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Modeling transport properties is important for many applications. In this work, an

entropy scaling framework for modeling transport properties using molecular-based

equations of state (EOS) is presented. It can be applied for modeling the viscosity,

thermal conductivity, and self-diffusion coefficients. The framework is formulated in a

general way such that it can be coupled with various EOS. It is demonstrated that the

model, when coupled to molecular-based EOS, provides not only good descriptions of

existing data but also reasonable predictions in a wide range of states covering liquid,

gaseous, supercritical, and metastable regions. Moreover, the model can be used for

reliably predicting transport properties of mixtures. The universal parameters of the

model were fitted to computer experiment data of the Lennard-Jones fluid. This

procedure provides inherently a robust form of the basic scaling function. Thereby,

only few data points are required for the determination of the component-specific

model parameters. The applicability of the developed framework is demonstrated

for model fluids as well as for a wide variety of real substances including non-polar,

polar, and associating pure fluids and mixtures.
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I. INTRODUCTION

Transport properties of pure fluids and fluid mixtures are important in many disciplines

of science and engineering1,2. In many cases, also transport properties at conditions, that

are far away from the region in which data are available, have to be known. For example,

in tribological applications3,4, information on the viscosity at pressures above 1 GPa is

required5. Other examples stem from carbon capture and storage6, petroleum industry7,8,

power engineering9,10, process engineering1,11–13, and combustion processes14. Experimental

transport property data are often only available for moderate conditions and for pure fluids;

transport property data for extreme conditions and mixtures are scarce. Moreover, for a

large number of relevant substances, even at moderate conditions, only little or no data

are available. For modeling dynamic processes at interfaces13,15,16, information on transport

properties is also required in the metastable and unstable region12,17,18, where practically

no experimental data are available. Hence, reliable and predictive models for transport

properties are required – which is challenging as transport properties vary strongly depending

on the chosen conditions. Fig. 1 illustrates the viscosity, the thermal conductivity, and the

self-diffusion coefficient for a molecular fluid in a phase diagram19; a detailed discussion of

these topologies is given in the Supplementary Material.

Entropy scaling is an interesting method for the modeling of the viscosity, thermal con-

ductivity, and self-diffusion coefficient. It is based on the discovery that the three properties

are (within certain limits) monovariate functions of the configurational entropy – when

properly scaled by the density and the temperature. The entropy scaling approach was

originally proposed by Rosenfeld in 197720 and 199921. Entropy scaling can be favorably

coupled with equations of state (EOS)22 that are used for modeling the configurational

entropy as a function of, for example, temperature and pressure sconf = sconf(T, p). There-

fore, an accurate description of the configurational entropy is crucial for entropy scaling.

For predicting the transport properties in state regions where no experimental data are

available, a reliable extrapolation behavior of the entropy scaling model itself is required

as well as reliable predictions for the configurational entropy sconf = sconf(T, p) in that re-

gion. Several entropy scaling approaches have been proposed in recent years using empirical

multi-parameter EOS models23–29. Empirical EOS, however, often lack of a robust extrap-

olation behavior. Molecular-based EOS, on the other hand, enable reliable extrapolations
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FIG. 1. Schematic diagrams with subcritical and supercritical isotherms for the viscosity (a),

thermal conductivity (b), and self-diffusion coefficient (c) as a function of the pressure p. The

isotherms are: two subcritical isotherms in the homogeneous liquid phase region (blue), in the

homogeneous gas phase region (green), the metastable and the unstable region (grey), and the

critical and supercritical (red) region. The binodal is indicated as solid line, the spinodal as dotted

line, and the critical point by a star. The arrows indicate increasing temperature of the isotherms.

The diagrams were drawn based on the entropy scaling models of a simple fluid.

including mixtures30–36. Some entropy scaling models that use molecular-based EOS have

been proposed in the past: Gross and co-workers have developed entropy scaling models

specifically for PC-SAFT37–43. The PC-SAFT EOS was also used by other authors to cre-

ate entropy scaling models for the viscosity, the thermal conductivity, and the self-diffusion

coefficient44–50. Yet, the PC-SAFT EOS has a physically unrealistic behavior at extreme

conditions51–54. Also cubic EOS were used in entropy scaling models47–49,55,56. Entropy

scaling was also applied to the transport properties of model fluids like the Lennard-Jones

(LJ) fluid using specific LJ EOS24,57–59. As these models were specifically developed for a

given EOS, they cannot be straightforwardly transferred to other EOS (that might provide

a better description of the thermodynamic properties of the fluid). Hence, no generalized

entropy scaling model has been developed yet that can be straightforwardly coupled with
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different molecular-based EOS.

The core of the entropy scaling approach is the conversion of the transport properties to

the so-called ’macroscopically scaled’ quantities. Rosenfeld20,21 found a monovariate relation

of a macroscopically scaled transport property as a function of the configurational entropy

sconf . These findings were later elaborated in the isomorph theory60,61. The macroscopic

Rosenfeld20,21 scaling is only exact for some simple model potentials, e.g. for the inverse

power-law potential22. For more complex model potentials (even the LJ potential) and real

substances, there are deviations from this monovariate behavior62 and the relation between

the configurational entropy and the transport properties cannot be predicted a priori from

the theory. Therefore, (component-specific) adjustable parameters are introduced for these

substances.

In the present work, a generalized framework for the application of entropy scaling in

conjunction with molecular-based EOS is proposed, which can be used for modeling trans-

port properties of model fluids as well as real substances. The framework is designed such

that the viscosity, the thermal conductivity, and the self-diffusion coefficient can be de-

scribed. The new framework is based on a scaling of the three properties, that combines the

Rosenfeld scaling with a scaling for the zero-density limit. The transition between the two

approaches is achieved in a convenient, yet not physically rigorously deducible way. The

universal parameters of the entropy scaling framework were fitted to computer experiment

data for transport properties and the entropy of the LJ fluid, so that they do not depend

on the chosen EOS. Therefore, simulations of the LJ fluid were conducted in which the

transport properties and the entropy were sampled simultaneously. This makes the model

on one hand robust and on the other hand flexible as it can be straightforwardly coupled

with basically any EOS. For modeling a specific real substance, the entropy scaling model

requires component-specific parameters, which have to be adjusted to experimental data of

transport properties. The number of component-specific parameters of the model is 2-5 and

can be chosen depending on the amount and quality of transport data that are available for

the training. Hence, the model can also be applied in a meaningful way if only very few

data are available. Based on the component-specific parameters for the pure substances, the

framework can be applied to predict the viscosity and the thermal conductivity of mixtures

without any additional information.

We demonstrate the flexibility of the entropy scaling framework by applying it to nine
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different molecular-based EOS. Also, the robust extrapolation behavior of the framework to

high pressures, metastable and unstable states, as well as mixtures is demonstrated. For

mixtures, it is shown that transport properties can be predicted by the framework without

the adjustment of additional parameters – even for highly non-ideal mixtures.

The paper is organized as follows: First, the entropy scaling framework is described, in-

cluding the scaling procedure, the treatment of the zero-density limit, and the determination

of the universal parameters. Then, the applicability of the framework is demonstrated for

different pure substances and mixtures. Finally, conclusions are drawn.

II. MODEL

The principles of the entropy scaling framework developed in this work are depicted in

Fig. 2. It can be applied for modeling the viscosity, the thermal conductivity, and the self-

FIG. 2. Scheme of the entropy scaling framework proposed in this work.

diffusion coefficient of pure component fluids; and for modeling the viscosity and the thermal

conductivity of fluid mixtures. The entropy scaling framework consists of two parts: a suit-

able macroscopic scaling of the transport properties (green part in Fig. 2) and correlations

that describe the scaled data (blue part in Fig. 2). The scaling part comprises two different

methods, one for the low-density region and one for the high-density region. The scaling

is carried out so that the scaled properties from both regions fall onto a single continuous

smooth curve describing the dependency of the scaled property on the configurational en-

tropy. The mathematical function that is used here for describing this relation has both

universal parameters that determine basic features of the function and component-specific

parameters that have to be fitted to experimental data. The universal parameters were
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fitted to molecular dynamics (MD) simulation results of the transport properties and the

entropy of the LJ fluid determined in this work, i.e. without using an EOS. For applying

the entropy scaling framework, it is coupled with a molecular-based EOS that yields the

configurational entropy for the state point of interest, i.e. sconf(T, ρ, x), where x indicates

the composition vector of a mixture.

A. Molecular-based EOS

Molecular-based EOS are algebraic models for describing thermodynamic properties of

fluids and fluid mixtures30,31. They are usually formulated in the Helmholtz energy per par-

ticle a = A/N as a function of the temperature, density, and composition, i.e. a = a(T, ρ, x),
since this is a thermodynamic fundamental expression. All other thermodynamic proper-

ties can be derived from it63. In molecular-based EOS, the formulation of the Helmholtz

energy is physically motivated and can be divided into an ideal gas and a configurational

(or residual) contribution. The configurational contribution is usually constructed as a sum

of terms in molecular-based EOS, each modeling the effect of a given molecular interaction

or molecular architecture feature on the Helmholtz energy, for example, repulsion, attrac-

tion, association64, electrostatic interactions30, the chain formation65 and branching in the

molecular structure66. Hence, the configurational Helmholtz energy aconf can be written as

aconf = arep + adisp + achain + abranching + aassoc + aD + aQ, (1)

where arep, adisp, achain, abranching, aassoc, aD, and aQ indicate the contributions due to repul-

sive and dispersive interactions of monomers, the chain formation of multiple monomers,

branching, associating (H-bonding) interactions, dipole interactions, and quadrupole inter-

actions, respectively67. The terms contain different component-specific parameters, which

can be physically interpreted. In different molecular-based EOS, different terms are com-

bined to constitute the EOS. Component-specific parameters are for example the segment

diameter σ, the segment dispersion energy ε, and the chain length, i.e. segment number or

elongation parameter m. These component-specific parameters are usually fitted to exper-

imental data – in particular to vapor-liquid equilibrium (VLE) properties and liquid phase

densities.

Many different molecular-based EOS have been described in the literature30, e.g. the

BACKONE EOS family of Fischer and co-workers68,69, the PACT EOS family of Prausnitz
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and co-workers70,71, the EOS family that uses the statistical association fluid theory (SAFT)

of Chapman, Jackson, and Gubbins64,72, and the CPA EOS family of Kontogeorgis and co-

workers73,74. Since different molecular-based EOS are based on different modeling approaches

and approximations, they differ in parts significantly in their mathematical formulation.

Accordingly, for a given component, the component-specific parameters are not transferable

among different molecular-based EOS.

Due to their sound physical basis, molecular-based EOS often enable reliable predictions

for states and properties that were not considered in the training30,31,52,67,75,76, i.e. many

of them can be reliably applied not only for describing stable gas, liquid, and supercritical

states, but also metastable and to some extend unstable states (which is for example relevant

for interfaces). Yet, without further modifications77, the critical point is not well described by

most EOS. They overestimate the critical temperature and pressure (due to the underlying

critical scaling behavior). For modeling mixtures with molecular-based EOS, mixing and

combination rules are applied30,32,33,78,79. Thereby, it is usually sufficient to use a single state

independent parameter ξij, which is generally introduced in the Berthelot term, with which

the binary dispersive cross-interactions εij are described80

εij = ξij
√
εiεj, (2)

where εi and εj are the dispersive interaction parameters of the pure components.

For entropy scaling, the calculation of the molar configurational entropy sconf at a given

state point (T, ρ, x) is required. It can be calculated from the configurational Helmholtz

energy aconf as the derivative with respect to temperature T at constant volume v and

composition x

sconf = − (∂aconf
∂T

)
v,x

. (3)

In this work, nine molecular-based EOS were used: three LJ EOS (Kolafa-Nezbeda81,

PeTS82, Stephan et al.83), three from the SAFT EOS family (PC-SAFT65, SAFT-VR Mie84,

soft SAFT85), one from the PACT EOS family (PACT+B70), one from the BACKONE

family69, and one from the cubic EOS family (sCPA73,86). The pure component model

parameters were taken from the literature65,69,70,74,84,85,87–91. Details are given in the Supple-

mentary Material.
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B. Scaling of the Transport Properties

The scaling of the viscosity η, the thermal conductivity λ, and the self-diffusion coefficient

D with respect to temperature and density is the core of entropy scaling20,21. Here, a

modified Rosenfeld scaling from Bell24,62 (indicated by +) is adopted:

η
+
= η

ρ
−2/3
N√

MTkB/NA

(−sconf
R

)
2/3

, (4)

λ
+
= λ

ρ
−2/3
N

kB
√
RT/M

(−sconf
R

)
2/3

, (5)

D
+
= D

ρ
1/3
N√

RT/M
(−sconf

R
)
2/3

, (6)

where ρN is the number density in 1/m3, M the molar mass in kg/mol, R = kBNA the uni-

versal gas constant, kB the Boltzmann constant, and NA the Avogadro number. The scaled

transport properties Y
+ with Y ∈ {η, λ,D} obtained from Eqs. (4) - (6) are dimensionless.

This scaling approach yields an approximately monovariate dependency of Y + on the config-

urational entropy for dense states. However, this does not hold for low density states21,92. To

overcome this drawback, a reduction using the Chapman-Enskog (CE) transport properties

is applied here for low-densities as explained in more detail below.

Fig. 3 schematically shows the scaling procedure introduced in this work starting from

Y
+ (green, cf. Eqs. (4) - (6)). In the framework, the reduced configurational entropy s̃conf

is defined as

s̃conf =
−sconf
mR

. (7)

Therein, the segment number m describes the elongation of a molecule in a given molecular-

based EOS and is used to scale sconf such that the values of s̃conf are within a similar range

for molecules of different sizes37. Moreover, s̃conf is also a dimensionless property. The limit

s̃conf → 0 corresponds to the limit ρ → 0. Based on s̃conf , a split for individually describing

the low-density (LD) and high-density (HD) region is applied. The LD region covers all

states s̃conf < s̃
×
conf and the HD region all states s̃conf ≥ s̃

×
conf . Here, a value of s̃×conf = 0.5 was

chosen based on preliminary studies.

The scaling with Eqs. (4) - (6) usually yields very good results for the HD region, but

scattering results for the LD region (cf. Fig. 3, green part in the LD region). This scattering

can be understood as a consequence of the known temperature-dependence of the results

8



FIG. 3. Scheme illustrating the modeling principle of the entropy scaling framework. LD and

HD indicate the low-density and the high-density region, respectively. Green indicates the scaled

transport property Y
+ for a given substance with Y ∈ {η, λ,D}. Y

+
CE (left inset) indicates the

zero-density limit transport property (ρ → 0, s̃conf → 0) obtained from Chapman-Enskog theory as

function of the temperature T . Ŷ
+
LD indicates the CE-scaled transport property in the LD region

(cf. Eq. (14)) and Ŷ
+
HD the CE-scaled transport property in the HD region (cf. Eq. (15)). The

light red and light blue areas are not used.

for ρ → 0, as described by the Chapman-Enskog theory, cf. insert in Fig. 3. Applying

Eqs. (4) - (6) to the results from the Chapman-Enskog theory yields:

η
+
CE =

5

16
√
π

1

σ2
CEΩ

(2,2) (T (dB
dT

) +B)
2/3

, (8)

λ
+
CE =

75

64
√
π

1

σ2
CEΩ

(2,2) (T (dB
dT

) +B)
2/3

, (9)

D
+
CE =

3

8
√
π

1

σ2
CEΩ

(1,1) (T (dB
dT

) +B)
2/3

, (10)

where the relation

lim
ρN→0

(∂(−sconf/R)
∂ρN

)
T

= T
dB

dT
+B (11)

is exploited with B being the second virial coefficient (computed from the EOS) and Ω
(1,1)

and Ω
(2,2) are the reduced collision integrals93, which are functions of the reduced tem-

perature TkB/εCE, i.e. Ω
(1,1)

= Ω
(1,1)(TkB/εCE) and Ω

(2,2)
= Ω

(2,2)(TkB/εCE). The two

parameters σCE and εCE characterize the molecular size and dispersion energy, respectively.

The scaled Chapman-Enskog transport properties η
+
CE, λ+

CE, and D
+
CE are solely functions

of the temperature. In the Supplementary Material, the Eqs. (8) - (9) are derived from the

Chapman-Enskog equations. The LJ fluid is taken as a reference fluid for calculating the

zero-density limit transport properties; the empirical correlations for the collision integrals
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for the LJ fluid from Kim and Monroe were used94. To determine the parameters σCE and

εCE, the LJ model is mapped to a given real substance by applying the corresponding states

principle. Hence, σCE and εCE are determined from the critical temperature Tc and pressure

pc of the considered substance and the critical temperature and pressure of the LJ fluid as

εCE =
Tc

Tc,LJ/εLJ
, (12)

σCE =

⎛
⎜
⎝
(pc,LJσ3

LJ/εLJ) εCE

pc

⎞
⎟
⎠

1/3

, (13)

where εLJ and σLJ indicate the size and energy parameter of the LJ potential, respectively.

The reduced critical temperature and pressure of the LJ fluid were taken from the literature:

Tc,LJ = 1.321 εLJ/kB and pc,LJ = 0.316 εLJ/σ3
LJ

95. Thus, Eqs. (12) - (13) establish a link

between the real substance model described by the molecular-based EOS and the LJ model

in the zero-density limit. The critical parameters Tc and pc for a given substance are taken

from the EOS.

The CE-scaled transport property for the LD region Ŷ
+
LD (with Y ∈ {η, λ,D}) is calculated

from Y
+
LD as

Ŷ
+
LD =

Y
+
LD

Y +
CE

. (14)

As illustrated in Fig. 3, Ŷ +
LD provides a monovariate function with respect to the reduced

configurational entropy s̃conf . In the case of exact representation of the zero-density limit of

the transport properties by the Chapman-Enskog theory, Eq. (14) yields unity (Ŷ +
= 1) for

s̃conf → 0. Applying Eq. (14) to all states including the HD region would, however, yield

a distinctly poorer scaling than in the LD region, as illustrated in Fig. 3. As the modified

Rosenfeld scaling already yields a decent behavior in the HD region, the scaled transport

property for the HD region Y
+
HD only has to be shifted in a suitable way to obtain a smooth

transition in Ŷ
+ from the LD to the HD region at s̃

×
conf . Preliminary studies showed that

this can be achieved by simply dividing Y
+ by a constant factor for which the minimum of

the scaled Chapman-Enskog transport property min(Y +
CE(T )) was chosen, i.e.

Ŷ
+
HD =

Y
+
HD

min (Y +
CE(T ))

. (15)

The rationale behind this choice is that the scattering of Y + can be understood as positive

deviations from a master curve that extends the results from the HD region (cf. green part
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in Fig. 3). By dividing the results from the HD region by the minimum value from the

Chapman-Enskog theory, it can be expected to recover this curve, albeit in a version that is

shifted.

To avoid having to work with a distinction of cases (LD vs. HD), a continuous function

Ŷ
+ is introduced:

Ŷ
+
= Ŷ

+
LDW + Ŷ

+
HD(1 −W ), (16)

with

W =
1

1 + exp (20 (s̃conf − s̃×conf))
, (17)

where W = 1 for s̃conf ≪ s̃
×
conf and W = 0 for s̃conf ≫ s̃

×
conf . The CE-scaled transport

property Ŷ
+ is a monovariate function of the reduced configurational entropy s̃conf (cf.

Fig. 3) in all state regions as shown below. Details of the framework are given in the

Supplementary Material and an implementation is available on GitHub.

C. Component-Specific Correlation

CE-scaled transport properties are approximate monovariate functions of the configura-

tional entropy s̃conf . Yet, the shape of this monovariate function is different for the three

transport properties and for different components. The relation Ŷ
+(s̃conf) is described here

by an empirical, rational function

ln(η̂+i (s̃conf))

λ̂
+
i (s̃conf)

ln(D̂+
i (s̃conf))

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

=

α
(Y )
0,i + α

(Y )
ln,i ln(s̃conf + 1) + α

(Y )
1,i s̃conf + α

(Y )
2,i (s̃conf)2 + α

(Y )
3,i (s̃conf)3

1 + g
(Y )
1 ln(s̃conf + 1) + g

(Y )
2 s̃conf

. (18)

The parameters α
(Y )
0,i , α(Y )

ln,i , α
(Y )
1,i , α(Y )

2,i , and α
(Y )
3,i are specific for the studied component i as

well as for the transport property Y . They are fitted for each substance to reference data.

The number of parameters, i.e. terms, used in the nominator of Eq. (18) can be conveniently

chosen for a given problem. The parameters g
(Y )
1 and g

(Y )
2 in the denominator are universal

parameters for the transport property Y . All parameters of Eq. (18), i.e. α
(Y )
0,i , α(Y )

ln,i , α
(Y )
1,i ,

α
(Y )
2,i , α

(Y )
3,i , g

(Y )
1 , and g

(Y )
2 , are dimensionless. The mathematical form (cf. Eq. (18)) and

choice for the universal parameters (see below) provides well behaving functions for the

resulting model, i.e. no pole for s̃conf > 0, and a defined limit for s̃conf → 0, i.e. α
(Y )
0,i .
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D. Molecular Simulations and Adjustment of the Universal Parameters

The universal parameters, i.e. g
(Y )
1 and g

(Y )
2 (cf. Eq. (18)), were fitted to LJ simula-

tion data. As suitable data were not available in the literature, homogeneous bulk phase

MD simulations were carried out in this work with the software ms296,97. The simulations

were carried out for liquid, vapor, supercritical, metastable VLE and metastable solid-liquid

equilibrium (SLE) regions as well as on the VLE binodal and the freezing line. In total, 173

state points were studied. The studied state points are depicted in Fig. 4.
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FIG. 4. Overview of the 173 state points (circles) of the LJ fluid that were studied in this work.

The binodal and the critical point (star) were taken from Ref.95, the spinodal from Ref.98, and the

freezing and melting lines from Ref.99.

Each simulation consisted of 5000 particles. The gear predictor-corrector integrator was

used with a time step of ∆t = 0.001 ((σ2
M/NA) /ε)

1/2
. The simulations were conducted

in the NVT ensemble with 1 × 10
5 equilibration time steps and 5 × 10

6 production time

steps. Periodic boundary conditions were applied in all directions. The viscosity, the ther-

mal conductivity, and the self-diffusion coefficient were sampled using the Green-Kubo100,101

formalism with a correlation length of 104 time steps for ρ ≥ 0.1σ
−3 and 10

5 time steps for

ρ < 0.1σ
−3. Details on the computational procedure of the Green-Kubo implementation in

ms2 are given in Refs.102,103. The viscosity, the thermal conductivity, and the self-diffusion

coefficient data obtained from the simulations were CE-scaled according to Eqs. (4) - (16).

The second virial coefficient B of the LJ fluid and its derivative with respect to T used

in Eqs. (8) - (10) were calculated analytically from the interaction potential104. Moreover,

the configurational entropy was determined from the simulations. Therefore, the chemical

potential µconf was sampled using Widom’s test particle method105. From that, the config-
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urational Helmholtz energy aconf was calculated as96

aconf = −
∂aconf
∂ρ

ρ + µconf =
p
ρ + µconf . (19)

The configurational entropy sconf was then calculated as

sconf =
uconf

T
−

aconf
T

, (20)

with uconf being the configurational internal energy. Thereby, data for sconf , η̂
+, λ̂+, and D̂

+ of

the LJ fluid were obtained in a wide state range. Details are discussed in the Supplementary

Material. Moreover, the numeric data of the MD simulation results are provided in the

electronic Supplementary Material.

The sampled entropy data were converted to the reduced configurational entropy s̃conf

using Eq. (7) and m = 1. The universal parameters g
(Y )
1 and g

(Y )
2 for the correlations for

Y ∈ {η, λ,D} (cf. Eq. (18)) were obtained from a fit to the computer experiment data

η̂
+(s̃conf), λ̂+(s̃conf), and D̂

+(s̃conf). The results are given in Table I.

TABLE I. Universal parameters of the entropy scaling framework, i.e. Eq. (18), as well as the

component-specific parameters used for the fits of the universal parameters for the viscosity, the

thermal conductivity, and the self-diffusion coefficient.

property f(s̃conf) g
(Y )
1 g

(Y )
2 α

(Y )
0,LJ α

(Y )
ln,LJ α

(Y )
1,LJ α

(Y )
2,LJ α

(Y )
3,LJ

viscosity ln(η̂+(s̃conf)) -1.6386 1.3923 0 0 0 1 0

thermal conductivity λ̂
+(s̃conf) -1.9107 1.0725 1 0 0 0 1

self-diffusion ln(D̂+(s̃conf)) 0.6632 9.4714 0 0 0 0 -1

The component-specific parameters α(Y )
0,LJ, α

(Y )
ln,LJ, α

(Y )
1,LJ, α

(Y )
2,LJ, and α

(Y )
3,LJ were a priori fixed

to constant values for the fit (see Table I). The value of α(Y )
0,LJ determines the low-density limit

of the studied property, which is zero for ln(η̂+) and ln(D̂+) and 1 for λ̂
+. The logarithmic

term and the linear term in the denominator of Eq. (18) were not used, i.e. α(Y )
ln,LJ = α

(Y )
1,LJ = 0.

The numbers for α
(Y )
2,LJ and α

(Y )
3,LJ were, depending on the property, set either to 0 or 1, so

that the numerator of Eq. (18) is either a quadratic (viscosity) or a cubic function (thermal

conductivity and self-diffusion coefficient) of the reduced configurational entropy s̃conf . As

the denominator of Eq. (18) is linear, this results in a linear asymptote for s̃conf → ∞ for the

viscosity, which accounts for the approximately linear behavior of the CE-scaled viscosity
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as function of the configurational entropy24. For the thermal conductivity and the self-

diffusion coefficient, the CE-scaled transport properties can be described more accurately

by a quadratic asymptote. The values for the parameters given in Table I are valid for the

LJ fluid, but they can also be used as default and starting values for individual fits to data

for other fluids. Fig. 5 shows the result of the fit for the CE-scaled properties as function of

the reduced configurational entropy for the LJ fluid. The data are well represented by the fit.
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FIG. 5. CE-scaled viscosity η̂
+, thermal conductivity λ̂

+, and self-diffusion coefficient D̂+ of the LJ

fluid as function of the reduced configurational entropy s̃conf . Symbols represent MD simulation

results (state points as shown in Fig. 4) and the solid line is the global fit to these results (cf.

Eq. (18) and Table I). All shown properties are dimensionless.

The mean relative deviations of the fits are δη̂+ = 9.12%, δλ̂+
= 11.49%, and δD̂+

= 2.01%

and were calculated as

δY =
1

Nexp

Nexp

∑
j

∣δYj∣ (21)

with δYj =
Yexp,j − YES,j

Yexp,j
, (22)

with Nexp being the number of data points, Yexp the (computer) experiment value, and YES

the values obtained from the entropy scaling model. Since the studied state points cover

a large range of states with respect to temperature and density (cf. Fig. 4), also a large
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range of states with respect to the configurational entropy is covered (see Supplementary

Material). For the viscosity and the thermal conductivity, the vast majority of the data

points is described by the entropy scaling model with a deviation below 5 %; that number

is 2 % for the self-diffusion coefficient. The deviations are larger for the data points at

the largest configurational entropies which corresponds to very high densities, where the

sampling of both the entropy and the transport properties is challenging. These deviations

are of the same order as the relative statistical uncertainties of the simulation data for the

viscosity and the thermal conductivity, which are on average 7.4 % and 8.5 %, respectively.

For the self-diffusion coefficient, the corresponding uncertainty for the simulation data is

0.15 %.

Fig. 5 also indicates that the strategy proposed in the present work, that is based on

different procedures for the LD region and the HD region, works well. The curves are

smooth, also in the vicinity of the threshold at s̃conf = 0.5.

E. Extension to Mixtures

Also for mixtures, an approximately monovariate relation between the transport proper-

ties and the configurational entropy has been observed40,88. Therefore, the entropy scaling

model for the viscosity and the thermal conductivity of pure components described above

was extended to modeling mixture properties. The extension to self-diffusion coefficients is

less straightforward, as there is one self-diffusion coefficient for each component, so this issue

is not discussed here and left open for future work. In the approach, the mixture is treated

as a pure pseudo-component following the one-fluid theory mixing rule concept106,107.

Transport properties of mixtures are represented here as a function of the temperature,

density, and composition x, i.e. Ymix(T, ρ, x), and described by the entropy scaling model

as Ŷ
+
mix(s̃conf(T, ρ, x)). In Eqs. (4) - (6), M is now the mean molar mass of the mixture

M =

N

∑
i

xiMi, (23)

where N is the number of components and xi and Mi are the mole fraction and the molar

mass of component i. The reduced configurational entropy of the mixture s̃conf(T, ρ, x) is

calculated from the molecular-based EOS using Eq. (7), where the segment number m of

15



the pseudo-component representing the mixture is calculated from

m =

N

∑
i

ximi, (24)

where mi is the segment number of the component i. The zero-density transport properties

of the mixture were calculated as follows: the viscosity of the mixture in the zero-density

limit η
+
CE,mix was calculated according to Wilke108

η
+
CE,mix =

N

∑
i

xiη
+
CE,i

∑N

j=1 xiφij

,

with φij =

(1 + (η+CE,i/η+CE,j)1/2(Mi/Mj)1/4)
2

(8(1 +Mi/Mj))
1/2 ,

(25)

where η
+
CE,i and η

+
CE,j are the pure component Chapman-Enskog values for the viscosity (cf.

Eq. (8)). The thermal conductivity of the mixture in the zero-density limit λ
+
CE,mix was

calculated according to Wassiljewa109 and Mason and Saxena110 from

λ
+
CE,mix =

N

∑
i

xiλ
+
CE,i

∑N

j=1 xiφij

,

with φij =

(1 + (λ+
CE,i/λ+

CE,j)1/2(Mi/Mj)1/4)
2

(8(1 +Mi/Mj))
1/2 ,

(26)

where λ
+
CE,i and λ

+
CE,j are the pure component Chapman-Enskog values for the thermal

conductivity (cf. Eq. (9)). In Eq. (18), which describes the mathematical form of the

generalized function Ŷ
+
conf(s̃conf), linear mixing rules are applied for the parameters, i.e.

βmix =

N

∑
i

xiβi with βi ∈ {α(Y )
0,i , α

(Y )
ln,i , α

(Y )
1,i , α

(Y )
2,i , α

(Y )
3,i }

and βmix ∈ {α(Y )
0,mix, α

(Y )
ln,mix, α

(Y )
1,mix, α

(Y )
2,mix, α

(Y )
3,mix}.

(27)

Here, βmix is the resulting parameter for the mixture, N is the number of components, xi

is the mole fraction of component i, and βi indicates the component-specific parameters.

The values for the universal parameters g
(Y )
1 and g

(Y )
2 (cf. Table I) are the same for pure

components and mixtures. Additional information on the entropy scaling framework for

mixtures is given in the Supplementary Material.
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F. Remarks Regarding the Physical Basis of the Model Framework

The outlined entropy scaling framework is a physically-motivated model designed to

be coupled with molecular-based EOS. The framework provides a basis for the modeling

and prediction of transport properties in a wide range of thermodynamic states, different

substance classes, and different EOS models (see applications below). Yet, the physical

aspects of the entropy scaling model also comprise several assumptions and simplifications

that influence the performance and are briefly critically summarized here. Moreover, while

the entropy scaling framework is designed to be coupled with molecular-based EOS, it can

in general be also used with empirical EOS. Yet, this route is not further exploited here.

In the zero-density limit, the Chapman-Enskog theory, which assumes spherical particles,

is applied in our model. By applying the model, we assume that the Chapman-Enskog the-

ory, coupled with the corresponding states principle, also works for more complex molecules.

This is a relatively crude assumption for highly non-ideal fluids, e.g. H-bonding fluids. Fur-

thermore, the thermal conductivity of gases depends on internal degrees of freedom, which

are not considered in the Chapman-Enskog theory93. Hence, also the model developed in

this work does not consider the influence of the internal degrees of freedom on the thermal

conductivity93, which can cause problems with predictions for fluids at low densities. How-

ever, fitting the parameter α
(Y )
0,i and not using the default value of 0 or 1 offers a pragmatic

work-around that can alleviate some of these problems. More details are given in the ap-

plications section below and in the Supplementary Material. In principle, the framework

proposed in this work could be extended by adding a model for the intramolecular degrees

of freedom.

Furthermore, the smoothness of the transition between the LD and the HD region de-

pends on the (presence of the) minimum of the function Y
+
CE(T ), which depends on the

description of the second virial coefficient by the employed EOS. In cases where the second

virial coefficient is not described well by a given EOS, a work-around can be used – see

Supplementary Material.

Moreover, in this work, molecular-based EOS with a classical scaling behavior were used

such that systematic errors in the critical region have to be expected (overestimation of

the critical temperature). The latter could be overcome by using more sophisticated EOS

models, e.g. based on renormalization group theory77, which were, however, not applied in
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the present work.

Furthermore, the entropy scaling model itself does not account for near-critical effects,

i.e. the critical enhancement111. In principle, additional contributions in the entropy scaling

approach could be used to account for this, but we have refrained from considering this here,

so that the model should not be used without modifications in the near-critical region.

III. APPLICATIONS

A. Overview

The new entropy scaling framework was applied in this work to pure substances and

binary mixtures. To demonstrate the flexibility, different molecular-based EOS were used

for the modeling. In total, 15 pure components, four binary mixtures, and a quaternary

mixture were studied. Table II gives an overview of the studied pure components. Table III

gives an overview of the studied mixtures. The results for the mixtures are predictions based

on the pure component models (cf. Table II) and the mixing rules (cf. Eqs. (23) - (27)),

i.e. they were obtained without any adjustment to experimental mixture data of transport

properties. Also for the EOS mixture models, fully predictive mixing and combination rules

were used.

Nine different molecular-based EOS were used to model the different substances (cf.

Tables II and III). The choice of the EOS models was not optimized to create entropy

scaling models with low deviations, but to show the general applicability and robustness

of the framework. The individual choices were made so as to obtain examples that reflect

realistic applications, e.g. the BACKONE EOS is often used for modeling refrigerants in

the literature115,116. It was out of the scope of this work to compare the performance of

different EOS. The EOS pure component parameters were adopted from the literature (see

Supplementary Material for details). The entropy scaling parameters (cf. Eq. (18)) were

fitted to transport property data taken from the literature. The number of parameters

for each model (cf. Table II) was chosen so that no overfitting occurred for the function

Ŷ
+(s̃conf). For the viscosity, four parameters were used in most cases. For the thermal

conductivity, five parameters were used since also the value α
(λ)
0,i had to be adjusted to get

a good representation of the zero-density limit, for the reasons discussed in Section II F.
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TABLE II. Overview of the studied pure components: the columns indicate (from left to right)

the substance name, the EOS used for the modeling, the references for the pure component model.

Nexp is the number of experimental data points used for the parameter adjustment and model

evaluation, Npar the number of entropy scaling parameters used. δY indicates the mean relative

deviation (computed from Eq. (21)) for the viscosity η, the thermal conductivity λ, and the self-

diffusion coefficient D.
substance EOS Ref. viscosity thermal conductivity self-diffusion

Nexp Npar δη/% Nexp Npar δλ/% Nexp Npar δD/%

LJ Kolafa-Nezbeda81 - 654 4 5.57 529 4 4.66 947 4 3.69

LJTS PeTS82 - 348 4 4.54 348 4 3.91 348 2 5.22

methane Stephan et al.83 112 2588 4 2.99 3082 5 5.84 318 4 5.53

n-butane PC-SAFT65 65 973 4 4.36 2859 5 4.68 42 2 7.71

n-hexane SAFT-VR Mie84 84 1487 4 3.36 1845 5 3.01 12 2 1.31

n-hexanea SAFT-VR Mie84 84 867 4 3.18 - - - - -

n-hexadecane PC-SAFT65 65 592 4 5.7 431 3 1.81 109 2 8.63

propene soft SAFT85 85 244 4 5.61 172 5 12.59 - - -

cyclohexane PACT+B70 70 895 4 4.59 294 3 2.37 15 2 3

benzene SAFT-VR Mie84 84 1379 4 3.63 803 5 2.93 426 2 4.02

nitrogen SAFT-VR Mie84 89 2826 5 1.49 2223 5 2.86 - - -

carbon dioxide PC-SAFT65,90 90 2911 4 2.82 1968 5 8.49 324 1 14.72

methanol sCPA73,86 74 1233 5 3.84 609 5 4.81 103 3 4.78

1-propanol SAFT-VR Mie84 84 896 2 5.44 273 5 4.82 - - -

1-octanol PC-SAFT65,113,114 91 341 4 3.59 197 5 3.8 19 2 19.95

R134a BACKONE69 69 742 4 3.71 6478 5 5.79 - - -
aextrapolation study (details below)

Only for the spherical model fluids (LJ and LJTS), the parameter α
(λ)
0,i was not fitted for

the thermal conductivity due to the absence of internal degrees of freedom in this radial-

symmetric model. For the self-diffusion coefficient, the data base is smaller for all substances.

Except for the LJ fluid and methane, only one to three parameters were used in the entropy

scaling model. All experimental data were used for adjusting the entropy scaling parameters,
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TABLE III. Overview of the studied mixtures: the columns indicate (from left to right) the com-

ponents, the EOS used for modeling, the Berthelot combination rule parameter ξij , Nexp is the

number of experimental data points used for the evaluation, δY indicates the mean relative de-

viation (computed from Eq. (21)) for the viscosity η and the thermal conductivity λ. The size

parameter σ was the same for both LJTS components, the pure component models for the other

four (real) components were the same as in Table II. No parameters were adjusted to the mixture

data.
components EOS ξij viscosity thermal conductivity

Nexp δη/% Nexp δλ/%

LJTS (ε1) + LJTS (ε2 = 0.9 ε1) PeTS 1.2 55 4.71 55 5.42

LJTS (ε1) + LJTS (ε2 = 0.9 ε1) PeTS 0.85 51 4.85 51 4.55

1-octanol + n-hexadecane PC-SAFT 1 42 2.39 - -

benzene + n-hexane SAFT-VR Mie 1 - - 19 3.47

n-decane + n-dodecane

+ n-tetradecane + n-hexadecane
PC-SAFT 1 18 1.97 - -

except in the case of n-hexane modeled by the SAFT-VR Mie EOS (cf. Table II). To test

the extrapolation capability of the model to states that were not considered in the fit, the

model parameters for n-hexane were adjusted using state points p ≤ 10MPa alone. The

model performance was then evaluated using data at p > 10MPa, which includes state

points up to p = 1000MPa. Both the pure component EOS parameters and the entropy

scaling parameters used in this work are reported in the Supplementary Material.

The experimental data for the real substances were taken from the Dortmund Database

(DDB)117 and from the database from Suárez-Iglesias et al.118. For the model fluids, i.e.

the LJ and the Lennard-Jones truncated and shifted (LJTS) fluid, data were taken from

Refs.88,119–125. Data from different fluid regions were considered for the entropy scaling

modeling, i.e. gaseous, liquid, and supercritical (and in some cases also metastable) states

in a large temperature and pressure range. In total, 43,750 data points were considered for

the 15 pure components and 291 data points for the five mixtures. Overall, the availability

of data on the transport properties of mixtures is significantly lower than that for the pure

components. In all cases, the data compiled from the literature was screened for gross outliers

20



which were removed for the fit and model evaluation. Also, data in the direct vicinity of

the critical point were omitted. The experimental data used in this work are given in the

electronic Supplementary Material.

B. Pure Components

The mean relative deviation results for the pure components are given in Table II . They

are in a range from 1.49% to 19.95%. For the vast majority of the studied pure components,

a mean relative deviation below 6 % is obtained. This is impressive considering the fact

that not more than five parameters were used for the fit that describes large data sets

covering a wide range of conditions. Four typical examples are presented and discussed in

detail in the main body of this paper, namely the viscosity of n-butane and n-hexane, the

thermal conductivity of nitrogen, and the self-diffusion coefficient of benzene (cf. Table II).

Details on the results for the other pure components are presented and discussed in the

Supplementary Material.

Fig. 6 shows the entropy scaling plot Ŷ
+
= Ŷ

+(s̃conf) for the viscosity of n-butane, the

thermal conductivity of nitrogen, and the self-diffusion coefficient of benzene (the corre-

sponding plot for the viscosity of n-hexane is shown at the end of this chapter). In all three

plots, the CE-scaled transport properties are distinct monovariate functions of the reduced

configurational entropy in the entire range of s̃conf . The scattering of the data points is very

small for all properties and substances. In all cases, a smooth transition between the LD

and the HD region is observed.

In the following, the results for the four selected systems are discussed in detail by means

of Figs. 7 - 10. For each example, the results from the entropy scaling model are compared to

the reference data for selected isotherms (plot a in Figs. 7 - 10). Additionally, a deviation

plot is shown (plot b in Figs. 7 - 10), which comprises all considered experimental data.

Furthermore, a parity plot (plot e in Figs. 7 - 10) is given together with histograms of the

temperature and pressure distributions of the considered state points (plots c and d in

Figs. 7 - 10).

Fig. 7 shows the results for the viscosity of n-butane. Four parameters (cf. Eq. (18))

were adjusted to 973 experimental data points. The experimental data were in the range

0.0267MPa < p < 1000MPa and 140K < T < 511K, which includes gaseous, liquid, as
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FIG. 6. CE-scaled viscosity η̂
+ of n-butane (top), CE-scaled thermal conductivity of nitrogen λ̂

+

(middle), and CE-scaled self-diffusion coefficient D̂
+ as function of the reduced configurational

entropy s̃conf . Symbols are the data points derived from experimental data (η, λ, and D from

experimental data and s̃conf from the EOS). The EOS applied for the three substances are given

in Table II. The color indicates the pressure. The black line is the entropy scaling model.

well as supercritical states. Most state points are in the temperature range from 300 to

500 K and pressure of 0.1 MPa to 100 MPa (cf. Fig. 7 c & d). The EOS was PC-SAFT.

The viscosity of n-butane is described well by the model with a mean relative deviation of

δη = 4.36%.

The supercritical isotherms cross each other in the vicinity of the critical point, which

reflects the change of the temperature dependency. At low pressure, the viscosity increases

with increasing temperature as predicted by the Chapman-Enskog theory; at high pres-

sure at liquid-like states, the viscosity decreases with increasing temperature, which is as

expected19,93.

Overall, the entropy scaling model yields an excellent description of the viscosity over

the whole temperature and pressure range. Only for pressures p < 1MPa, the experimental

values are slightly systematically overestimated by the entropy scaling model (cf. Fig. 7 b).

This is due to an overestimation of the zero-density limit by the Chapman-Enskog theory in

combination with the corresponding states principle.
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FIG. 7. Results for the viscosity η of n-butane. a: Viscosity η as function of the pressure p

for 12 isotherms obtained from the entropy scaling model (lines) and experimental data (colored

symbols). The viscosity computed from entropy scaling for the saturated liquid and saturated

vapor (dashed line), and the critical point (star) are also given. b: Relative deviation between

entropy scaling results and experimental data δη (cf. Eq. (22)) as function of the pressure p (all

considered data). The black dotted line indicates the mean average deviation δη = ±4.36%. a

and b: The color indicates the temperature. c and d: Histograms of the number of experimental

data points Nexp regarding their temperature (plot c) and pressure (plot d). e: Parity plot for the

viscosity computed from the entropy scaling model ηES vs. experimental data ηexp (all considered

data). The entropy scaling results were obtained with the PC-SAFT EOS. Ñexp indicates the

number of data points depicted in a given plot.

Fig. 8 shows the results for the thermal conductivity of nitrogen modeled by the entropy

scaling model in conjunction with the SAFT-VR Mie EOS. The 2223 state points comprise

temperatures in the range 77K < T < 2473K and pressures in the range 0.009MPa < p <

1000MPa (cf. Fig. 8 c & d), which includes a large amount of supercritical state points

as well as some gas and few liquid state points. The structure of the λ − log(p) diagram

regarding the different state regions (cf. Fig. 8 a) is similar to that for the viscosity. The

isotherms with low temperatures are shown up to the solidification pressure (data taken
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FIG. 8. Results for the thermal conductivity λ of nitrogen. a: Thermal conductivity λ as function

of the pressure p for 13 isotherms obtained from the entropy scaling model (lines) and experimental

data (colored symbols). The thermal conductivity computed from entropy scaling for the saturated

liquid and saturated vapor (dashed line), and the critical point (star) are also given. b: Relative

deviation between entropy scaling results and experimental data δλ (cf. Eq. (22)) as function of

the pressure p (all considered data). The black dotted line indicates the mean average deviation

δλ = ±2.86%. a and b: The color indicates the temperature. c and d: Histograms of the number of

experimental data points Nexp regarding their temperature (plot c) and pressure (plot d). e: Parity

plot for the thermal conductivity computed from the entropy scaling model λES vs. experimental

data λexp (all considered data). The entropy scaling results were obtained with the SAFT-VR Mie

EOS. Ñexp indicates the number of data points depicted in a given plot.

from Grace et al.126).

The mean relative deviation is δλ = 2.86%, which is impressive considering that only

five parameters were fitted to a very large and diverse data set. Some larger deviations

(up to δλ = 15%) are observed in in the gas region at low pressure (log(p /MPa) ≤ −1).

These deviations slightly increase with increasing temperature. This is likely due to the

fact that the Chapman-Enskog model does not consider internal degrees of freedom. On

the other hand, state points at large pressures up to 1000MPa and moderate temperatures
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are described very well (cf. Fig. 8 b), i.e. with δλ < 1.5%. These state points can also

be identified in the parity plot (cf. Fig. 8 e) as the ones with λ > 0.2WK
−1
m

−1, which

indicates the robustness of the macroscopic scaling used for dense states (cf. Eq. (16)).

Fig. 9 shows the results for the self-diffusion coefficient of benzene. Only two component-
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FIG. 9. Results for the self-diffusion coefficient D of benzene. a: Self-diffusion coefficient D

as function of the pressure p for 12 isotherms obtained from the entropy scaling model (lines)

and experimental data (colored symbols). The self-diffusion coefficient computed from entropy

scaling for the saturated liquid and saturated vapor (dashed line), and the critical point (star) are

also given. b: Relative deviation between entropy scaling results and experimental data δD (cf.

Eq. (22)) as function of the pressure p (all considered data). The black dotted line indicates the

mean average deviation δD = ±4.02%. a and b: The color indicates the temperature. c and d:

Histograms of the number of experimental data points Nexp regarding their temperature (plot c)

and pressure (plot d). e: Parity plot for the self-diffusion coefficient computed from the entropy

scaling model DES vs. experimental data Dexp (all considered data). The entropy scaling results

were obtained with the SAFT-VR Mie EOS. Ñexp indicates the number of data points depicted in

a given plot.

specific parameters were used. The experimental data of the self-diffusion coefficient for

benzene (Nexp = 426) cover temperatures in the range 279K < T < 684K and pressures in
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the range 0.1MPa ≤ p < 236MPa, which corresponds to liquid, gaseous, and supercritical

states. The majority of the data points is at temperatures below 373.15K and ambient

pressure, i.e. liquid states. The parity plot (cf. Fig. 9 e) reveals two groups of points, for

liquid-like states (D < 10
−8

m
2
s
−1) and for gas-like states (D ≥ 10

−7
m

2
s
−1). This distribution

of the state points makes benzene an interesting candidate for testing the entropy scaling

framework. The self-diffusion coefficient exhibits a qualitatively different behavior D =

D(p, T ) compared to the viscosity and thermal conductivity. For all fluid states, D increases

with increasing temperature and decreases with increasing pressure.

The self-diffusion coefficient of benzene is described with a mean average deviation of

δD = 4.02%. This is impressive considering the fact that only two adjustable parameters

were used. The description of the different state regions is overall similar. Hence, no region

shows particularly high deviations, which indicates that the splitting approach between the

low-density and high-density states in the entropy scaling framework works well. This is

supported by the fact that also the gaseous state points at high temperatures T > 550K are

well described by the model.

Fig. 10 shows the results for the viscosity of n-hexane. Here, a different fitting strategy

was used in order to test the extrapolation behavior of the entropy scaling framework:

the experimental data were divided into two sets based on the pressure, state points at p ≤

10MPa were used for fitting the component-specific parameters of the entropy scaling model;

state points at p > 10MPa were used for the assessment of the predictions of the entropy

scaling model. Accordingly, 867 experimental state points were used for the parametrization

and 620 state points were used for the evaluation of the predictions (cf. Table II). For n-

hexane, all considered experimental data points for the assessment of the entropy scaling

model are at supercritical pressure (up to 1000 MPa), but sub- and supercritical isotherms

are shown, cf. Fig. 10 (the critical temperature and pressure are Tc = 507.6K and pc =

3.02MPa
127, respectively). Four component-specific parameters were used in the fit. The

entropy scaling model describes the data used for the fit (p < 10MPa) very well with a mean

relative deviation of δη = 3.18%. Upon using the entropy scaling model for extrapolation

(p > 10MPa), a mean relative deviation of δη = 2.88% is obtained. The vast majority of

predicted data points yields a deviation well below 10 %. For the data points at p > 500MPa

(where also experiments are challenging to carry out), a larger deviation up to 38 % is

obtained. Yet, the trends are qualitatively captured well at these extreme pressures. Hence,
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FIG. 10. Results for the viscosity η of n-hexane. a: Viscosity η as function of the pressure p for

9 isotherms computed from the entropy scaling model (lines) and experimental data (symbols).

b: Relative deviation between entropy scaling model and experimental data δη as function of

the pressure p (all available experimental data). The black dotted line indicates the mean average

deviation δη = ±3.18%. a and b: The circles denote the data points at p ≤ 10MPa (grey area, used

for fitting) and the crosses the data points at p > 10MPa. The color indicates the temperature. c

and d: Histograms of the number of experimental data points Nexp (blue: used for fit (p ≤ 10MPa),

red: data points at p > 10MPa) regarding their temperature (plot c) and pressure (plot d). e:

Parity plot for the viscosity computed by the entropy scaling model ηES vs. experimental data ηexp

(black circles: state points used for fit (p ≤ 10MPa), red crosses: data points at p > 10MPa). The

entropy scaling results were obtained with the SAFT-VR Mie EOS. Ñexp indicates the number of

data points depicted in a given plot.

the entropy scaling model is capable of making reliable predictions for the viscosity across

two orders of magnitude in the pressure. Also the temperature dependency is very well

described by the model.

The main reasons for the robust extrapolation behavior of the framework lie in the robust

extrapolation behavior of the molecular-based EOS and the basic principle of the entropy

scaling concept – correlating transport coefficients that are in general a function of two state
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variables, e.g. T and p, by only the configurational entropy sconf (which is a function of T

and p in our example). This leads to situations, where an extrapolation in the T, p space is an

interpolation in the s̃conf space. This is illustrated in Fig. 11 for the n-hexane case discussed

above. It shows the CE-scaled viscosity η̂
+ as function of the reduced configurational entropy
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FIG. 11. CE-scaled viscosity η̂
+ as function of the reduced configurational entropy s̃conf for n-

hexane. Symbols are data points derived from experimental data (η from experimental data and

s̃conf from the SAFT-VR Mie EOS). The color indicates the temperature. The black line is the

entropy scaling model. a: Data points at p ≤ 10MPa (used for fit). b: Data points at p > 10MPa

(testing extrapolation behavior). Both η̂
+ and s̃conf are dimensionless properties.

s̃conf . For all considered experimental data points, the configurational entropy was computed

(cf. Eq. (3)) from the EOS. The data points considered for the entropy scaling model fit

(p < 10MPa) lie in the range 0 < s̃conf < 5 (cf. Fig. 11 a). For the vast majority of the

data points at p > 10MPa, the reduced configurational entropy s̃conf is also in the range

0 < s̃conf < 5 (cf. Fig. 11 b). Hence, the vast majority of data points predicted by the model

at high pressure p > 10MPa are actually interpolated by the kernel of the model, i.e. in

the entropy space. Only few state points are in fact extrapolations in the s̃conf space, which

are the state points with large viscosities at extremely high pressure (cf. Fig. 10). This

principle could be favorably used in the design of experiment for determining most useful

data for the parametrization of entropy scaling models.
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C. Mixtures

The entropy scaling framework was also used for predicting transport properties of mix-

tures based on the pure component models discussed above. Five mixtures were studied (cf.

Table III). The results for three mixtures are presented and discussed in the main body

of this work; the results for the other two mixtures are presented in the Supplementary

Material. For all studied mixtures, no parameters were fitted to the experimental data of

the mixtures, i.e. the mixture results are pure predictions.

Fig. 12 shows the results for the viscosity and the thermal conductivity of an LJTS model

mixture with σ2 = σ1, M1 = M2, ε2 = 0.9 ε1, and ξ = 1.2
88. The PeTS EOS82 was used
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FIG. 12. Viscosity η (top) and thermal conductivity λ (bottom) of the LJTS mixture with σ2 = σ1,

ε2 = 0.9 ε1, and ξ = 1.2
88 as function of the mole fraction x2. Molecular simulation data (symbols)

from Ref.88 and predictions with entropy scaling (lines). The color indicates the temperature. The

pressure is p = 0.1 ε/σ3. The entropy scaling results were obtained with the PeTS EOS.

for modeling the LJTS mixtures. Results are shown for a wide temperature range and the

entire composition range. The mixture exhibits a high-boiling azeotropic phase behavior for

all studied temperatures88. All studied data points for the LJTS mixture are liquid phase

state points. The predictions from the entropy scaling model are in excellent agreement

with the reference data, which is astonishing considering the fact that the mixture is highly

non-ideal. For all studied temperatures, both the viscosity and the thermal conductivity ex-

hibit a maximum at x2 ≈ 0.4molmol
−1, which corresponds approximately to the azeotropic
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composition88. For the vast majority of data points, the entropy scaling predictions agree

with the computer experiment results within their uncertainties. The mean relative devi-

ations of the entropy scaling model are δη = 4.71% and δλ = 5.42%. These deviations

are even slightly below the mean relative deviations obtained for the pure LJTS component

(cf. Table II) which emphasizes the predictive capabilities of the entropy scaling framework

for modeling mixtures. The success of the predictions justifies the use of the simple linear

mixing rules for the component-parameters of the fit function (cf. Eq. (18)) and emphasizes

that the deviations from ideality are a result of the modeling of the entropy of the mixture

by the EOS. The results for another LJTS mixture with same σ and ε values, but a mixing

parameter ξ = 0.85 (cf. Table III), a mixture with a low-boiling azeotrope, are reported in

the Supplementary Material. Also for this LJTS mixture, the performance of the entropy

scaling framework is excellent.

Fig. 13 shows the results for the viscosity of the mixture 1-octanol + n-hexadecane.

Predictions from the entropy scaling model are compared with experimental data for three
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FIG. 13. Viscosity η of the mixture 1-octanol + n-hexadecane as function of the mole fraction

of n-hexadecane xC16H34
at ambient pressure p = 0.1 MPa. Experimental data128 (symbols) and

entropy scaling (lines). The color indicates the temperature. The entropy scaling results were

obtained with the PC-SAFT EOS.

different temperatures from 298.15 K to 308.15 K at ambient pressure in the entire com-

position range. All considered state points are liquid. The predictions of the entropy

scaling model are in excellent agreement with the experimental data. For mole fractions

xC16H32
≳ 0.8molmol

−1, the experimental viscosity data exhibit a plateau for all tempera-

tures. The entropy scaling model predicts a faint minimum in that region. It is astonishing
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that such details of the behavior are predicted by a model that was not trained to mixture

data. Both the temperature and composition dependency of the viscosity are predicted

well by the entropy scaling model. This is also reflected by the mean relative deviation of

δη = 2.39%.

Fig. 14 shows the results for the quaternary mixture n-decane + n-dodecane + n-

tetradecane + n-hexadecane. The predictions from entropy scaling are compared with
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FIG. 14. Viscosity η of the mixture n-decane + n-dodecane + n-tetradecane + n-hexadecane

as function of the pressure p with constant mole fractions xC10H22
= 0.31molmol

−1, xC12H26
=

0.26molmol
−1, xC14H30

= 0.23molmol
−1 and xC16H34

= 0.20molmol
−1. Experimental data129

(symbols) and entropy scaling (lines). The color indicates the temperature. The entropy scaling

results were obtained with the PC-SAFT EOS.

experimental data for three different temperatures (313.15K, 333.15K, and 353.15K) as a

function of the pressure. All considered state points are liquid. The entropy scaling model

provides a very good description of the experimental data over the whole temperature and

pressure range. Thus, the mean relative deviation is δη = 1.97%.

IV. CONCLUSIONS

An entropy scaling framework was developed for modeling transport properties of pure

fluids and mixtures. The entropy scaling framework proposed in this work combines multiple

physical theories and concepts such as the Chapman-Enskog theory, the Rosenfeld scaling

theory, a LJ model at the kernel, the corresponding states principle, and molecular-based

EOS. The aim of entropy scaling is to obtain a master curve that relates a suitably scaled
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transport property to the configurational entropy of the studied fluid. In the entropy scaling

framework proposed in this work, the Rosenfeld scaling is used for describing high-density

states and the Chapman-Enskog theory for low-density states. The two approaches are

connected in a convenient way using the lowest number obtained for the scaled zero-density

limit from the Chapman-Enskog theory. This leads to a smooth transition between the scaled

Chapman-Enskog data at low densities and the Rosenfeld-scaled data at high densities, which

can be described easily as a function of the configurational entropy. The kernel of the entropy

scaling framework comprises a LJ model such that the LJ critical parameters and the LJ

collision integrals were adapted. We propose a generalized mathematical form for this master

curve that contains both component-specific parameters as well as universal parameters.

The latter were fitted in this work to transport data for the LJ fluid. The number of

component-specific parameters can be varied, depending on the amount of available data.

The mathematical form contains five component-specific parameters, but usually only some

of these have to be adjusted to obtain good correlations of the available transport data of a

given fluid. By applying simple mixing rules to these parameters, also transport properties

of mixtures can be predicted from the pure component models. The applicability and good

performance of this framework has been demonstrated in this work for several pure fluids

and also for some mixtures.

Entropy scaling requires a suitable model for calculating the entropy, which is usually

accomplished by an EOS. The entropy scaling framework proposed in this work is designed

to be coupled with molecular-based EOS, which provide in many cases robust extrapola-

tion capabilities to conditions not used in the model development. The EOS are integrated

in the entropy scaling framework model in a consistent way by adapting the second virial

coefficients, the critical point parameters, molecular property parameters, and the configu-

rational entropy from the EOS. Based on that coupling, the entropy scaling framework can

be flexibly used in conjunction with practically any molecular-based EOS (and in general

also with empirical EOS). This was demonstrated by applying several molecular-based EOS,

without, however, aiming at a systematic comparison of their performance.

The big advantage of combining entropy scaling with molecular-based EOS is that, based

only on a few data points, transport properties can be predicted for a wide range of states.

What may be a bold extrapolation in terms of the transport data in variables of temperature

and pressure may turn out to be a simple interpolation in the scaled transport data as a
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function of the configurational entropy.

Due to the strong physical basis of the framework, transport properties can be described in

a large range of states with very few adjustable parameters. Even two parameters can provide

a good description of transport property data in a wide state range. The entropy scaling

framework was shown to yield excellent predictions also for states that were not considered

for the parametrization, i.e. for metastable states, extreme pressure and temperature as well

as for mixtures.
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