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Abstract

The prediction of thermophysical properties at extreme conditions is an important

application of molecular simulations. The quality of these predictions primarily depends

on the quality of the employed force field. In this work, a systematic comparison of clas-

sical transferable force fields for the prediction of different thermophysical properties of

alkanes at extreme conditions, as they are encountered in tribological applications, was

carried out using molecular dynamics simulations. Nine transferable force fields from

three different classes were considered (all-atom, united-atom, and coarse-grained force

fields). Three linear alkanes (n-decane, n-icosane, and n-triacontane) and two branched

alkanes (1-decene trimer and squalane) were studied. Simulations were carried out in

a pressure range between 0.1 and 400 MPa at 373.15 K. For each state point, density,

viscosity, and self-diffusion coefficient were sampled, and the results were compared to

experimental data. The Potoff force field yielded the best results.
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Introduction

Thermophysical properties of lubricants at extreme pressures are highly important for the

design of processes in mechanical engineering.1 Especially the density and the transport

properties determine the performance of the lubricant in the lubrication gap. The pressure

in tribological systems with small contact areas are often higher than 1,000 MPa.2 For such

conditions, experimental data are rare due to high costs and complexity of the measure-

ments.3 Hence, reliable predictive models are needed. Molecular simulation is an attractive

method for this.

Molecular dynamics (MD) simulations have been used often for the prediction of ther-

mophysical bulk properties of lubricants,4–11 wetting, and interfacial properties on solid

walls,12–15 as well as for the simulation of tribological contact processes.16–23 Simulations of

lubricants usually aim at predicting transport properties, in particular the viscosity, using

either equilibrium molecular dynamics (EMD)24–28 or non-equilibrium molecular dynamics

(NEMD) simulations.7,29–32 Both methods are challenging: EMD simulations require a large

computational effort to compute the viscosity, especially for higher viscosities due to the slow

convergence of the auto correlation function (ACF).33 In NEMD simulations, the shear rate

has to be small enough to reach the Newtonian regime which can require very long simulation

times due to the bad signal-to-noise ratio at small shear rates.34 As the viscosity becomes

very large at high pressures,35 the prediction of transport properties at high pressures is

a challenging task with high computational costs. Special methods have been applied for

tackling this task, such as the time decomposition method.33

MD simulations of lubricants require force fields that model the inter- and intramolecular

interactions. Especially for the quantitative prediction of bulk properties, the choice of an

adequate force field is crucial. There is a large number of different force fields that can

be used for modeling lubricants.36–38 The choice of the force field is not trivial as different

force fields have different strengths and weaknesses, and comparisons on equal terms are

usually difficult from the information that is available in the literature alone. The most
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important attribute of the force field is its the ability to predict the target properties with

the desired accuracy. Another attribute is the type of the force field, i.e. the approach that

is taken to model the atomistic architectures and their interactions. This is decisive for the

computational cost but also relevant for the choice of the simulation tool, as not all programs

can handle all types of force fields. Three different basic modeling levels are distinguished in

the present work (cf. Fig. 1): all-atom (AA), united-atom (UA), and coarse-grained (CG)

force fields.

united-atom

coarse-grained

all-atom

Figure 1: Sketch of a squalane molecule modeled by the different types of force fields.

In AA force fields, every atom is assigned to an individual interaction site. They are also

often called ’explicit hydrogen’ models. In contrast, UA force fields assign multiple atoms

to a single interaction site. Usually, methylene and methyl groups are modeled by a single

interaction site. The modeling by CG force field goes a step further and chain segments

of multiple heavy atoms are combined to a single interaction site. For AA force fields, two

subtypes can be further distinguished: (i) reactive AA force fields, which explicitly model

chemical bonds (that can form and break during the simulation), and (ii) classical AA force

fields, which are built using intramolecular potentials that do not break, e.g. a harmonic

potential.

Nine force fields were applied in the present work for the modeling of five linear and

branched alkanes, which are typical components of poly-α-olefines (PAO) or used as simple

model lubricants. PAOs are an important group of lubricants.39 The substances include

the three linear alkanes n-decane (C10H22), n-icosane (C20H42), and n-triacontane (C30H62)
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as well as two isomers of n-triacontane: 1-decene trimer and squalane (both C30H62). The

chemical structures of the five substances investigated in this work are depicted in Fig.

2. In the following, the substances are abbreviated as n-C10, n-C20, n-C30, TRI, and

SQU (cf. Fig. 2). Hence, the study comprises alkanes with different chain lengths as

n-decane (n-C10)

n-icosane (n-C20)

n-triacontane (n-C30)

1-decene trimer (TRI)

squalane (SQU)

Name Structural formula Chemical formula

C10H22

C20H42

C30H62

Figure 2: Overview of substances included in this study.

well as different structure for a given molecular formula. The molecule 1-decene trimer

is the simplest (long branched) representative of poly-(1-decene) and it is an important

component of PAO base oils.39 Squalane (SQU) is frequently used as a model lubricant

in experiments29,40 and also an important substance in cosmetics.41 The predictions for the

density, the viscosity, and the self-diffusion coefficient of these substances were systematically

compared to experimental data. Moreover, the computational costs of the different force

fields were assessed. The study covers pressures up to 400 MPa, the temperature is always

373.15 K. The properties of lubricants at high pressure are of particular interest due to

the high pressure conditions occurring in tribological applications.2 Furthermore, the linear

alkanes are common components of diesel fuels, whose properties at high pressure are also

of high practical interest.42

Comparisons of different force fields have been published for a wide variety of substances.

They address the prediction of phase equilibria43,44 as well as bulk properties like the den-

sity,25,26,37,45–48 isothermal compressibility,37,44 and the speed of sound.45 In some of the

works, the ability of the force fields to predict thermophysical properties at elevated tem-

peratures and pressures was explicitly addressed.47,49,50 Studies explicitly addressing the
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properties of lubricants are sparse. Lin et al. calculated the density and viscosity of a polyol

ester (POE) lubricant at ambient pressure with three different force fields and compared

them to experimental data.48 Ewen et al. compared ten UA and AA force fields in their

ability to predict the density and the viscosity of n-hexadecane up to 200 MPa.26 The vis-

cosity and the self-diffusion coefficient of branched alkanes as model lubricants have been

studied by Kondratyuk et al.25 A broad systematic comparison of force fields of different

types regarding their ability to predict properties that are important for lubrication, i.e.

density and viscosity, up to high pressures was, however, not available up to now. This gap

is closed by the present study.

The different force fields lead to different computational costs of the molecular simula-

tions. For example, the number of interaction sites per molecule varies for different force

fields and has a strong influence. The computational costs normally scale linearly with

the number of interaction sites for systems without electrostatic interactions.51 With AA

force fields, the number of interaction sites is approximately three times higher compared to

UA force fields for alkanes. As CG force fields combine multiple UA sites to one site, the

computational are further reduced. Another advantage of coarser modeling of the molecular

structure consists of preventing high frequency oscillations (e.g. CH stretching bonds), which

enables a larger time step. Furthermore, the type of interaction potentials to be evaluated

strongly influences the computational costs, for example multibody or electrostatic interac-

tions increase the computational time considerably.52,53 Overall, multiple factors influence

the computational cost of a simulation with a given force field and the costs can not be pre-

dicted a priori. Presently, no systematic comparison of the computational costs of different

transferable force field types is available.

The following text is organized as follows: first, the methodology of the study is de-

scribed which includes details of the conducted simulations, the sampling of the observables,

information on the applied force fields, and the methods applied for the evaluation of the

results. Then, the results for the three examined properties, the density, the viscosity, and
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the self-diffusion coefficient, for all studied substances are presented and discussed. There-

after, the computational costs of simulations with different force fields are compared. Finally,

conclusions are drawn.

Methodology

Simulation details and evaluation

Equilibrium molecular dynamics simulations were carried out to calculate the density, the

viscosity, and the self-diffusion coefficient of the studied pure substances. A cubic simulation

box with periodic boundary conditions was used. The number of particles was chosen such

that there were at least 200 molecules or 4000 interaction sites. The finite size dependency of

the simulations was assessed by simulations with different numbers of molecules and extrap-

olating to the thermodynamic limit (Nmol → ∞). Details are given in the Supplementary

Material. The results show that no significant finite size dependency applies to the results.

The time step and integrator were chosen depending on the force fields and are summarized

in Tab. 1. For the AA force field (excluding the reactive force fields), the RESPA multiple

Table 1: Time step and integrator used in the simulations.

force field type time step / fs integrator
AA 0.25 (bonds, angles), 0.5 (dihedrals), 1 (nonbonded) RESPA54

AA (reactive) 0.25
UA 0.5 Velocity-Verlet55

CG 10

timestep method was used to reduce the computational costs. Thereby, the simulation time

was reduced by a factor of at least 8 compared to the classical Velocity Verlet integrator with

a time step of 0.25 fs. Details are given in the Supplementary Material. The cutoff radius was

set to 14 Å throughout. An analytical long-range correction for the pressure was applied for

the dispersive interactions.55 Rigid bonds were realized using the SHAKE algorithm.56 The

electrostatic interactions were calculated by the particle-particle particle-mesh algorithm.57
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All simulations were carried out with the LAMMPS package (Version 3 March 2020).58 The

initial configuration was built up by randomly inserting molecules into the box. For the

reactive force fields, the molecules were inserted on a lattice to eliminate overlapping, which

could lead to false molecule geometries as the geometry of the molecule is only given by the

initial position. This insertion was done at a low density to avoid unphysical overlapping.

Subsequently, the energy of the system was minimized by moving the particles to avoid large

forces at the start of the MD simulations. After the energy minimization, the box volume

was reduced to the target density within a short MD run of 100 ps. After this initialization

phase, the actual simulations started.

For each substance and force field, five state points were studied. The pressures were

p ∈ {0.1, 10, 100, 200, 400}MPa and the temperature was T = 373.15 K in all cases. The

density was determined by NpT simulations. The Nosé-Hoover thermostat and barostat59–61

were used to control the temperature and the pressure in the simulations. The damping

times comprised 100 timesteps for the thermostat and 1000 timesteps for the barostat, as

recommended in the LAMMPS documentation.58 Each NpT simulation had an equilibration

time of 1 ns and a production time of 2 ns. To ensure that the simulation is sufficiently long

enough, longer simulations have been run. More details are given in the Supplementary Ma-

terial. To reduce the statistical uncertainty, each NpT simulation was replicated five times

and the density of each state point was calculated as the average of these five replica simula-

tions. This density was then taken as input for NVT simulations to determine the viscosity

and the self-diffusion coefficient. To calculate the transport properties, 20 independent NVT

simulations were carried out for each state point. The equilibration time was 1 ns. The

production time varied from 2 to 10 ns and was determined individually for each state point

and substance, and was chosen to obtain convergence of the correlation functions. Details

are summarized in Tab. 2.
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Table 2: Simulation times in ns for the different substances and state points.

substance
p/MPa n-C10 n-C20 n-C30, TRI, SQU
0.1 2 3 4
10 2 3 4
100 2 4 6
200 2 6 8
400 4 6 10

The viscosity was calculated using the Green-Kubo relations62,63 given by

η(τ) = 1

V kBT
∫

τ→∞

0

⟨Jαβp (t + τ̃) ⋅ Jαβp (t)⟩ dτ̃ , (1)

where V is the box volume, kB the Boltzmann constant, T the temperature, t the reference

time, τ the time variable, and Jαβp the non-diagonal entries of the stress tensor.55 The pressure

tensor was sampled every 4 fs during the NVT simulations. Each of the sampled time steps

was taken as reference time t to achieve best possible statistics. The time decomposition

method (TDM)33 was applied in this work, which enables the reliable calculation of high

viscosities by EMD simulations. Therefore, the viscosity time evolution η(τ) was calculated

for all 20 NVT simulations during the production run. For the calculation of the ACF, a

fast Fourier transform (FFT) technique was used.64 Contributions from all six independent

entries of the pressure tensor pαβ were averaged to calculate the viscosity as proposed by

Ref.65 The cutoff time τcut for the ACFs (to circumvent the ACF long-term noise) were

determined from the standard deviations ση(τ) as ση(τcut)
η(τcut)

= 0.4 as recommended in Ref.33

Different numbers ση(τcut)
η(τcut)

for the cutoff time have been compared in the Supplementary

Material. The bootstrapping method33 with 200 iterations was used to calculate the final

value and its uncertainty for the viscosity. Therefore, 200 combinations of the 20 simulations

were created randomly whereas multiple appearances of individual simulations were allowed.

For each combination, an average viscosity η̄(τ) was calculated and the function given in
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Eq. (2) was fitted to η̄(τ) where η∞ is the long term limit.

η(τ) = η∞
αβ1 (1 − e−

τ
β1 ) + (1 − α)β2 (1 − e−

τ
β2 )

αβ1 + (1 − α)β2
(2)

Fig. 3 illustrates the TDM method for two state points showing the viscosity sampled

during the production phase η(τ). The results for all 20 simulation replica are shown. The

for η
final results

p = 200 MPa
τcut = 1719 ps

η 
/ 1

0-3
 P

a 
s

0
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τ / ps
0 500 1000 1500
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η 
/ 1

0-3
 P

a 
s
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2

4
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Figure 3: Illustration of the TDM method. Results for the sampled viscosity from 20 inde-
pendent runs η(τ) over time τ of TRI at p = 0.1 MPa (top) and p = 200 MPa (bottom)
(T = 373.15 K for both). Histograms of the corresponding bootstrapping results and the
final result of the bootstrapping method.

two simulations have different cutoff times τcut, which compensates differences of long-term

noise behavior. On the right-hand side of Fig. 3, also the final values and the histograms

consisting of 200 η∞ values as obtained from the bootstrapping method are shown. The

statistical uncertainties were computed from the histogram as the 95 % confidence interval.

The individual results for η(τ) show in parts a wide scattering that increases with time, which

is a well-known phenomenon.66 The time required to reach a stable plateau of the viscosity

differs strongly which can also be seen by the different cutoff times. Overall, the TDM

method provides relatively low statistical uncertainties and enables a reliable calculation of
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the viscosity.

The self-diffusion coefficient D was calculated by the Einstein relation55

D = lim
τ→∞

d

dτ

1

6
⟨ 1

N

N

∑
i=1

∣ri(t + τ) − ri(t)∣2⟩ , (3)

where N is the number of particles in the box and ri is the position vector of center of mass

of the molecule or particle i. A calculation of the self-diffusion coefficient by the Green-Kubo

relation and the TDM method was not feasible as it would require to write out the velocity

vector of all atoms with a high frequency. The Einstein relation requires the positional

data of all atoms less frequently. In this work, the positional data were written out every

10 ps. The term ∣ri(t + τ) − ri(t)∣2 is the mean square displacement (MSD). It is possible

to calculate the MSD either from the atomic or the molecular center of mass.67 In this work,

the molecular center of mass was used. The MSD was calculated by making use of the

FFT method.64 The self-diffusion coefficient D was calculated individually for each NVT

simulation using Eq. (3). By averaging the results of the 20 independent simulations, a

single value for D was obtained for every state point. The statistical uncertainty of D was

calculated as the standard error as

∆D =

√
√√√√√√⎷

1

Nrep

Nrep

∑
i=1

(Di −D)2 , (4)

with Nrep = 20. The self-diffusion is subject to finite size effects that are not negligible.68

There are two methods to obtain the self-diffusion coefficient in the thermodynamic limit

(i.e. infinite box size). The classical brute force approach is conducting multiple simulations

with different box sizes and extrapolating to the thermodynamic limit. This is not feasible

in this work since a large number of state points and force fields are studied. Instead, the
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analytical correction term proposed by Yeh and Hummer 69 was applied as

DL→∞ = D(L) + kBTξ

6πηL
, (5)

where L is the box length of the simulation, η the viscosity, and ξ = 2.837297 is a dimen-

sionless constant (adopted from Ref.69).

Force fields

Tab. 3 gives an overview of the force fields studied in this work and their assignment

to force field classes. All force field parameters used in this study and validations of the

implementations are given in the Supplementary Material.

Table 3: Overview of all force fields used in this work.

name type refs. published
OPLS AA 70 1996

COMPASS AA 71 1998
L-OPLS AA 72 2012
ReaxFF AA (reactive) 73 2001

AIREBO-M AA (reactive) 74 2015
TraPPE UA 75,76 1998
Potoff UA 77,78 2009
TAMie UA 79,80 2015

MARTINI CG 81 2007

All-atom force fields (AA)

In this study, the AA force fields COMPASS,71 OPLS,70 L-OPLS,72 ReaxFF,82 and AIREBO-

M74,83 were used. The latter two force fields are so-called reactive all-atom force fields that

allow bond breaking. However, no bond breaking was observed in the simulations carried out

in this work, hence, no special distinctions from the other all-atom force fields are necessary

here. All AA force fields except AIREBO-M include Coulomb interactions. The COMPASS

force field models the dispersive interactions by a 9-6 Mie potential. The intramolecular
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interactions include bonds, angles, dihedrals, impropers as well as cross terms, which include

mixed bond, angle, and dihedral contributions. The parameters of the COMPASS force field

were determined from a fit to quantum-mechanical (QM) data (charges and intramolecular

potentials) and to liquid state properties (dispersive potential).71 In the OPLS force field,

the classical Lennard-Jones (LJ) 12-6 potential is used for modeling the dispersive inter-

actions. The bond and angle parameters of the OPLS force field were adopted from the

CHARMM/22 force field.70,84 The torsional and the dispersive parameters were fitted to

QM data and different thermodynamic and structural properties, respectively. The L-OPLS

force field adopts the majority of the OPLS parameters but dihedral and dispersive param-

eters as well as the charges were refined to improve the modeling of longer hydrocarbons.72

Additionally, the bonds between carbon and hydrogen were constrained to a constant dis-

tance in the L-OPLS force field. It is known that the L-OPLS provides better predictions for

bulk properties compared to the OPLS force field.26 As the OPLS force field is still widely

used in its original version, it was also included in this study.

The ReaxFF82 and AIREBO-M74,83 force fields include explicit calculations of the bond

order, which enables them to model chemical reactions.52 The CHON-2017_weak version of

the ReaxFF force field73 was implemented in this work. It includes parameter adjustments

that aim at improving the density prediction of the condensed phase.73 The AIREBO-M force

field74 was derived from the AIREBO force field83 by replacing the LJ potential interactions

by a Morse potential. Its parameters were adjusted to layer spacing of graphite up to

pressures of 14 GPa and to QM data of small alkanes. Both reactive force fields were only

applied to n-decane (n-C10) in the present work due to their extremely high computational

costs.

United-atom force fields (UA)

The TraPPE,75 Potoff,77 and TAMie79 UA force fields were used in this study. The TraPPE

force field uses the classical 12-6 LJ potential. These LJ parameters were fitted to critical
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temperatures and saturated liquid densities. The Potoff and the TAMie force fields use n-6

Mie potentials for the non-bonded interactions. In both force fields, the repulsive parameter

n of the Mie potential was additionally adjusted in the fitting procedure. For the TAMie

and the Potoff force fields, the non-bonded parameters were fitted to saturated liquid den-

sities and vapor pressures. The cutoff distance of the Potoff force field was set to 10 Å as

recommended.77 In contrast to the AA force fields, there are no Coulomb interactions for

UA models of hydrocarbons as all interaction sites are electrostatically neutral. In this work,

flexible bonds between the interaction sites were applied. Therefore, a harmonic potential

was used with the given bond length as equilibrium bond length. The energy parameter of

the bond potential was taken from the OPLS force field. Despite the fact that the TraPPE,

Potoff, and TAMie force fields were originally developed using rigid bond lengths, it is com-

mon practice to adapt them with flexible bonds.85–87 Moreover, it was shown that the flexible

bonds do not influence the results if the bond force constant is well chosen.49,88 The angle

and dihedral potentials are the same for all three UA force fields as they were mainly adopted

from the OPLS-UA89 and OPLS-AA70 force fields.

Coarse grained force field (CG)

In this study, the MARTINI CG force field was used. There are two approaches to param-

eterize CG force fields: bottom-up by derivation from a finer resolved force field (e.g. AA)

and top-down by fitting parameters directly to experimental data.90 The MARTINI force

field81 is based on the top-down approach. It was parameterized to the free energy of hydra-

tion and vaporization as well as the partitioning free energies between water and multiple

organic substances.81 A four-to-one mapping is applied by the MARTINI force field in gen-

eral, which means four heavy atoms (all atoms except hydrogen atoms) are fused to a single

interaction site. The force field consists of the LJ potential for non-bonded parameters and

harmonic potentials for the angle and bond interactions. There are no dihedral potentials.

The mapping of molecules to CG beads is not strictly defined. There are several methods to
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create CG models from a given molecular topology.91–93 In this study, the automatic map-

ping algorithm from Potter et al.93 was applied. As the mapping may in general have an

influence on the force field predictions, the MARTINI results should be considered as results

obtained from "MARTINI + Potter mapping". For brevity, only "MARTINI" is used in

the following. The bond lengths of the created models were adjusted as suggested in Ref.93

for the prediction of thermodynamic bulk properties. The MARTINI 281 version was used

in this work instead of the recently published MARTINI 3 force field94 as the MARTINI 2

version has been widely applied in recent years – and as different auxiliary tools are available

for MARTINI 2.

Data analysis

The simulation results for the density, the viscosity, and the self-diffusion coefficient were

analyzed in a consistent way as described in the following. As a basis, correlations to all

available experimental literature data were developed. An overview of the available data for

the five considered substances and the three considered thermophysical properties is given

in Tab. 4. The functions, parameters, and accuracy of the correlations are reported in the

Table 4: Overview of available experimental literature data (references given) and the cor-
responding maximum pressures for the different substances and properties examined in the
current study. "n.a." indicates that no literature data were found.

n-C10 n-C20 n-C30 TRI SQU
Ref. pmax

MPa
Ref. pmax

MPa
Ref. pmax

MPa
Ref. pmax

MPa
Ref. pmax

MPa
ρ

95–98
279

99,100
500

99
500 n.a. 40,101–104

243

η
96,105

300
106

243 n.a. 35
1298

35,107
1298

D
108

200 n.a. 109
600 n.a. n.a.

Supplementary Material. They represent the experimental data within relative deviations of

up to 0.3 % (ρ), 5.2 % (η), and 2.6 % (D). Furthermore, also correlations for the properties

where no experimental data was available are provided in the Supplementary Material. These

correlations were created on the basis of the simulation data of the Potoff force field (which

turns out to be clearly the most accurate force field among those studied here). Their
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parameters are also reported in the Supplementary Material. For the assessment of the force

fields with respect to the experimental data, the deviations of the simulation results to the

correlations of the experimental data were calculated from

δYexp =
Ysim − Ycorr

Ycorr
for Y ∈ {ρ, η,D}. (6)

The total average deviation δY of a force field was calculated as the mean value of ∣δYexp∣

(Y ∈ {ρ, η,D}) averaged over all state points and substances for which experimental data

were available (cf. Tab. 4).

Results

In the following, the simulation results for the density ρ, the viscosity η, and the self-diffusion

coefficient D are presented and discussed. Where available, also the experimental data is

included in the discussion. Furthermore, correlations of the experimental data (cf. Section

) are shown and used as a reference for the deviation plots. Where no experimental data

were available, a correlation of the simulation data of the Potoff force field were used as a

reference. The numeric data of all simulations shown are given in the electronic Supplemen-

tary Material. Fig. 4 shows three snapshots of different n-decane (n-C10) simulations, one

for each force field type. It illustrates the different abstraction levels at which the molecules

were modeled by the different force field types. The structure of the molecules was evaluated

by the radius of gyration. Details are given in the Supplementary Material.

Fig. 5 gives an overview of the total average deviations δY of all force fields for the three

studied properties, the density, the viscosity, and the self-diffusion coefficient (Y ∈ {ρ, η,D}).

The total deviations are lowest for the density with up to δρ = 6.4 %. The deviations for the

viscosity and the self-diffusion are substantially larger (up to δη = 210.1 % and δD = 70 %).

For a given force field, the deviations of the viscosity and self-diffusion predictions are very

similar for most force fields. As can be seen from Fig. 5, there is no direct indication that the
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Figure 4: Snapshots of three n-decane simulations (p = 0.1 MPa). The force fields are: (a)
L-OPLS (AA), (b) TraPPE (UA), and (c) MARTINI (CG). The length scale is the same for
all snapshots. One molecules is highlighted in each snapshot. The single sites are colored as
follows: light green - end site of the CG model, dark green - central site of the CG model,
light blue - CH2, dark blue - CH3, gray - carbon, white - hydrogen.

deviation depends on the force field type as the deviations scatter also within the different

force field types (AA, UA, and CG). This indicates that the individual parametrization of

a force field (cf. Section ) is more important for the deviations produced by the force field.

The total average deviations of the single force fields are discussed in detail in the following

sections.

Density

The simulation results for the density are shown in Fig. 6 in comparison to experimental

data (where available). The corresponding deviation plots are shown in Fig. 7.

The Potoff UA force field gives excellent predictions of the density, the average deviation

from the experimental data δρ is only 0.4 %. The predictions obtained with the TAMie UA

force field are also good (δρ = 1.3 %). The third studied UA force field, TraPPE, yields

poorer results (δρ = 2.4 %). The TraPPE force field tends to overestimate the density,

especially for the linear alkanes.

Despite their higher complexity, the AA force fields OPLS, L-OPLS, and COMPASS

generally do not yield better results than the UA force fields. Among the AA force fields,
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Figure 5: Total average deviations of the simulation results to the correlations of experimental
data (values given in %) for the density δρ, the viscosity δη, and the self-diffusion coefficient
δD.

COMPASS (δρ = 0.8 %) is slightly better than the two others (OPLS: δρ = 1.1 %, L-OPLS:

δρ = 1.4 %). In assessing the results from the OPLS force field, it has to be considered

that it predicts n-C20 and n-C30 to be solid for the conditions studied here. This is in

line with findings from the literature,110 which report that the OPLS force field predicts the

liquid-solid phase transition for long alkanes at temperatures that are much higher than the

experimental melting temperature.72 More details on this are given in the Supplementary

Material. The OPLS data for n-C20 and n-C30 are excluded for the present discussion.

The reactive AA force fields ReaxFF and AIREBO-M were only applied to n-C10.

ReaxFF (δρ = 1.5 %) overestimates the density, AIREBO-M (δρ = 6.4 %) strongly un-

derestimates it, cf. Fig. 7. The latter yields the poorest prediction of the density. The CG

force field MARTINI (δρ = 5.9 %) also shows high deviations.

The pressure dependency of the density (dρ/dp)T is predicted generally quite well by

most of the models (cf. Fig. 6). Among the UA force fields, the TraPPE force field yields

the poorest prediction of the pressure dependency of the density as it overestimates (dρ/dp)T .

While the Potoff force field slightly underestimates (dρ/dp)T , the results obtained from the

TAMie force field do not show this tendency. This difference originates from the different

repulsive Mie coefficients n of the TraPPE (n = 12), the TAMie (n = 14), and the Potoff

(n = 16) force fields. The higher the repulsive coefficient, the lower is (dρ/dp)T . This
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Figure 6: Density ρ of n-C10, n-C20, n-C30, TRI, and SQU at T = 373.15 K as a function
of the pressure p. Colored symbols indicate the simulation results for the different force
fields and the black crosses are experimental data points (cf. Tab. 4). Black solid lines are
correlations of the experimental data, blue broken lines are correlations of the simulation
data with the Potoff force field.

also holds for the three classical AA force fields, which also utilize a Mie potential (OPLS:

n = 12, COMPASS: n = 9, L-OPLS: n = 12) and overestimate (dρ/dp)T . Besides the

potential, also the choice of the state points used for parametrization influences the results.

This can especially be seen for the AIREBO-M force field, which was fitted including state

points at high pressure. Its predictions of the density are best for the highest investigated

pressure (400 MPa).

Viscosity

The results for the viscosity are shown in Fig. 8 using a logarithmic scale as a function of

pressure. The corresponding deviation plots are shown in Fig. 9. Again, the results for

n-C20 and n-C30 obtained with OPLS are discarded from the discussion as they refer to
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Figure 7: Relative deviation of the density δρ (cf. Eq. (6)) at T = 373.15 K as a function of
the pressure p for all studied force fields and substances. The relative deviation (cf. Eq. (6))
refers to the correlation, which was obtained from either experimental data (black crosses,
cf. Tab. 4) or the simulation data with the Potoff force field (dark blue diamonds).

solids (cf. Supplementary Material). As expected, the viscosity of all substances increases

approximately exponentially with increasing pressure. Moreover, the viscosity of the linear

alkanes (n-C10 to n-C30) increases with increasing chain length. This behavior is described

well by all studied force fields. In contrast to the predictions of the density, the scattering of

the results is larger and the predictions from the different force fields deviate in a range of

an order of magnitude. This scattering is larger for the two branched alkanes (TRI, SQU)

compared to the linear alkanes (n-C10 to n-C30).

As already seen for the density results, the Potoff UA force field gives the best predictions

for the viscosity with δη = 11.4 %. The deviations obtained with the TAMie UA force field are

doubled (δη = 26.4 %) compared to the Potoff UA force field and show an underestimation

of the viscosity, especially for high pressures. Messerly et al.49 found similar deviations for

the Potoff and TAMie force fields for the viscosity of shorter alkanes. The TraPPE UA
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Figure 8: Viscosity η of n-C10, n-C20, n-C30, TRI, and SQU at T = 373.15 K as a function
of the pressure p. Colored symbols indicate the simulation results for the different force
fields and the black crosses are experimental data points (cf. Tab. 4). Black solid lines are
correlations of the experimental data, blue broken lines are correlations of the simulation
data with the Potoff force field.

force field strongly underestimates the viscosity and yields the largest deviations from the

experimental data among the UA force fields (δη = 47.1 %). The underestimation of the

viscosity by the TraPPE force field was already stated in literature.45,49,111 The only CG force

field, MARTINI, has similar deviations from the experimental correlations with δη = 51 %,

which is in accordance with results reported in literature.47 The time scale, which is crucial

for the calculation of the viscosity (cf. Section ), is often scaled in CG simulations as CG

models usually exhibit faster dynamics compared to higher resolution atomistic models.

Therefore, a time scaling factor of 4 is often applied.81 In the Supplementary Material,

results for the viscosity calculated by the MARTINI force field are given with a time scaling

factor of 4. For the three linear alkanes, the results do not improve compared to the results

without conversion factor. The scaled results overestimate the experimental values. For the
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Figure 9: Relative deviation of the viscosity δη (cf. Eq. (6)) at T = 373.15 K as a function of
the pressure p for all studied force fields and substances. The relative deviation (cf. Eq. (6))
refers to the correlation, which was obtained from either experimental data (black crosses,
cf. Tab. 4) or the simulation data with the Potoff force field (dark blue diamonds).

two branched alkanes, the scaling improves the results and decreases the deviations to the

experimental data. More details are given in the Supplementary Material. Yet, in the main

body of this work, results without a scaling factor are presented.

The AA force fields show very different behaviors. The COMPASS (δη = 14.1 %) and

the ReaxFF (δη = 17.5 %) force fields yield good predictions for the viscosity. The latter

predicts the viscosity accurately up to a pressure of around 100 MPa which is in accordance

with findings reported by Morrow and Harrison 37 for alkanes and other thermophysical

properties. For higher pressure, the viscosity is underestimated by the ReaxFF force field.

For the COMPASS force field, there is a tendency for overestimation of the viscosity predicted

(which has also been reported by Refs.8,25). The AIREBO-M force field predicts the viscosity

with δη = 33.7 %. Its deviations decrease with increasing pressure. The L-OPLS force field

deviates with δη = 38.4 % from the experimental data on average. Thus, it shows a good
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improvement to the closely related OPLS force field,26,112 which yields by far the worst

predictions for the viscosity (δη = 210.1 %). The poor prediction ability of the viscosity by

the OPLS force field was already reported for shorter alkanes.25,111,112 In general, the AA

force fields have larger error bars compared to the UA and CG force fields, especially for the

large molecules n-C30, TRI, and SQU.

Self-diffusion coefficient

The results for the self-diffusion coefficient using a logarithmic scale as function of pressure

and the corresponding deviation plot are shown in Fig. 10 and 11, respectively. Here, also
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Figure 10: Self-diffusion coefficientD of n-C10, n-C20, n-C30, TRI, and SQU at T = 373.15 K
as a function of the pressure p. Colored symbols indicate the simulation results for the
different force fields and the black crosses are experimental data points (cf. Tab. 4). Black
solid lines are correlations of the experimental data, blue broken lines are correlations of the
simulation data with the Potoff force field.

the results of the OPLS force field for n-C20 and n-C30 are discarded and can be found in

the Supplementary Material. The self-diffusion coefficient decreases with increasing pressure
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Figure 11: Relative deviation of the self-diffusion coefficient δD (cf. Eq. (6)) at T = 373.15 K
as a function of the pressure p for all studied force fields and substances. The relative
deviation (cf. Eq. (6)) refers to the correlation, which was obtained from either experimental
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for all substances and force fields – as expected. The close relation of the self-diffusion

coefficient and the viscosity113 can be observed in the MD simulation results: high values

for the viscosity go along with low values for the self-diffusion and vice versa. Therefore, the

self-diffusion coefficient shows opposite characteristics compared to the viscosity (cf. Section

) regarding the deviations of the single force fields. In the Supplementary Material, figures

of the viscosity plotted as a function of the self-diffusion coefficient are shown to underline

their close relation.

The predictions for the self-diffusion coefficient with the Potoff force field are again the

best and show the lowest deviations from the experimental data with δD = 18.2%. This is in

line with the results for the density and the viscosity. The TAMie force field overestimates

the self-diffusion for all substances with a total deviations of δD = 35.7%. The TraPPE force

field also predicts too high values for the self-diffusion coefficient but with a much higher total
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deviation (δD = 75.7%). For both the TAMie and the TraPPE force fields, the deviations

increase with increasing pressure. The MARTINI CG force field predicts the self-diffusion

coefficient surprisingly well with a total deviation of δD = 20.7%. Like the viscosity, the

self-diffusion coefficient is a time-dependent property and thus, it is also influenced by time

scaling, as often applied in CG simulations. As for the viscosity, results with time scaling are

given for the self-diffusion coefficient in the Supplementary Material. The results are similar

to those for the viscosity: For the linear alkanes, results worsen compared to experimental

values and the self-diffusion coefficient is underestimated. For the two branched alkanes,

the predictions improve compared to the experimental data. More details are given in the

Supplementary Material. In the main part of this work, results without a scaling factor are

presented.

The COMPASS (δD = 18.9%) and the L-OPLS (δD = 18.8%) force fields exhibit nearly

the same total deviations. Their predictions are very good and similar to those of the Potoff

force field. With δD = 20.4%, also the ReaxFF force field shows good predictions for the

self-diffusion coefficient. They both slightly overestimate the self-diffusion coefficient. The

OPLS force field also overestimates the self-diffusion coefficient with a total deviation of δD =

26.8%. This was already reported in literature for simulations of n-hexane with the OPLS

force field.114 The deviations of the OPLS force field are much lower for the self-diffusion

compared to the viscosity as only n-C10 is included in the calculation of the total deviation.

The AIREBO-M force field shows the second largest total deviations (δD = 53.3%) for the

self-diffusion coefficient.

Computational costs

The computational costs of the different force fields were evaluated by additional simulations

for n-C10 at one state point (T = 373.15 K and ρ = 0.67982 g/ml). 20 replica simulations

were conducted for each force field and the viscosity and the self-diffusion coefficient were

calculated as described in Section . As the density strongly influences the computational
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costs, the same density was prescribed to the simulations for all force fields. All simulations

for the determination of the computational costs were executed on the same machine with

Intel XEON SP 6126 processors and with the same simulation parameters (200 molecules, 1

ns equilibration, 2 ns production run, cutoff radius of 14 Å). Different number of cores have

been used for the different simulations (AA: 24 cores, UA: 8 cores, CG: 1 core) to ensure

perfect parallel efficiency. The computational costs were measured using the CPU hours

(cpuh), i.e. cpuh = number of processors × simulation time required for a given simulation.

The results for the computational costs are shown in Fig. 12. The computational costs

are normalized with respect to the OPLS force field computational costs. The statistical

CGUAAA

0.001
0.250.25

0.10

2.27
24.8

0.971.081

cp
uh

 / 
cp
uh

O
P

LS

0

1

2

O
P

LS

C
O

M
PA

S
S

L-
O

P
LS

R
ea

xF
F

A
IR

E
B

O
-M

Tr
aP

P
E

P
ot

of
f

TA
M

ie

M
A

R
T

IN
I

Figure 12: Computational costs cpuh of all force fields normalized with respect to the compu-
tational costs of the OPLS force field cpuhOPLS for 20 replica simulations with T = 373.15 K
and ρ = 0.67982 g/ml.

uncertainties obtained from these simulations are reported in the Supplementary Material.

The three classical AA force fields, OPLS, COMPASS, and L-OPLS, require similar com-

putational costs, as expected. The slightly increased computational costs of the COMPASS

force field compared to the OPLS and the L-OPLS force field are due to the use of more

complex functions for computing the interactions in the COMPASS force field (including

cross terms, e.g. bond-angle interactions). The two reactive AA force fields, ReaxFF and

AIREBO-M, require substantially higher computational costs. The ReaxFF force field re-

quires by far the highest costs with approximately 25 times the costs of the classical AA
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force fields.

The three UA force fields require lower computational costs than the AA force fields

with 10 % - 25 % of the costs of the AA force fields. For studying the computational

costs, the cutoff radius of the Potoff force field was set to 14 Å (equal to the other force

fields). The higher computational costs of the Potoff and the TAMie force fields compared

to the TraPPE force field are due to the use of the Mie potential instead of the 12-6 LJ

potential. The latter is computationally more efficient as the repulsive part (exponent n = 12)

and the attractive part (exponent m = 6) can be evaluated simultaneously benefiting from

r
12
= (r6)2. Furthermore, the calculation of the mixed exponent for Mie parameters produces

an additional computational overhead. The low computational costs of the MARTINI CG

force field are due to the small number of interaction sites and the larger time step used in

the MARTINI simulations.

The uncertainties of the simulations are given in the Supplementary Material. The statis-

tical uncertainties for the viscosity are about an order of magnitude larger compared to the

self-diffusion coefficient results. For a given property, the different force fields yield similar

statistical uncertainties.

Conclusions

The ability of different force fields to predict the density, the viscosity, and the self-diffusion

coefficient of model lubricants was investigated. Pure linear (n-decane, n-icosane, n-triacontane)

and branched alkanes (1-decene trimer, squalane) up to C30 were studied. The results were

compared to experimental data where such data were available. The force fields consisted

of five AA force fields (OPLS, L-OPLS, COMPASS, AIREBO-M, ReaxFF), three UA force

fields (TraPPE, Potoff, TAMie), and one CG force field (MARTINI). The Potoff UA force

field yields the best results for all three properties and is at the same time still computa-

tionally relatively cheap. The COMPASS and the ReaxFF AA force fields provide a good
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accuracy predicting the density, the viscosity, and the self-diffusion coefficient. For all force

fields (except AIREBO-M), the deviations from experimental data increase with increasing

pressure. The reason that AIREBO-M AA force field performs relatively well at extreme

pressure is probably due to the applied parametrization which included data at high pres-

sure.74 The CG force field MARTINI simplifies the molecular architecture most. It yields

large deviations from experimental data. The unphysical prediction of a solid-like phase by

the OPLS force field for long linear alkanes72 was confirmed by our simulations. The opti-

mized version for long linear alkanes of the OPLS force field, the L-OPLS force field,72 shows

significantly better results. If no experimental data are available, the predictions by the force

fields can provide good estimates to fill this gap. The Potoff force field is recommended for

this purpose. The accuracy of predictions of experimental data for the studied substances

with this model was found to be about 0.5 % for the density, 10 % for the viscosity, and

18 % for the self-diffusion coefficient. As a convenient tool, also the empirical correlations

developed in the present work based on the Potoff predictions can be used.

The results from this work can be taken as a benchmark for testing the performance of

new force fields under extreme conditions.
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