
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5. CONCLUSION 

A simple model for surface tension in the finite volume particle method (FVPM) has been presented 

in this article. It has been tested for 2D static and dynamic liquid flows. The results obtained are in 
good agreement with existing data. In static tests, drops in free space and on a wall reach equilibrium 

states practically free of spurious velocity, with uniform pressure and final kinetic energy on the order 
of 10–7 to 10–14 of initial surface energy. In simulations of cylinder impact on a liquid surface, 

predictions of floating or sinking outcome are in agreement with experimental data. All simulations 
were carried out with purely Lagrangian particle transport, and equilibrium was achieved despite 

notably non-uniform particle distribution in some cases. The only input parameters required are 

surface tension coefficient and equilibrium contact angle.  

FVPM has the advantage that the free surface can be detected definitively at no extra cost. In 
principle, this surface tension approach could be implemented in smoothed particle hydrodynamics 

(SPH) using a method for free surface detection such as that of Marrone et al. [25].  In further work, 
the extension of the method to 3D is intended, using spherical particles.    
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