Observed Customer Standing Behaviours and Seat Preferences on Board Subway Cars in New York City

Aaron Berkovich, Brian Levine, Alla Reddy
Operations Planning, New York City Transit Authority

Alex Lu
Metro-North Railroad

Presented at the 92nd Annual Meeting of the Transportation Research Board

Notice: Opinions expressed in this presentation are those of the authors and do not necessarily reflect the official policy or position of the Metropolitan Transportation Authority, Metro-North Railroad, or New York City Transit Authority.
Diverse Seating Layouts in Subways
U.S. Subway Systems

• New York City
 – Mainly longitudinal seating
 – All cars built after 2000 are longitudinal
 – Except extra large (75’) cars

• Chicago
 – Traditionally followed other cities
 – New 5000-series has modified longitudinal layout
 – Older cars retrofitted

• Other U.S. Cities
 – Mostly transverse seating (similar to commuter rail cars)
 – Longitudinal seats near doors
New York City Fleet

• Asymmetric door arrangement
 – System’s oldest fleet (R-32)
 – Recently retired fleet from 1960s
 – Half of numbered-line fleet (non-cab R-142/R-142A)
 – Concept is largely unique to NYC

• Symmetric door arrangement
 – Majority of current NYC cars
 – Prevalent elsewhere in the world

• Combination of transverse and longitudinal seats
 – Only on 75-foot-long cars
 – Only 40% of seats are transverse
Study Methodology

- Over 60 samples recorded
- Each sample is one car traveling non-stop between two adjacent stations
- Customers classified by gender and age group
Probability Snapshots: Seating

Door, Middle, Other
Probability Snapshots: Seating

Door/Wall, Middle, Pole

MTA Metro-North Railroad
TRB Paper #13-1693 Slide 6
Probability Snapshots: Seating

Forward, Backward* (75’ cars)

* Data collected is not sufficient to make a definitive conclusion. Further study is recommended.
Probability Snapshots: Seating

Window, Aisle, Longitudinal
(75’ cars)

* Data collected is not sufficient to make a definitive conclusion. Further study is recommended.
Gender Ratio, Standees to Seated: Male versus Female

![Graph showing the ratio of standees to seated passengers by load factor within car for female and male passengers.](image)
Probability Snapshots: Seated versus Standees

![Graph showing the relationship between fraction of spots occupied and load factor within a car, with data points for seated and standees.]
Probability Snapshots:
Pole versus No Pole

Fraction of Spots Occupied vs. Load Factor within Car

- Seated
- Pole
- Non-Pole
Probability Snapshots: Standees
Door, End, and Middle

![Graph showing the probability of spots occupied versus load factor within a car for seated, door standee, end standee, and mid standee positions.]

- Seated
- Door Standee
- End Standee
- Mid Standee
Probability Snapshots: Doors in Symmetrical versus Asymmetrical

Graph showing the fraction of spots occupied against the load factor within the car, with different markers for Seated, Asym Non-Door, Sym Non-Door, Asym Door, and Sym Door.
Conclusions: New York

• Preference for seats next to doors
• No real preference for seats adjacent to stanchions
• Disdain for spots between two seats
• Window transverse seats are preferred where available, regardless of travel direction*
• Standees crowd door areas, especially with symmetric doors
• Standees prefer spots where they can hold on to vertical poles

* Data collected is not sufficient to make a definitive conclusion regarding forward- vs. backward-facing seat preference. Further study is recommended.
Talking About Car Design...

- Longitudinal seats maximize overall car capacity
- Transverse seats provide customer-preferred windows
- 2+2, even 2+1 transverse seats should be avoided in urban areas (aisle seats create blocking and circulation problems)
- Partition on long benches avoids appearance of “middle” seat, and discourages lying down
- Because poles attract standees, they should be moved away from doors, to reduce congestion
- Customers tend to especially crowd symmetric door areas, so asymmetric arrangement could reduce crowding by the doors.
- Areas that become crowded during crush load should have overhead supports
Open Research Questions

• In subway cars, how does the ratio of transverse/longitudinal seats relate to ridership, crowding, and station spacing?
• Should seats be homogenous or should options be provided within a train or even a single car?
• Stated preference surveys could determine perceptions; customers could rank renderings
• Individual hardware items (e.g. poles) could be tested in existing cars to determine effects
• On commuter trains, what is a good ratio of airline-style versus booth seating?
• In cars with fixed forward- and backward-facing seats, should seats face towards door or away?
Acknowledgements

The authors would like to thank all those who facilitated or supported our research:

Svetlana Rudenko
Tatiana Lipsman
David J. Greenberger
Glenn Lunden
Alex Cohen
Ted Wang
Peter Cafiero
Frederic Nangle
David Fogel
John Kennard

Aaron Berkovich, Staff Analyst II,
System Data & Research, New York City Transit
2 Broadway, Cubicle A17.90, New York, NY 10004
(646) 252-5444
Aaron.Berkovich@nyct.com

Alex Lu, Metro-North Railroad
P.O. Box 406, Islip, N.Y. 11751-0406
(212) 340-2684
lexcie@gmail.com http://lexciestuff.net/

Brian Levine, Staff Analyst II,
System Data & Research, New York City Transit
2 Broadway, Office A17.90, New York, NY 10004
(646) 252-5541
Brian.Levine@nyct.com

Alla V. Reddy, Senior Director,
System Data & Research, Operations Planning,
New York City Transit Authority
2 Broadway, Office A17.92, New York, N.Y. 10004
(646) 252-5662
alreddynyct@gmail.com

Notice: Opinions expressed in this presentation are those of the authors and do not necessarily reflect the official policy or position of the Metropolitan Transportation Authority, Metro-North Railroad, or New York City Transit Authority.