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Two-stage light gas guns (2SLGGs) can reliably accelerate projectiles to velocities between 1.5-8.0+ km/s and are 

used in hypervelocity impact, aerospace, and hypersonic research. 2SLGG operation involves a variety of physical 

phenomena including combustion, gas-compression, heat-transfer, and friction. Due to the wide range of operational 

parameters and experimental uncertainty, accurate muzzle velocity predictions can be a serious challenge. In this 

paper, a series of regression models for predicting muzzle velocity were fitted to and validated against 171 2SLGG 

launches (projectile velocities, 1.5-6.8 km/s) performed at the Texas A&M University Hypervelocity Impact 

Laboratory (HVIL). Most of the regression models analyzed had minimal accuracy improvement compared to basic 

linear regression. However, a neural network model (RMSE = 0.234 km/s) utilizing several methods to combat over-

fitting, showed consistent improvement over linear regression (RMSE = 0.260 km/s) and Gaussian process regression 

(RMSE = 0.240 km/s). Regression model projectile velocity estimates were compared to results from the classical 

Piston Compression Light Gas Gun Performance (PCLGGP) and state-of-the-art LGGUN 2SLGG performance 

prediction codes. All of the regression models demonstrated significantly better predictive capabilities than the 

PCLGGP model (RMSE = 0.597 km/s), particularly at lower velocities. The regression model absolute errors from 

the 2SLGG experiments also compared very favorably to general absolute error estimates obtained using LGGUN. 

These results suggest that easy-to-implement, maintain, and scalable regression models may provide a viable 

alternative to complex physics-based computational models for 2SLGG launch velocity predictions, particularly as 

the volume of available experimental data increases. Such regression models have the potential to markedly improve 

predictive capabilities, identify complex coupling between experimental parameters, and reduce uncertainty. 

two-stage light gas gun (2SLGG), aeroballistic range, hypervelocity impact, regression, neural 

network, hypersonic, empirical model 
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1. Introduction and Motivation 1 

Hypersonic vehicles and spacecraft are subjected to extreme operating environments that can 2 

adversely affect mission performance. For hypersonic vehicles travelling well above the speed of 3 

sound, impacts with small, slow-moving atmospheric particles (rain, ice, dust, etc.) can be 4 

devastating. In space, micrometeoroid orbital debris (MMOD) can impact spacecraft and planetary 5 

structures with relative velocities ranging from 2–70 km/s [1], leading to catastrophic system 6 

failure or possible loss of life. Although the impact physics between the projectile and target are 7 

well-known at lower velocities, such knowledge does not directly transfer to impacts at velocities 8 

exceeding roughly 2.5–3.0 km/s since the material response generally transitions from strength-9 

dominated (high-velocity) to shock/pressure-dominated (hypervelocity)1 behavior [2]. Since the 10 

end of WWII, numerous laboratories have been established worldwide to conduct hypervelocity 11 

impact (HVI) research aimed at characterizing and mitigating HVIs. Many of these facilities 12 

employ a two-stage light gas gun (2SLGG) to accelerate projectiles to hypervelocities. An 13 

extensive review of such 2SLGG facilities, their capabilities, and research areas is presented in 14 

[3]. 15 

In general, 2SLGGs can be used to efficiently accelerate projectiles to velocities between 1.5-16 

8.0 km/s. Accurate and reliable prediction of 2SLGG muzzle velocities as a function of launch 17 

parameters can be extremely challenging but is essential for the execution of tightly controlled 18 

launches. Without reasonably accurate predictions of muzzle velocity, multiple launches may be 19 

necessary to achieve a desired projectile velocity. Moreover, replicate experiments performed at a 20 

 
1 For simplicity, the transition from high-velocity to hypervelocity is loosely considered to occur 
over the range 2.5-3.0 km/s [2]. 
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specific velocity (with an acceptable tolerance) can be difficult to perform. This can dramatically 21 

increase experimental costs and turnaround times, as well as limit the utility of single experiments 22 

where repeated shots are not feasible (e.g., there are a limited number of targets). Thus, 23 

incorporating robust and adaptable tools for predicting launch velocities is critical for the execution 24 

of a viable test plan. The actual 2SLGG muzzle velocity depends on the complex coupling between 25 

a multitude of operational parameters, including gunpowder type, gunpowder mass, piston mass, 26 

burst disk rupture pressure, light gas initial pressure, projectile package mass, pump tube geometry, 27 

launch tube geometry, frictional forces between components, etc. For example, the free volume of 28 

the powder chamber can profoundly affect the powder burn efficiency, compression piston 29 

acceleration profile, and energy transfer to the projectile.  30 

Several methods have been developed to predict 2SLGG performance and muzzle velocity. 31 

Charters et al. [4] at the NASA Ames Research Center developed one of the earliest and simplest 32 

models, implemented in the Piston Compression Light Gas Gun Performance (PCLGGP) software 33 

package (i.e., “Charters’ code”). Charters’ code has been widely adopted and is relatively easy to 34 

implement since it involves the simultaneous solution of a set of linear algebraic equations. The 35 

PCLGGP model, however, makes a number of simplifying assumptions that can limit accuracy 36 

(such as negligible friction, negligible heat loss, and no gas flow in the pump tube). In contrast, 37 

the Simple Isentropic Compression model [5] makes fewer assumptions (accounting for friction 38 

and simplified gas flow in the pump tube, as well as subsonic-to-sonic gas flow in the nozzle) but 39 

is slightly more challenging to implement than the PCLGGP model since it requires the numerical 40 

solution of a coupled set of nonlinear differential equations. The Richter-Von Neuman “q-method” 41 

[6] can account for supersonic flow and shock waves in the pump tube, resulting in improvements 42 

in the predicted launch velocities. The recently updated LGGUN program developed by Bogdonaff 43 
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et al. [7, 8] at NASA Ames is arguably the most sophisticated 2SLGG prediction code. LGGUN 44 

is a quasi-one-dimensional Gudonov code that is second-order accurate in time and third-order 45 

accurate in space. Validation studies using LGGUN report high accuracy, but the code 46 

implementation and interpretation of results requires considerable expertise on the part of the user.  47 

The limitations and difficulties associated with numerical 2SLGG performance prediction tools 48 

have motivated the development and implementation of a few empirical approaches. Fraunhofer 49 

EMI developed a neural network model to predict 2SLGG muzzle velocities in an effort to improve 50 

gun performance [9, 10]. However, limited information was provided regarding the neural network 51 

model’s design and accuracy. Shojaei et al. [11] evaluated a series of regression methods for 52 

predicting 2SLGG muzzle velocities, with a focus on random forest regression [12]. In the current 53 

study, we dramatically extend the work of Shojaei et al. [11] by considering a more robust set of 54 

regression models. Random forest regression was not included since an initial screening of 55 

regression models suggested that it did not perform as well as basic linear regression. Apart from 56 

[11] and the current study, most techniques for predicting 2SLGG performance are physics-based 57 

numerical models with, at most, empirically derived parameters. To the best of the authors’ 58 

knowledge, there are no other purely empirical 2SLGG prediction studies reported in the literature.  59 

Since the advent of 2SLGGs (circa 1950) [13, 14], many computational resources and advanced 60 

regression techniques have been developed to predict launcher performance. For instance, artificial 61 

neural network regression [15], support vector regression [16], and Gaussian process regression 62 

with particular kernels [17] are often used for nonlinear regression since they serve as “universal 63 

approximators” [18, 19] able to approximate any deterministic relationship between inputs and 64 

outputs. The different regression methods vary widely in their implementation, accuracy, and 65 

unique strengths.  66 
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In this study, a series of regression methods (linear, LASSO, ridge, elastic-net, neural network, 67 

Gaussian process, and support vector) are used to predict 2SLGG performance. Specification of 68 

each regression method is first presented followed by a discussion of regression results. 69 

Concluding remarks are provided and future improvements to the approach are suggested. 70 

2. Methodology: HVI Experiments and Regression Models for 71 
Predicting 2SLGG Muzzle Velocity 72 

All regression models were developed using performance data from the powder-driven 12.7 mm 73 

bore 2SLGG used in the TAMU HVIL [2]. A brief overview of the 2SLGG operation and the 74 

regression models are included in the following discussion. 75 

2.1. 2SLGG Operation and Experiments 76 

In essence, a 2SLGG harnesses the energy generated by a single-stage launch system to compress 77 

a light working gas, which ultimately drives a projectile. Typically, 2SLGGs are comprised of 78 

seven primary structural and consumable elements: (1) a pressure breech, (2) pump tube, (3) 79 

central breech, (4) launch tube, (5) deformable compression piston, (6) burst disk (a.k.a. petal 80 

valve), and (7) projectile or projectile package (projectile + sabot). The pressure breech, pump 81 

tube, central breech, and launch tube are coaxially arranged and connected with rigid coupling 82 

mechanisms and interfacing O-rings to ensure gas-tight seals [3]. Initially, the piston occupies the 83 

uprange end of the pump tube, and the projectile is situated at the uprange end of the launch tube, 84 

just downrange of the burst disk (Figure 1a). A predetermined quantity of a low-molecular-weight 85 

light working gas (e.g., hydrogen or helium) is injected into the pump tube. As an aside, gunpowder 86 

combustion generates the piston driver gas in most guns (~80%), but a few guns use cold-gas (He, 87 

N2, etc.) stored in high-pressure reservoirs, released through a fast-acting valve [3]. While cold-88 

gas-driven 2SLGGs are not considered in this study, their inclusion in the future would be 89 
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relatively straightforward. For the HVIL gun and most other powder-driven 2SLGGs, the main 90 

(secondary) powder charge is ignited in the pressure breech by a smaller, faster-burning primary 91 

charge. High-pressure combustion gases generated in the powder/pressure breech are used to drive 92 

a deformable (e.g. polyethylene) piston downrange within the pump tube (Figure 1b); this 93 

compression process rapidly elevates the pressure and temperature of the working gas. When a 94 

specific burst pressure is exceeded, the burst disk ruptures, exposing the projectile to the 95 

compressed working gas, which propels it down the launch tube (Figure 1c). Eventually, the 96 

projectile exits the muzzle at velocities up to ~8 km/s (Figure 1d) [3]. Most 2SLGGs are 97 

accompanied by coaxial range tankage that collectively form an aeroballistic range. Tankage 98 

assemblies usually include one or more enclosed cylindrical tanks that contain the projectile during 99 

its free flight and/or impact. Range tankage configurations and applications are largely outside the 100 

scope of this work but are summarized in Ref. [3]. For reference, key design parameters and 101 

capabilities of the HVIL 2SLGG are given in Table 1. 102 

After the projectile package leaves the muzzle, the sabot generally must be stripped from the 103 

projectile by some means. For smooth bore guns, such as that in the HVIL, sabots are separated 104 

from the projectile via aerodynamic forces within one or more of the range tanks [3, 20, 21]. The 105 

tankage internal pressure can be varied to induce different degrees of sabot separation. Of course, 106 

this separation process can also decelerate the projectile. Hence, the range tankage “backfill” 107 

pressure, in addition to primary and secondary powder types/masses, piston mass, piston release 108 

pressure, working gas type and initial pressure, burst disk rupture pressure, and projectile package 109 

mass can be readily varied to tune 2SLGG launch conditions and performance. Accurately 110 

predicting the muzzle velocity given some or all of these variables is the primary goal of this work. 111 
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The fundamental operation of most unaltered 2SLGGs is very similar [3], allowing this study's 112 

findings, interpretations, and predictive methods to be easily adapted to other gun configurations.  113 

 114 

Figure 1: An illustrative guide to the operating principle of a 2SLGG, detailing (a) the moment 115 
prior to projectile launch, (b) the phase of working gas compression, (c) the instant the burst disk 116 
ruptures and acceleration of the projectile commences, and (d) immediately following the 117 
projectile's exit from the muzzle as it enters the aeroballistic range tankage. Figure reprinted with 118 
modification from Ref. [3]. 119 
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Table 1: Key design and operational parameters for the TAMU HVIL 2SLGG [2]. Regression 120 
model parameters are indicated with an asterisk (*). 121 

Parameter Value 

2SLGG total length (m) 13.70 

Pump tube inner diameter (mm) 44.00 

Pump tube length (m) 3.70 

Launch tube inner diameter (mm) 12.70 

Launch tube length (m) 3.70 

Single-projectile diameter range (mm) 2.0–12.7 

Achievable projectile velocity range (km/s) 1.5–8.0 

Maximum rated kinetic energy (kJ) 80.00 

Projectile package mass* (g) 2.0–6.1 

Primary powder mass* (g) 1.0–2.0 

Secondary powder mass* (g) 50–165 

Pump tube fill (working gas) pressure* (MPa) 0.96–1.93 

Tankage (backfill) pressure* (kPa) 0.0–66.0 

Piston Mass* (g) 350-800 

Burst disk score depth* (mm) 0.36, 0.51 

Piston Fit Tightness* low (0.0), medium (0.5), high (1.0) 

Powder chamber volume* (cm3) 172.6, 265.5, 424.8 

Secondary powder type* H4831, H4831SC, IMR 4831, 50BMG, and 

SW50BMG 

2.2. Variable/Feature Selection 122 

In total, ten different variables (features) were used for predicting 2SLGG muzzle velocity. Most 123 

of the variables were continuous: projectile package mass, primary powder mass, secondary 124 

powder mass, pump-tube fill (working gas) pressure, and tankage (backfill) pressure. The steel 125 
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burst disk rupture pressure was varied by changing the disk’s score depth. This score depth was 126 

treated as quasi-discrete since only two depths were considered. The primary powder type and 127 

mass were not the only variables that influenced the pressure profile in the powder breech (and 128 

thus piston acceleration in the pump tube): changing the internal volume of the powder breech for 129 

a given powder mass resulted in more efficient powder combustion. Increasing the piston release 130 

pressure had a similar effect. The powder breech internal volume was varied by incorporating 131 

volume reducers. The number of volume reducers was treated as a discrete variable. Changes in 132 

piston release pressure were somewhat controlled by discrete variations in the piston frictional fit 133 

within the pump tube. The piston release pressure was treated as a subjective discrete variable 134 

characterized in terms of how “tightly” the piston fit into the uprange end of the pump tube; “low,” 135 

“med,” or “high” levels of tightness corresponded with parameter values of 0.0, 0.5, and 1.0, 136 

respectively. Finally, five categorical features were used to represent the five different gun 137 

powders employed in previous experiments: H4831 [22], H4831SC [22], IMR 4831 [23], 50BMG 138 

[22], and SW50BMG [24]. The 50BMG and SW50BMG powder burn data needed for PCLGGP 139 

predictions were not available at the time of this publication. Hence, to compare with PCLGGP 140 

predictions, data using these powders was omitted. However, the full-scale laboratory 141 

implementation of the regression model for 2SLGG muzzle velocity is trained on more of the data 142 

which includes all powder types. 143 

2.3. Model Validation and Hyperparameter Tuning 144 

A regression model is only useful so far as it can accurately predict new data. Since models can 145 

overfit data (accurately predicting given data but mispredicting new data) the only reliable metric 146 

for a regression model’s performance (i.e., accuracy) is how well it predicts “unseen” data that 147 

was not used to fit the model. In practice this means that some of the data must be withheld during 148 
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the training process to validate model performance afterwards. A common method is holdout 149 

validation which involves partitioning the data into a training set (for fitting the model) and a 150 

testing set (for validating model performance) [25]. Determining how much data to withhold for 151 

testing presents a nuanced challenge, particularly for smaller datasets. The training set needs 152 

enough data to construct a robust model while the testing set needs enough data to give a reliable 153 

and representative estimate of model performance. [25] 154 

During training, parameters (analogous to model coefficients) are fit to match the training data 155 

through some sort of optimization process (e.g., gradient descent [26]). However, some regression 156 

models contain both parameters (optimized during the training process) and hyperparameters 157 

which affect the training process and must be decided beforehand. Examples of hyperparameters 158 

include the learning rate, number of training iterations, penalty terms, and the number of layers in 159 

a neural network. These hyperparameters can have a significant impact on a model’s performance 160 

but must be determined outside of the model’s typical training process. To create better models, 161 

hyperparameters are often tuned algorithmically to achieve the best model performance on some 162 

unseen data set (tuning data). Like the testing set, the tuning set gives an estimate of how well the 163 

model predicts unseen data with specific hyperparameters. However, the tuning set and testing set 164 

must be disjoint to avoid “peeking:” including testing data in the hyperparameter tuning process. 165 

Once the testing data has been peeked it is no longer truly unseen data which risks overfitting and 166 

can bias the final results. A simple method for segmenting the testing, tuning, and training sets is 167 

to first partition the data into a training and testing set and then further partition the training set 168 

into a tuning set and final training set as demonstrated in Figure 2. Since hyperparameter tuning 169 

shrinks the training set, it makes training robust models on limited data more difficult. For this 170 
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reason, using the final hyperparameters, the model is typically retrained on the combined training 171 

and tuning data before validating the model’s performance on the testing data. 172 

 173 

Figure 2: Illustration of data partitioning for hyperparameter tuning and model validation using 174 
basic holdout validation.  175 

To alleviate the problems with holdout validation on small data sets, cross-validation can be used 176 

instead [25] . In 𝑘𝑘-fold cross-validation, the data is partitioned into 𝑘𝑘 subsets (usually 5-10). For 177 

each subset, a model is trained on the other 𝑘𝑘 − 1 subsets combined and tested on the original 178 

subset. If this is done for each subset, the aggregate results give a measure of model performance 179 

based on all data while still using (𝑘𝑘 − 1) 𝑘𝑘⁄  of the data to train each model. This gives a more 180 

reliable and representative measure of model performance while still using sufficient data to train 181 

robust models. A drawback of cross-validation is its computational cost, as it requires the model 182 

to be trained k times instead of just once. However, when several models are trained on slightly 183 

different data (as in each fold), the predictions can be averaged to give a result less prone to 184 



12 
 

overfitting. This is referred to as k-fold averaging and is one of many ensemble methods [27] used 185 

to combat overfitting in regression models. 186 

Adding hyperparameter tuning to k-fold cross-validation can be accomplished in two different 187 

ways. The simplest option is to partition the training set into a single training and tuning set for 188 

each fold like in holdout validation. Another option is to split the training set into several subsets 189 

to perform nested cross-validation [28] which uses all the training data to optimize 190 

hyperparameters in the same way non-nested cross validation uses all the data to validate model 191 

performance. The recursive data partitioning involved in nested cross-validation is demonstrated 192 

in Figure 3 where an outer loop (a) is used to validate model performance and within each of these 193 

outer loops another inner loop (b) is used to optimize the hyperparameters. Nested cross-validation 194 

often leads to higher computational costs without added benefit [28], but was deemed necessary 195 

in this study to utilize k-fold averaging. 196 
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 197 

Figure 3: Pictorial demonstration of recursive data partitioning in nested cross-validation with 198 
five-fold cross-validation in the outer loop (a) and three-fold cross-validation in the inner loop 199 
(b). 200 

In this study, the regression model performance varied dramatically depending on which data 201 

points were used in the test set (some being easier or harder to predict than others) due to the 202 

limited number of data points (171, see Appendix A) and large number of variables (10). As 203 

such, five-fold cross-validation was used to give a more reliable estimate of model performance. 204 

For regression models needing hyperparameter tuning, hyperparameters were optimized using 205 

the Tree-Structured Parzen Estimator method [29] and nested cross-validation (five outer and 206 

inner folds) was employed to leverage 𝑘𝑘-fold averaging. This approach minimized overfitting by 207 

averaging predictions from all models in the inner loop, rather than retraining a single model 208 

with the combined training and tuning data. 209 
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2.4. Regression Methods 210 

The most basic form of regression is linear least-squares regression, which determines the weights 211 

(coefficients) that minimize the squared residual error. LASSO [30], ridge [31], and elastic-net 212 

[32] regression function nearly identically to linear regression but add a penalty term (abbreviated 213 

as P) to the squared error that is related to the magnitude of the weights: 214 

LASSO: 𝑃𝑃 = 𝜆𝜆𝐿𝐿∑|𝑤𝑤𝑖𝑖|, (1) 215 

ridge: 𝑃𝑃 = 𝜆𝜆𝑅𝑅∑𝑤𝑤𝑖𝑖
2, (2) 216 

elastic-net: 𝑃𝑃 = 𝜆𝜆𝐿𝐿∑|𝑤𝑤𝑖𝑖| + 𝜆𝜆𝑅𝑅∑𝑤𝑤𝑖𝑖
2, (3) 217 

where 𝜆𝜆𝐿𝐿 and 𝜆𝜆𝑅𝑅 are hyperparameters for scaling the penalty term. This encourages the regression 218 

model to assign zero weights to variables that only marginally improve results which reduces over-219 

fitting. A penalty term of zero (𝜆𝜆𝐿𝐿 = 𝜆𝜆𝑅𝑅 = 0) makes all three methods identical to basic linear 220 

regression.  221 

These linear regression methods can be expanded to higher order polynomial regression (e.g., 222 

quadratic) by using a higher order expansion of the independent variables. For example, a linear 223 

model with independent variables 𝑥𝑥1, 𝑥𝑥2 and dependent variable 𝑦𝑦 can instead be expressed using 224 

a quadratic form: 225 

𝑧𝑧1 = 𝑥𝑥1, 𝑧𝑧2 = 𝑥𝑥2, 𝑧𝑧3 = 𝑥𝑥1𝑥𝑥2, 𝑧𝑧4 = (𝑥𝑥1)2, 𝑧𝑧5 = (𝑥𝑥2)2. (4) 226 

Then the relationship 𝑓𝑓(𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4, 𝑧𝑧5) = 𝑦𝑦 can be fit using linear regression (just with more 227 

variables) and is equivalent to a quadratic regression of the relationship 𝑔𝑔(𝑥𝑥1, 𝑥𝑥2) = 𝑦𝑦. This is less 228 

useful for more sophisticated regression methods which can intrinsically derive higher order 229 
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relationships (e.g., neural network regression) but is essential for modeling more complex 230 

phenomena with linear regression methods. 231 

Support vector regression [16] is more complicated than the LASSO, ridge, and elastic-net 232 

methods and seeks to find a curve that represents the data with maximal error (𝜖𝜖) between the 233 

curve and experimental values. Anything within ±𝜖𝜖 is treated the same whether the error is 0 or 234 

0.99𝜖𝜖. This helps create a curve that fits the data within acceptable margins while avoiding over-235 

fitting. Since 𝜖𝜖 is a user-specified hyperparameter, the problem can often be over-constrained at 236 

which point some “slack” beyond 𝜖𝜖 is allowed but minimized. 237 

Gaussian process regression [17] is based on Bayesian statistics where prior “beliefs” (assumptions 238 

on probability) are updated based on new information. Gaussian process regression starts by 239 

assuming some prior distribution of functions and then updates this distribution based on given 240 

data. Instead of assuming a specific function for predicted model output, Gaussian process 241 

regression gives a distribution of functions with common properties (e.g., differentiability, 242 

periodicity, and how close two points need to be to affect each other). In a simple case with no 243 

experimental error, giving the algorithm several data points updates the prior distribution of 244 

functions to a new (posterior) distribution where all functions pass through the given data points. 245 

From this new distribution, the expected value (or mean) at a specified point is the prediction of 246 

the model. Noisy inputs can be easily accounted for by adding a hyperparameter for the variance 247 

(or experimental error/noise) of the training data (𝜎𝜎𝑛𝑛2) to the model. Unlike other regression 248 

methods, Gaussian process regression can give an estimate of the variance (i.e., uncertainty) of a 249 

prediction using the variance of the posterior distribution at the specified point. However, Gaussian 250 

process regression can become computationally expensive on larger data sets due to the inversion 251 

of an 𝑁𝑁 × 𝑁𝑁 matrix, where 𝑁𝑁 is the number of data points. In addition, difficulties may arise from 252 
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an excessive number of features such as in image recognition. For this study, the Gaussian process 253 

regression model employs a radial basis function (RBF) kernel [33] with added noise and is 254 

allowed to update its hyperparameters and restart the process up to 200 times on each outer fold 255 

of the training data. Unlike most other models, it does not update these hyperparameters using 256 

nested cross validation nor the Tree-Structured Parzen Estimator method [29] but instead an 257 

internal process which maximizes the log-marginal likelihood [33]. The model’s accuracy was 258 

determined using basic (non-nested) five-fold cross validation. 259 

Neural network models are based on the structure of neural networks found in the brain [25]. They 260 

consist of layers of interconnected “neurons” which can process and transmit information. Each 261 

neuron receives the inputs from the previous layer and performs a weighted sum on these inputs, 262 

applies a bias, and passes it through a nonlinear activation function to produce an output for the 263 

next layer of neurons. Adjusting these weights and biases (through training the model) allows a 264 

sufficiently large neural network to approximate arbitrary functional relationships [18]. However, 265 

since neural networks use many weights and biases to fit the data, they are prone to over-fitting 266 

and lack interpretability. Many neural network architectures exist in the literature with a variety of 267 

strengths and weaknesses. After testing many different architectures and techniques, a simplified 268 

DenseNet architecture [15, 34] was used in this study due to its feature-reuse capabilities (i.e., 269 

inputs are not “lost” as the depth of the neural network increases). The neural network model also 270 

employs dropout regularization [35] and k-fold averaging [36] to reduce overfitting.  271 

3. 2SLGG Muzzle Velocity Prediction Results and Discussion 272 

Linear least-squares (basic, LASSO, ridge, and elastic-net), support vector, Gaussian process, and 273 

artificial neural network regression were used to empirically model the 2SLGG’s muzzle velocity. 274 
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The independent variables (parameters) used were (1) projectile package mass, (2) primary powder 275 

mass, (3) secondary powder mass, (4) pump tube fill (working gas) pressure, (5) tankage (backfill) 276 

pressure, (6) piston mass, (7) burst disk score depth, (8) piston fit tightness, (9) number of volume 277 

reducers in the powder breech, and (10) gunpowder type. The results of each regression model and 278 

their comparison to those from two numerical models (PCLGGP and LGGUN) are presented in 279 

this section. The models are compared based on the root-mean-squared error (RMSE): 280 

RMSE = �
1
𝑛𝑛
� |𝑓𝑓(𝑥⃗𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖|2

𝑛𝑛

𝑖𝑖=1
, (5) 281 

where n is the number of (𝑥⃗𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) input(s)/output pairs to the regression model 𝑓𝑓(𝑥⃗𝑥𝑖𝑖). RMSE (Eq. 282 

5) approximates the standard deviation of the errors (lower is better). All predictions and error 283 

measurements are based on data points withheld during the training process. 284 

3.1. Regression Results for 2SLGG Muzzle Velocity Predictions 285 

The predicted projectile velocity obtained using the most basic model (linear regression) was 286 

compared to that from PCLGGP (Charters’ code) over the given 2SLGG velocity range 1.5-287 

6.8 km/s. The linear model (RMSE = 0.260 km/s) matched the measured muzzle velocity values 288 

(diagonal dashed line) significantly better than the PCLGGP model predictions (RMSE = 289 

0.597 km/s) especially at lower muzzle velocities (Figure 5a). The plot clearly shows that 290 

PCLGGP consistently over-predicted the actual values at lower launch velocities (i.e., <5.0 km/s) 291 

but yielded more accurate results for velocities >5 km/s. Since Charter’s code does not account for 292 

the effect of piston and projectile friction, the PCLGGP model has been reported to consistently 293 

over-predict muzzle velocities by 10–20% [37]. Since these effects become less significant for 294 

more energetic shots, the PCLGGP model error will tend to decrease with increasing muzzle 295 
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velocity. The difference between PCLGGP and linear regression is clearer in Figure 5b, which 296 

shows the velocity normalized absolute error (𝜖𝜖 ̅= �𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁄ ) compared 297 

to the measured velocity. PCLGGP’s relative error exceeded 70% at lower velocities (~2 km/s) 298 

but significantly improved with increasing projectile velocity. The linear model predicted a few 299 

outliers at lower velocities but provided more stable predictions throughout the entire velocity 300 

range. The dashed lines in Figure 5b demonstrate that the average relative error for the linear 301 

regression predictions (5.4%) was dramatically lower than those for the PCLGGP model (15.8%). 302 

 303 
Figure 4: PCLGGP (Charters’ code) results compared to linear regression results: (a) predicted 304 
muzzle velocity versus measured muzzle velocity and (b) normalized absolute error versus 305 
measured muzzle velocity. 306 

 307 

The results of LASSO (RMSE = 0.259 km/s), ridge (RMSE = 0.260 km/s), and elastic-net 308 

(RMSE = 0.260 km/s) regression were almost identical to the linear regression results. In all cases, 309 

the penalty terms were negligibly small. Recall that with a null penalty term the LASSO, ridge, 310 

and elastic-net regression predictions will be identical to that for basic linear regression with no 311 

reduction in overfitting. Hence, a penalty term near zero implies that, for a comparable linear 312 
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model, there is little to no benefit in removing any independent variables. The support vector 313 

regression (RMSE = 0.263 km/s) predictions approach, but do not improve upon, the linear model 314 

results even with significant hyperparameter tuning. Hence, the support vector regression model 315 

was the only model considered that performed worse than basic linear regression. A summary of 316 

all model results is presented in order of descending RMSE values in Table 2. 317 

 318 
Table 2: The root-mean-square error (RMSE) over holdout data for each model over the 2SLGG 319 
operational velocity range 1.5-6.8 km/s (The Quad. RMSE column represents the results when 320 
quadratic features were passed through the model). LGGUN results (*) correspond to a different 321 
set of experiments performed using multiple 2SLLGs [38, 39]. 322 

No. Model RMSE (km/s) Quad. RMSE (km/s) 

1 PCLGGP (Charters’ code) 0.597 … 

2 LGGUN [38, 39] 0.302* … 

3 Support Vector 0.263 … 

4 Linear 0.260 1.595 

5 Elastic-Net 0.260 0.255 

6 Ridge 0.260 0.249 

7 LASSO 0.259 0.248 

8 Gaussian Process 0.240 … 

9 Neural Network 0.234 … 

 323 

A reasonable explanation exists as to why the LASSO, ridge, elastic-net, and support vector 324 

methods did not perform better than simple linear regression. While 171 2SLGG launches are 325 
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significant from a cost and time standpoint, there are still relatively few data points for regression, 326 

especially when using 10 independent variables. Furthermore, significant random error between 327 

nearly identical shots makes it difficult to differentiate trends in the data from random noise. For 328 

example, when linear regression was performed with the secondary powder mass as the only 329 

independent variable, the model achieved an RMSE of 0.439 km/s and an R-squared value of 0.92 330 

(i.e., 92% of all the variance in the data can be explained solely by the secondary powder mass). 331 

The coupled effects of other variables are likely numerous, complex, and largely overshadowed 332 

by random error and the dominant effect of the secondary powder mass. This makes it more 333 

difficult to model weaker trends without overfitting the limited data.  334 

Gaussian process regression showed a noticeable improvement (RMSE = 0.240 km/s) over linear 335 

regression (RMSE = 0.260 km/s). Moreover, it also gives an estimate of the variance in the 336 

prediction at any evaluated point— this is useful in determining the model’s confidence in each 337 

prediction. The linear, LASSO, ridge, and elastic-net methods were also expanded to quadratic 338 

regression by using a quadratic expansion of the variables. The basic quadratic model (linear 339 

regression model with quadratic variables) performed significantly worse (RMSE = 1.595 km/s) 340 

than basic linear regression. In contrast, the quadratic LASSO, ridge, and elastic-net models 341 

provided a slight improvement in prediction error (RMSE = 0.248-0.255 km/s) relative to basic 342 

linear regression (RMSE = 0.260 km/s; cf., Table 2). The difference between the basic quadratic 343 

model results and the results of the quadratic LASSO, ridge, and elastic-net models is explained 344 

by the lack of weight (coefficient) regularization in basic polynomial regression, where the 345 

coefficients of all polynomial terms must be determined, leading to substantial overfitting in higher 346 

order regression as the number of terms increases. In contrast, the LASSO, ridge, and elastic-net 347 

regression techniques can eliminate excess (non-contributing) variables to avoid overfitting. 348 
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Moreover, since the RMSE is calculated based on unseen data (instead of the training data), the 349 

overfitted basic quadratic model performed much worse than the basic linear model. Note that the 350 

RMSE values of the quadratic models were all greater than that for the Gaussian process model 351 

(RMSE = 0.240 km/s). 352 

In contrast, the neural network model (RMSE = 0.234 km/s) was the most accurate of all 353 

regression models considered and exhibited reliable (albeit nominal) improvement over linear 354 

regression (RMSE = 0.260 km/s) and Gaussian process regression (RMSE = 0.240 km/s). Figure 355 

6a compares the linear and neural network predictions to measured velocities, and Figure 6b 356 

compares the relative error of the linear and neural network predictions at different muzzle 357 

velocities. In both Figure 6a and Figure 6b, the modest improvements in predicted launch 358 

velocities obtained using the neural network model are readily apparent but are much less 359 

pronounced than the differences between PCLGGP and linear regression predictions shown in 360 

Figure 5. Moreover, error histograms corresponding to the neural network and PCLGGP results 361 

(Figure 7) clearly show that the neural network model’s error distribution has a lower standard 362 

deviation and less bias towards over-prediction. As an aside, as the number of experiments is 363 

further increased, the accuracy of the neural network and Gaussian process models are expected 364 

to increase dramatically relative to the other regression models considered here since they are well 365 

suited for approximating the nonlinear relationships between independent variables that a larger 366 

data set would reveal. As the number of experiments increases, however, the neural network model 367 

will scale better with the size of the data set. 368 
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 369 
Figure 5: Neural network model results compared to linear results: (a) predicted muzzle velocity 370 
versus measured muzzle velocity and (b) velocity normalized absolute error versus measured 371 
muzzle velocity. 372 
 373 

 374 
Figure 6: Histogram of errors for (a) the neural network model and (b) the PCLGGP predictions. 375 
Over-predictions by the model are represented as negative to match 𝑦𝑦 = 𝑦𝑦� + 𝜀𝜀. 376 

Despite the neural network model’s relative increase in accuracy and potential for improved 377 

predictions on larger data sets, it has some unavoidable limitations relative to the other empirical 378 

models. For example, in traditional polynomial regression, the magnitude and sign of each 379 

coefficient in the fitted model defines the influence of each independent variable (projectile 380 

package mass, working gas pressure, etc.) on the predicted response (i.e., projectile velocity), as 381 
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well as how coupled interactions between independent variables affect the model outputs. The 382 

neural network model, however, lacks such intuition. Relationships between inputs and outputs 383 

can be estimated by evaluating the neural network model at different points, but not directly 384 

interpreted from the trained weights and biases. Similarly, while the Gaussian process model was 385 

slightly less accurate than the neural network model, it provides a prediction of uncertainty that 386 

the neural network model cannot. The slight loss of accuracy associated with use of the Gaussian 387 

process model may be offset by the ability to estimate prediction uncertainty. Overall, most of the 388 

regression methods considered in this study had an RMSE value less than one-half that for the 389 

PCLGGP model. This demonstrates that even simple empirical models are well-suited for 390 

predicting 2SLGG muzzle velocity if sufficient experimental data exists. 391 

3.2. Projectile Velocity Absolute Error Percentiles and Comparison to LGGUN 392 

Using data from the 171 TAMU HVIL 2SLGG experiments with muzzle velocities in the range 393 

1.5-6.8 km/s, projectile velocity error estimates obtained using the PCLGGP model and 11 394 

regression models were expressed in terms of absolute error percentiles. For example, the 50th 395 

percentile (2nd quartile, Q2) would define the median absolute error associated with each model. 396 

Similarly, the absolute error associated with the 25th percentile (1st quartile, Q1) means that 25% 397 

of the predicted values would have absolute errors less than or equal to the specified value. Hence, 398 

absolute error percentiles can be used to assess how well a given model approximates the actual 399 

velocity over the entire range of experimental observations and estimate the likelihood of different 400 

magnitudes of error in future predictions. The absolute error estimates generated using the 171 401 

TAMU 2SLGG experiments in this study were compared to published values predicted using 402 

LGGUN [8] for 52 experiments performed using five different 2SLGGs over a velocity range of 403 
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3-11 km/s [38, 39]. As mentioned previously, LGGUN is a leading edge 2SLGG performance 404 

prediction code. 405 

Excluding the basic quadratic model (i.e., linear regression model with quadratic variables), all of 406 

the regression models’ root mean square error (RMSE) values (0.234-0.263 km/s) were lower than 407 

that for the LGGUN model (0.302 km/s; cf., Table 2). Similarly, Table 3 includes a summary of 408 

predicted velocity absolute error estimates corresponding to the 25th, 50th, 75th, and 100th 409 

percentiles (i.e., quartiles Q1, Q2, Q3, Q4, respectively) for the PCLGGP and 11 regression 410 

models, as well as generic LGGUN values from data provided by D. W. Bogdanoff and shown in 411 

the literature [38, 39]. Figure 7 contains a graphical representation of these same data using “box 412 

and whisker” plots [40]. For a given model, the “box” provides the Q1, Q2 (median), and Q3 413 

velocity absolute error estimates, as suggested in the figure. The “whiskers” associated with a 414 

given model defines the minimum and maximum (Q4) values including outliers. Not surprisingly, 415 

the absolute errors associated with LGGUN predictions were over 40% lower than those for 416 

PCLGGP for all quartiles. Similarly, all of the regression models significantly outperformed the 417 

PCLGGP model. For example, the median absolute error (50th percentile; Q2) for each of the 418 

regression models was at least 62% lower than the PCLGGP value. With the exception of the 100th 419 

percentile (Q4) absolute error for the basic quadratic linear model, all of the regression models 420 

outperformed Charters’ code over the entire range of experiments. The regression model Q1-Q3 421 

absolute errors from the TAMU 2SLGG experiments also compared favorably to general absolute 422 

error estimates obtained using LGGUN. Excluding the basic quadratic linear model, the 25th (Q1), 423 

50th (Q2, median), and 75th percentile (Q3) absolute errors for the regression models were at least 424 

10%, 25%, and 30% lower than the corresponding LGGUN values, respectively. For comparison 425 

purposes, the neural network model’s predicted 25th, 50th, and 75th
 percentile absolute errors were 426 
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18%, 39%, and 38% lower than the generic LGGUN values, respectively. All of the regression 427 

model absolute errors, however, exceeded the LGGUN 100th percentile (Q4) value. This latter 428 

difference may be attributable to a number of factors including: 1) the increased likelihood of 429 

encountering outliers within the larger TAMU dataset (171 experiments) compared to the dataset 430 

used to validate LGGUN (52 experiments); 2) the reliance of regression models on data points in 431 

the training set with similar or “nearby” inputs (i.e., experiments conducted at the extreme range 432 

of independent variables will be more difficult to predict), and 3) better fidelity over the entire 433 

range of independent variables associated with the physics-based LGGUN numerical model. As 434 

an aside, if LGGUN was used to predict muzzle velocities for the 171 experiments using TAMU 435 

2SLGG launch parameters, the predicted absolute error values would likely improve upon the 436 

LGGUN values reported here. Nonetheless, these results suggest that easy-to-implement, 437 

maintain, and scalable regression models may provide an attractive alternative to more complex 438 

computational models such as PCLGGP and LGGUN for 2SLGG launch velocity predictions. 439 

While LGGUN can provide crucial information about shock formation, bore erosion, pump tube 440 

pressure-time histories, and other key aspects of specific 2SLGG performance, model specification 441 

and interpretation of results requires considerable expertise. Clearly, regression models that are 442 

amenable to scaling across different 2SLGG platforms can augment physics-based numerical 443 

models, particularly as the volume of available experimental data increases. The regression 444 

models, such as Gaussian process and neural network, have the potential to markedly improve 445 

predictive capabilities, identify complex coupling between experimental parameters, and reduce 446 

uncertainty. In the future, it may be possible to significantly reduce the maximum (Q4) absolute 447 

errors using physics-informed neural network models or Gaussian process regression models [41]. 448 
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Table 3: Absolute error percentiles (in km/s) for all considered models. LGGUN results (*) 449 
correspond to a different set of experiments performed using multiple 2SLLGs [38, 39].  450 

  Absolute error Percentile (Quartile) 

No. Model 25th (Q1) 50th (Q2) 75th (Q3) 100th (Q4) 

Numerical Models (km/s) (km/s) (km/s) (km/s) 

1 PCLGGP 0.185 0.501 0.677 1.381 

2 LGGUN [38, 39] 0.083* 0.226* 0.395* 0.655* 

Regression Models     

3 Linear 0.065 0.168 0.250 0.844 

4 Quad. Linear 0.083 0.192 0.377 11.686 

5 Ridge 0.065 0.168 0.247 0.839 

6 Quad. Ridge 0.058 0.139 0.269 1.162 

7 LASSO 0.068 0.155 0.261 0.826 

8 Quad. LASSO 0.065 0.142 0.246 1.168 

9 Elastic-Net 0.065 0.163 0.256 0.833 

10 Quad. Elastic-Net 0.073 0.151 0.257 1.062 

11 Support Vector 0.074 0.156 0.264 0.903 

12 Gaussian Process 0.069 0.145 0.255 0.992 

13 Neural Network 0.068 0.138 0.244 0.865 
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 451 

 452 

Figure 7: Box and whisker plots of the prediction absolute error for PCLGGP, LGGUN, and all 453 
considered regression models. Note that the Q4 whisker plot for the Quad. Linear model was cutoff 454 
since the Q4 value was much larger than that for any other model. LGGUN results correspond to 455 
a different set of experiments performed using multiple 2SLLGs [38, 39]. 456 

4. Conclusions and Future Work 457 

In this study, linear, ridge, LASSO, elastic-net, support vector, Gaussian process, and neural 458 

network regression models were developed to predict 2SLGG projectile velocities as a function of 459 

10 independent variables (launch parameters): (1) projectile package mass, (2) primary powder 460 

mass, (3) secondary powder mass, (4) pump tube fill (working gas) pressure, (5) tankage (backfill) 461 

pressure, (6) piston mass, (7) burst disk score depth, (8) piston fit tightness, (9) number of volume 462 

reducers in the powder breech, and (10) gunpowder type. The models were fitted to and validated 463 

against performance data from 171 experiments (projectile velocities, 1.5-6.8 km/s) conducted 464 
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using a powder-driven 12.7 mm bore 2SLGG at Texas A&M University (TAMU). Regression 465 

model muzzle velocity estimates for all 171 shots were compared to numerical predictions 466 

obtained using the physics-based Piston Compression Light Gas Gun Performance (PCLGGP) 467 

software package (i.e., “Charters’ code”). In addition, the prediction absolute error distributions 468 

from the regression and PCLGGP models were compared to independent values determined using 469 

the cutting-edge, physics-based LGGUN code for a different set of experiments involving multiple 470 

2SLGGs. 471 

Except for the basic quadratic model (i.e., linear regression model with quadratic variables), all of 472 

the regression models significantly outperformed Charters’ code over the entire range of 473 

experiments. Their root mean square error (RMSE) values (0.234-0.263 km/s) were significantly 474 

lower than that for the PCLGGP model (0.597 km/s), and their predicted absolute error 475 

distributions were clearly superior to that for Charter’s code. The median absolute error (50th 476 

percentile) for each of the regression models was at least 62% lower than the PCLGGP value. In 477 

general, there was not a significant difference between simple linear regression (RMSE = 478 

0.260 km/s) and the other regression models. Gaussian process regression (RMSE = 0.240 km/s), 479 

however, includes an estimate of prediction confidence. The neural network model (RMSE = 480 

0.234 km/s) was the most accurate regression technique considered and is particularly well-suited 481 

to scale with large data sets. 482 

Not surprisingly, the absolute errors associated with independent LGGUN predictions were at least 483 

40% lower than those for PCLGGP for all percentiles. Interestingly, the regression model results 484 

from the TAMU 2SLGG experiments compared favorably to LGGUN results. Excluding the basic 485 

quadratic model, the regression models’ root mean square error (RMSE) values (0.234-486 

0.263 km/s) were lower than that for the LGGUN model (0.302 km/s). Similarly, the 487 
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corresponding 25th-75th percentile absolute errors for the regression models were significantly 488 

lower than corresponding LGGUN values. LGGUN, however, predicted a lower maximum (100th 489 

percentile) absolute error than any regression model. In general, regression models may not 490 

perform as well as physics-based computational models in predicting individual experimental 491 

results involving extreme values of independent variables. In the future, this limitation can be 492 

remedied, in part, using physics-informed neural network or Gaussian process models [41] that 493 

incorporate both prior data and general physics-based knowledge over the domain. 494 

This study demonstrates that straightforward regression models may provide an attractive 495 

alternative to more complex deterministic models for 2SLGG launch velocity predictions. 496 

Regression models that are amenable to scaling across different 2SLGG platforms can augment 497 

physics-based numerical models (particularly as the volume of available experimental data 498 

increases) and have the potential to markedly improve predictive capabilities, identify complex 499 

coupling between experimental parameters, and reduce uncertainty. 500 
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Appendix A: Experimental Data 506 

 507 

Table 4: Experimental 2SLGG loading parameters used in regression model training and 508 
validation, as well as measured muzzle velocity for reference. 509 

Projectile 
Package 
Mass (g) 

Primary 
Powder 
Mass (g) 

Secondary 
Powder 
Mass (g) 

Burst Disc 
Score 
Depth (in) 

Pisto
n 
Mass 
(g) 

Target 
Tank 
Pressure 
(Torr) 

Pump 
Tube 
Pressure 
(psi) 

Volum
e 
Reduc
ers 

Piston 
Tightn
ess 

H4
83
1S
C 

IM
R 
483
1 

Projectile 
Velocity 
(m/s) 

6.083 1.420 100.2 0.020 364.4 200 140 1 0.50 0 0 4165 

3.381 1.401 100.5 0.020 362.6 200 140 1 0.50 0 0 4665 

3.387 1.511 100.0 0.020 365.3 200 140 1 0.50 0 0 4938 

3.388 1.745 101.0 0.020 367.1 200 279 1 0.50 0 0 3847 

3.372 1.751 100.1 0.020 363.8 200 279 1 0.50 0 0 4091 

3.389 1.751 130.0 0.020 363.6 200 140 1 0.50 0 0 5615 

3.382 1.754 120.1 0.020 363.7 200 141 1 0.50 0 0 5359 

3.389 1.749 110.1 0.020 365.4 200 161 1 0.50 0 0 4956 

2.315 1.743 100.1 0.020 363.9 200 280 1 0.50 0 0 4486 

3.379 1.753 110.7 0.020 437.7 200 160 1 0.50 0 0 5253 

3.385 1.751 150.1 0.020 363.8 200 200 1 0.50 0 0 6035 

3.379 1.753 150.1 0.020 366.6 250 220 1 0.50 0 0 5612 

3.379 1.753 150.5 0.020 365.7 250 200 1 0.50 0 0 5379 

6.059 1.751 100.4 0.020 761.7 250 200 1 0.50 0 0 4215 

3.387 1.753 100.0 0.020 366.2 200 279 1 0.50 0 0 3488 

6.029 1.755 100.0 0.020 767.2 200 200 1 0.50 0 0 4324 

6.055 1.751 100.8 0.020 763.7 200 200 1 0.50 0 0 4413 

2.163 1.757 120.0 0.020 363.1 200 174 1 0.50 0 0 5946 

2.161 1.747 60.2 0.020 363.5 200 249 1 0.50 0 0 2277 

3.391 1.750 100.0 0.020 363.5 200 139 1 0.50 0 0 4483 

3.397 1.747 110.0 0.020 363.2 197 160 1 0.50 0 0 4290 

3.400 1.749 120.1 0.020 363.6 252 140 1 0.50 0 0 5470 

3.399 1.747 120.2 0.020 363.6 250 200 1 0.50 0 0 4789 

2.141 1.750 150.0 0.020 363.1 200 221 1 0.50 0 0 6527 

2.158 1.764 150.0 0.020 362.8 200 220 1 0.50 0 0 6107 

3.379 1.746 100.0 0.020 363.8 200 271 1 0.50 0 0 3844 

3.394 1.757 60.0 0.020 363.5 200 249 1 0.50 0 0 2485 

6.036 1.745 60.1 0.020 363.5 200 250 1 0.50 0 0 1900 

6.039 1.760 60.1 0.020 363.4 200 250 1 0.50 0 0 2035 

2.081 1.751 60.0 0.020 363.5 202 250 1 0.50 0 0 2524 

3.400 1.749 150.0 0.020 363.5 201 221 1 0.50 0 0 6142 

3.386 1.749 150.1 0.020 363.9 76 221 1 0.50 0 0 6372 

6.033 1.748 60.4 0.020 364.1 199 249 1 0.50 0 0 2003 
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Projectile 
Package 
Mass (g) 

Primary 
Powder 
Mass (g) 

Secondary 
Powder 
Mass (g) 

Burst Disc 
Score 
Depth (in) 

Pisto
n 
Mass 
(g) 

Target 
Tank 
Pressure 
(Torr) 

Pump 
Tube 
Pressure 
(psi) 

Volum
e 
Reduc
ers 

Piston 
Tightn
ess 

H4
83
1S
C 

IM
R 
483
1 

Projectile 
Velocity 
(m/s) 

3.399 1.751 150.0 0.020 363.2 75 220 1 0.50 0 0 6342 

6.035 1.757 60.2 0.020 364.0 199 249 1 0.50 0 0 2083 

3.399 1.751 60.0 0.020 363.5 199 249 1 0.50 0 0 2163 

6.055 1.750 60.0 0.020 363.5 199 250 1 0.50 0 0 1829 

6.040 1.750 60.2 0.020 363.9 203 250 1 0.50 0 0 1953 

6.042 1.750 60.0 0.020 363.9 199 249 1 0.50 0 0 1905 

3.401 1.751 150.0 0.020 363.6 76 200 1 0.50 0 0 6537 

2.099 1.750 60.0 0.020 363.7 199 251 1 0.50 0 0 2256 

3.387 1.750 150.0 0.020 363.9 75 250 1 0.50 0 0 6295 

3.382 1.750 145.0 0.020 363.8 75 220 1 0.50 0 0 6253 

3.399 1.749 125.0 0.020 363.0 90 220 1 0.50 0 1 5855 

2.135 1.748 165.0 0.020 364.0 100 250 1 0.50 0 1 6484 

2.145 1.758 125.0 0.020 364.2 85 220 1 0.50 0 1 6162 

6.048 1.750 60.0 0.020 363.2 200 250 1 1.00 0 1 2514 

3.404 1.750 83.0 0.020 364.1 100 250 1 0.50 0 1 4054 

2.086 1.751 50.0 0.020 362.8 200 250 1 0.50 0 1 1877 

2.080 1.750 55.0 0.020 362.4 200 250 1 0.50 0 1 1971 

6.056 1.751 60.0 0.020 363.8 200 250 1 0.50 0 1 2034 

3.406 1.748 65.0 0.020 363.5 200 251 1 0.50 0 1 2626 

3.420 1.750 70.0 0.020 363.7 200 250 1 0.50 0 1 3107 

3.403 1.748 75.0 0.020 363.6 200 250 1 0.50 0 1 3234 

3.403 1.750 75.0 0.020 363.3 110 250 1 0.50 0 1 3496 

3.407 1.750 70.0 0.020 363.2 200 250 1 0.50 0 1 3107 

3.405 1.752 83.0 0.020 363.5 110 250 1 0.50 0 1 3807 

6.045 1.756 65.3 0.020 363.1 300 250 1 0.50 0 1 2264 

6.055 1.749 65.0 0.020 361.9 495 260 1 0.50 0 1 1823 

3.395 1.749 130.0 0.020 363.1 80 220 1 0.50 0 1 5933 

3.416 1.750 85.0 0.020 363.1 100 250 1 0.50 0 1 3897 

2.814 1.750 65.0 0.020 362.7 300 260 1 0.50 0 1 2434 

2.198 1.751 65.0 0.020 362.8 305 251 1 0.50 0 1 2670 

3.409 1.751 65.0 0.020 362.7 299 249 1 0.50 0 1 2435 

3.403 1.751 60.8 0.020 362.9 193 251 1 0.50 0 1 2397 

3.401 1.768 60.0 0.020 363.1 215 255 1 0.50 0 1 1966 

6.010 1.746 70.0 0.020 364.6 196 256 1 0.50 0 1 2612 

3.400 1.755 85.0 0.020 363.4 100 250 1 0.50 0 1 3580 

3.384 1.749 60.8 0.020 363.0 215 253 1 0.50 0 1 2496 

3.404 1.773 109.9 0.020 363.3 100 200 1 0.50 0 1 5307 

3.366 1.750 90.0 0.020 363.2 100 220 1 0.50 0 1 3917 

3.352 1.751 90.0 0.020 363.6 100 220 1 0.50 0 1 4409 
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Projectile 
Package 
Mass (g) 

Primary 
Powder 
Mass (g) 

Secondary 
Powder 
Mass (g) 

Burst Disc 
Score 
Depth (in) 

Pisto
n 
Mass 
(g) 

Target 
Tank 
Pressure 
(Torr) 

Pump 
Tube 
Pressure 
(psi) 

Volum
e 
Reduc
ers 

Piston 
Tightn
ess 

H4
83
1S
C 

IM
R 
483
1 

Projectile 
Velocity 
(m/s) 

3.391 1.751 80.0 0.020 363.4 100 220 1 0.50 0 1 3583 

6.005 1.752 60.0 0.020 362.9 205 250 1 0.50 0 1 1816 

6.013 1.752 60.0 0.020 363.1 197 250 1 0.50 0 1 1972 

6.002 1.756 65.0 0.020 363.2 200 250 2 0.50 0 1 2629 

6.048 1.751 65.0 0.020 363.4 199 250 2 0.50 0 1 2624 

2.148 1.750 125.0 0.014 363.5 85 220 1 0.50 0 1 6369 

2.122 1.752 125.0 0.014 363.6 85 272 1 0.50 0 1 5715 

2.035 1.751 125.0 0.014 363.3 85 242 1 0.50 0 1 6018 

2.139 1.751 125.0 0.014 363.5 85 242 1 0.50 0 1 6192 

2.062 1.749 55.0 0.020 363.2 200 250 2 0.50 0 1 2493 

6.065 1.750 60.0 0.020 363.5 199 251 2 0.50 0 1 2418 

2.057 2.000 125.0 0.014 366.0 85 242 1 0.25 0 1 6274 

6.041 1.753 75.0 0.020 366.3 102 250 2 0.75 0 1 3106 

6.045 1.750 73.0 0.020 366.0 100 251 2 0.00 0 1 3087 

2.138 2.001 125.0 0.014 366.1 90 250 1 0.00 0 1 5527 

2.141 2.001 125.0 0.014 366.3 90 250 1 0.50 0 1 6070 

2.095 1.749 55.0 0.020 366.1 149 249 2 0.00 0 1 2618 

2.090 1.750 55.0 0.020 366.2 150 250 2 0.00 0 1 2372 

2.052 2.002 125.0 0.014 365.9 92 250 1 0.25 0 1 6140 

2.500 2.001 115.0 0.014 366.2 0 220 1 0.00 0 1 5856 

2.043 1.999 110.0 0.014 365.8 90 250 1 0.50 0 1 5172 

6.013 1.753 55.0 0.020 365.4 199 249 2 0.00 0 1 2116 

6.022 1.749 73.0 0.020 366.3 200 250 2 0.00 0 1 2897 

6.012 1.749 67.0 0.020 366.1 200 250 2 0.25 0 1 2749 

6.026 1.751 67.0 0.020 356.9 199 249 2 0.50 0 1 2631 

2.052 1.999 110.0 0.014 365.7 92 249 1 0.75 0 1 5453 

6.058 1.752 73.0 0.020 365.9 198 251 2 0.50 0 1 2858 

6.018 1.748 60.0 0.020 366.2 195 249 2 0.50 0 1 2520 

6.014 1.750 57.0 0.020 366.0 196 250 2 0.25 0 1 2358 

3.396 1.750 64.0 0.020 366.0 99 180 2 0.75 0 1 3207 

3.376 1.751 75.0 0.020 366.2 99 251 2 1.00 0 1 3791 

3.414 1.753 86.0 0.020 366.2 98 250 2 0.50 0 1 4244 

3.367 1.750 100.0 0.020 366.1 85 250 2 0.50 0 1 4839 

3.381 1.999 150.0 0.020 366.0 80 250 1 0.25 0 1 6542 

2.007 1.750 55.0 0.020 366.0 149 250 2 0.25 0 1 2553 

2.018 1.750 55.0 0.020 366.1 146 249 2 0.25 0 1 2486 

3.367 2.002 125.0 0.020 366.2 80 230 1 0.25 0 1 5603 

3.368 2.000 135.0 0.020 365.8 75 230 1 0.00 0 1 6144 

3.371 2.001 130.0 0.020 366.1 80 231 1 0.00 0 1 5997 
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Projectile 
Package 
Mass (g) 

Primary 
Powder 
Mass (g) 

Secondary 
Powder 
Mass (g) 

Burst Disc 
Score 
Depth (in) 

Pisto
n 
Mass 
(g) 

Target 
Tank 
Pressure 
(Torr) 

Pump 
Tube 
Pressure 
(psi) 

Volum
e 
Reduc
ers 

Piston 
Tightn
ess 

H4
83
1S
C 

IM
R 
483
1 

Projectile 
Velocity 
(m/s) 

1.995 1.749 68.0 0.020 365.8 150 250 2 0.50 0 1 3057 

2.001 1.750 68.0 0.020 365.9 147 249 2 0.75 0 1 3083 

3.370 2.000 130.0 0.020 365.5 80 230 1 0.00 0 1 5924 

2.056 2.002 110.0 0.014 366.4 90 250 1 0.75 1 0 5155 

2.047 2.001 130.0 0.014 366.2 80 250 1 0.75 1 0 6317 

2.060 2.002 125.0 0.014 366.1 80 250 1 0.50 1 0 5996 

2.058 2.000 125.0 0.014 366.0 80 250 1 1.00 1 0 6351 

2.074 1.755 68.0 0.014 366.1 100 250 2 1.00 0 1 3646 

2.008 1.750 94.0 0.020 366.1 125 250 2 0.75 0 1 4768 

2.001 2.021 130.0 0.014 366.1 100 250 1 1.00 1 0 6313 

1.999 1.751 85.0 0.020 366.0 125 250 2 0.50 1 0 3628 

3.380 2.001 127.0 0.020 365.6 80 230 1 0.00 0 1 5928 

3.412 1.998 125.0 0.020 365.4 80 230 1 0.00 0 1 5747 

3.376 2.003 150.0 0.020 366.0 80 250 1 0.50 1 0 6286 

3.369 2.003 157.0 0.020 367.1 80 250 1 1.00 1 0 6355 

2.003 1.750 88.0 0.020 366.5 125 250 2 0.75 1 0 3863 

1.990 1.751 89.0 0.020 366.6 125 250 2 1.00 1 0 4232 

2.005 1.751 88.5 0.020 366.8 125 250 2 1.00 1 0 4306 

3.395 1.751 65.0 0.020 367.4 99 180 2 1.00 0 1 3449 

3.370 2.004 110.0 0.020 365.8 85 240 1 1.00 1 0 5063 

3.370 2.000 160.0 0.020 365.8 80 250 1 1.00 1 0 6791 

3.415 1.006 160.0 0.020 366.8 80 250 1 1.00 1 0 6700 

2.000 1.755 88.0 0.020 365.7 125 250 2 0.00 1 0 3819 

2.013 1.751 88.0 0.020 366.0 125 250 2 0.50 1 0 4289 

2.012 1.751 88.5 0.020 366.5 125 250 2 0.50 1 0 3867 

1.968 1.751 88.0 0.020 366.5 125 250 2 1.00 1 0 4471 

2.035 1.750 65.0 0.020 366.6 125 250 2 1.00 1 0 3197 

2.039 1.755 65.0 0.020 363.5 126 251 2 1.00 1 0 2982 

2.029 1.754 65.0 0.020 366.7 125 250 2 1.00 1 0 3086 

2.029 1.756 65.0 0.020 365.7 125 250 2 1.00 1 0 3141 

2.031 1.756 65.0 0.020 366.9 125 250 2 1.00 1 0 3131 

2.029 1.752 65.0 0.020 365.1 125 250 2 1.00 1 0 3028 

2.037 1.751 65.0 0.020 366.8 125 250 2 1.00 1 0 2964 

2.042 1.748 65.0 0.020 366.5 125 250 2 1.00 1 0 3107 

2.045 1.752 65.0 0.020 366.0 125 250 2 1.00 1 0 3167 

2.026 1.750 65.0 0.020 366.0 125 250 2 1.00 1 0 3050 

1.981 1.750 88.0 0.020 367.7 125 250 2 0.50 1 0 4625 

1.991 1.751 88.0 0.020 367.0 125 250 2 0.50 1 0 4312 

2.034 1.751 65.0 0.020 366.8 125 250 2 1.00 1 0 3186 
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Projectile 
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Powder 
Mass (g) 
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Burst Disc 
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n 
Mass 
(g) 

Target 
Tank 
Pressure 
(Torr) 

Pump 
Tube 
Pressure 
(psi) 

Volum
e 
Reduc
ers 

Piston 
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83
1S
C 

IM
R 
483
1 

Projectile 
Velocity 
(m/s) 

1.982 1.751 65.0 0.020 366.0 125 250 2 1.00 1 0 3067 

2.043 1.749 65.0 0.020 366.7 125 250 2 1.00 1 0 3106 

1.974 1.749 88.1 0.020 366.2 125 250 2 0.50 1 0 3659 

1.982 1.750 130.0 0.014 366.0 125 250 1 0.00 1 0 6219 

6.063 1.749 55.0 0.020 362.9 250 250 2 0.00 1 0 1785 

1.979 1.751 100.0 0.014 366.0 115 250 1 0.00 1 0 4088 

2.085 1.750 115.0 0.014 362.9 95 250 1 0.00 1 0 4706 

1.988 1.750 75.0 0.014 363.1 110 250 2 0.00 1 0 3123 

1.988 1.751 72.0 0.020 363.1 100 250 2 0.00 1 0 2835 

1.971 1.749 120.0 0.014 363.1 89 250 1 0.00 1 0 4902 

6.059 1.751 55.0 0.020 363.1 275 250 2 0.00 1 0 1558 

6.026 1.751 56.0 0.020 363.1 225 250 2 0.00 1 0 1996 

1.986 1.750 73.0 0.020 362.8 100 250 2 0.00 1 0 2997 

1.986 1.754 128.0 0.014 362.9 83 250 1 0.00 1 0 5485 

1.979 1.748 121.0 0.014 362.9 90 250 1 0.00 1 0 4866 

1.979 1.750 100.0 0.014 362.9 115 250 2 0.00 1 0 4649 

1.979 2.002 100.0 0.014 363.0 114 250 2 0.00 1 0 4663 

1.972 1.752 121.0 0.014 363.2 95 250 1 0.00 1 0 5899 

5.979 1.750 65.0 0.020 362.6 195 251 2 0.00 1 0 1987 

5.925 1.752 67.0 0.020 363.4 195 250 2 1.00 1 0 2687 

6.030 1.750 75.0 0.020 370.3 105 249 2 0.50 1 0 2619 
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