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Abstract

Digital twins are a new paradigm for our time, offering the possibility of interconnected virtual
representations of the real-world. The concept is very versatile, and has been adopted by multiple
communities of practitice, policymakers, researchers and innovators. A significant part of the digi-
tal twin paradigm is about interconnecting digital objects, many of which have previously not been
combined. As a result, members of the newly forming digital twin community are often talking at
cross-purposes, because they have different starting points, assumptions and cultural practices. These
differences are often due to the established philosophical world-view adopted within specific com-
munities of practice. Therefore, in this paper we explore the philosophical context which underpins
the concept of digital twins. As part of this effort we offer a set of philosophical principles for digital
twins, which are intended to help facilitate their further development. Specifically, we argue that the
philosophy of digital twins is fundamentally holistic. We further argue that digital twins are recon-

structivist, meaning they aim to reconstruct the behaviour of a physical twin by assembling multiple
“components”, e.g. models, agents and data sets. Importantly, these digital twin components have the
potential to capture emergent behaviours when they are dynamically assembled. Lastly, we discuss
the following four questions (i) What is the distinction between a model and a digital twin? (ii) What
previously unseen results can we expect from a digital twin? (iii) How can emergent behaviours be
predicted? (iv) How can we assess the existence and uniqueness of digital twin outputs?

Keywords: Digital twin, philosophy, modelling, complexity, systems, artificial intelligence

Impact Statement Creating digital twins (or the process of digital twinning) is an concept of growing
importance in a wide range of industries and technology sectors. Digital twins can be used as a method to
obtain value from data and as deployment platforms for AI and data-science techniques such as machine
learning and statistical analysis. In many applications, digital twins offer the means to integrate together
multiple previously separate components in order to achieve a specified objective(s). This type of in-
tegration of digital components is based on a fundamentally holistic philosophy. This paper presents a
philosophical framework for digital twins that considers how such a holistic integration can be achieved,
including current questions of interest, and challenges for future research.
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1 Introduction

A digital twin is a virtual representation of a physical system (called the physical twin) that enables a two-
way coupling between the digital and physical domains, using some form of network-based connectivity.
The digital twin evolves over time and is constructed from digitised information such as recorded data
and the output of computational models.

Digital twins have been promoted as a way to accelerate our ability to understand engineering (and
other) systems at previously unmatched levels of performance. This vision and aspiration was captured
in the quote from Eric Tuegel and his coauthors (in the context of structural life prediction) in 2011 who
stated that:

“The digital twin is a reengineering of structural life prediction and management. Is this
science fiction? It is certainly an audacious goal that will require significant scientific and
technical developments. But even if only a portion of this vision is realised, the improve-
ments in structural life prediction will be substantial” — Tuegel et al. (2011).

This is certainly a very exciting prospect, however, as engineers we always need to be cautiously prag-
matic and it is worth keeping in mind the observations of many experienced practitioners. For example,
to pick just one related insight, even before the idea of digital twins was proposed:

“Mete A. Sozen, Kettelhut Distinguished Professor of Structural Engineering at Purdue
University, presented the 2002 Distinguished Lecture in February at the EERI Annual Meet-
ing in Long Beach, California. His lecture was entitled A Way of Thinking. Sozen was
motivated in selecting his topic by the fact that at the present time, ready access to versatile
and powerful software enables the engineer to do more and think less, which in his opinion
makes it especially important to reflect thoughtfully on the role of analysis in design.” —
Sozen (2002).

Although it couldn’t be known at the time, Sozen’s observation about software enabling engineers to “do
more and think less” is relevant not just from the point of view of over-reliance on software, but also
because the recent advent of large language models like ChatGPT (see for example Teubner et al. 2023),
and other developments in artificial intelligence (AI), offer the prospect of a non-human AI doing at least
some of the thinking for us as so-called "cognitive surrogates" Leslie (2021).

The aspiration for digital twins, particularly from commercial vendors, seems to imply that the new
technology will somehow capture and contain “the best of everything”, meaning models, data, AI meth-
ods, processes, controls, decision, etc. in some optimal way. In addition, it is also often implied that
digital twins will somehow overcome the fundamental challenges and limitations related to modelling
that we already have (e.g. limited computational resources, epistemic gaps), enabling benefits such as
improved fidelity, trust and insight. But how exactly might that happen? When such questions are not
satisfactorily answered, the conclusion for some is that the whole idea is over-hyped, scepticism can
become cynicism, and genuine scientific and technological progress can become stalled.

We believe that part of the underlying issue is that because the concept of a digital twin is so versatile
and universally applicable it is open to a very wide range of interpretations — as evidenced by recent
reviews Korenhof et al. (2021). Those interpretations come from a large number of different research and
practitioner communities, which themselves have very wide-ranging cultures and practices built upon
their specific world view. Typically these communities are domain-specific, and have excellent reasons
for their adopted philosophical culture, but are often operating in a silo, or at least only interacting with
those who share a similar approach to themselves.

However, a significant part of the digital twin paradigm is about interconnecting these previously un-
connected domains. For example, building socio-technical digital twins is a major ambition in this field
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— see for example Okita et al. (2019); Wang et al. (2020); Zhang et al. (2021a); Savage et al. (2022);
Yossef Ravid and Aharon-Gutman (2022). As a result, when conversations happen, people are often
talking at cross-purposes, because they have different starting points, cultural assumptions, biases and
motivations.

Therefore, in this paper we seek to understand the philosophical context which underpins the concept
of a digital twin. Firstly, in Section 2 a brief review of the historical and philosophical context of digital
twins is presented. The role of modelling will be key to this discussion, and the distinction between
models and digital twins, and the discussion related to this theme will be started in this section. Then
in Section 3 we consider the types of complexity that occur in engineering systems, and how this might
be represented in a digital twin. In Section 3.5 we briefly consider the role of human interpretations and
bias. Then in Section 4 we introduce a philosophical framework for digital twins. This includes a series
of philosophical principles that underpin the concept of digital twins, or the process of digital twinning.
These principles are then used to suggest answers to four key questions relating to digital twins. Finally
Conclusions are drawn in Section 5.

2 Philosophical context of digital twins

The origins of the twinning concept is usually attributed to the work of NASA during the Apollo pro-
gramme, where physical duplicates were used (Rosen et al., 2015). The term digital twin itself first ap-
pears in work relating to product lifecycle management (see Grieves 2019 and discussion therein). The
idea has received considerable attention since then in a wide range of areas including product design,
manufacturing, civil infrastructure, medicine, asset management, health/condition monitoring, energy
networks, space structures, and nuclear fusion — to name just a few application examples. For those
readers that might be interested in the history, development and applications of digital twins there are
multiple detailed descriptions of these (and many other) topic areas in the growing number of review
papers on the topic of digital twins including Ríos et al. (2015); Negri et al. (2017); Kritzinger et al.
(2018); Cimino et al. (2019); Enders and Hoßbach (2019); Boje et al. (2020); Errandonea et al. (2020);
Jones et al. (2020); Liu et al. (2020); Melesse et al. (2020); Wagg et al. (2020); Wanasinghe et al. (2020);
He and Bai (2021); Huang et al. (2021); Jiang et al. (2021); Lo et al. (2021); Semeraro et al. (2021);
Shahat et al. (2021); Korenhof et al. (2021); Niederer et al. (2021); Botín-Sanabria et al. (2022); Purcell and Neubauer
(2022); Singh et al. (2022); Somers et al. (2022); Tao et al. (2022); Jafari et al. (2023); Liu et al. (2023);
Sepasgozar et al. (2023); Thelen et al. (2023); Dale et al. (2023).

Although there has been much discussion on the potential definitions relating to digital twins (see
for example the review in Semeraro et al. (2021)) one area that has not received much attention is the
philosophical underpinnings of digital twins1. We introduce this topic by first reviewing the philosophy
of modelling as applied to a wide range of scientific and engineering domains. Models are very important
for digital twins because they are one of the key components that make up a digital twin. In addition,
many of the techniques previously applied to models, such as verification, validation, calibration and
prediction, are also functions that are often required of a digital twin.

The relationship between models and digital twins is a common source of confusion, and will be dis-
cussed in more detail in Section 4.2. For now we note that models and the philosophical concepts relating
to models have a very important role for digital twins. Therefore we start with a selected introduction to
the philosophy of modelling.

1Though see Korenhof et al. (2021) for one notable exception.
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Figure 1: Schematic diagram showing the typical method of making a model of a physical
system. The physical system can be a process or a material object

2.1 A selected introduction to the philosophy of modelling

In order to try and understand the philosophical context, we first consider the method via which a model2

of a physical system is typically made in an engineering context. An example of a model making process
is shown schematically in Figure 1. The first stage of the method in Figure 1 is to make observations
from a physical system3. These observations are then used to make a model based on a set of assump-
tions. The subsequent output(s) from the model are then interpreted, and in many cases, this leads to
improvements being made to the model, and the process is repeated as often as deemed necessary. There
are several important philosophical viewpoints that can be understood in the context of Figure 1 that will
be important for our later discussion on digital twins.

The first is objectivism which can be defined as the belief that there is an objective truth represented
by the behaviour of the physical system that our model is trying to represent. In this worldview, the
modeller and modelling process are separate from the physical system of interest, and do not have any
direct influence on it. In addition, the “objective truth” is the same for all observers. Objectivism relates
closely to the Newtonian scientific worldview, which will be described shortly.

In contrast, the idea of subjectivism is the belief that the process of making observations is not
objective and actually any time an observation is made, then an interaction with the physical system
takes place. This relates to the idea of relativism4 in the sense that the “truth” (or experience) is affected
by and/or not the same for all observers. For example, as was famously shown to be the case in the early
20th century physics — see for example Greiner (1994); Rovelli (2016).

Regardless of whether the objective or subjective view is taken, real-world physical systems are
typically complicated5, and can often be (conceptually) decomposed into “simpler" parts in order to be
more effectively studied. The philosophy that supports this approach is the idea of reductionism which
assumes that the physical system can be reduced to something simpler, and that by studying the reduced
version, useful information about the complete system can be obtained (Heylighen et al., 2007).

For the purpose of this discussion we will consider two primary forms of reductionism. The first is

2The review is not intended to be comprehensive in any way, and readers are referred to Oberkampf and Roy (2010) for
a comprehensive overview of modelling in the scientific and engineering domains. Note also that the word ‘model’ in this
context is used to mean a representation of the physical system on interest. It could be any type of model used in the context
of engineering practice depending on the context. However, a point we return to later is that models can be made of both
processes and material objects.

3This obviously assumes that there is already a physical systems in existence, which is often not the case in engineering
when we are asked to design something not previously built. Some discussion on this is given in Wagg et al. (2020), but for
now we assume that the physical system is available for observation.

4And also perspectivism (Giere, 2019).
5The distinction between complicated and complex systems will be discussed in Section 3.
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component-based reductionism which involves dividing the physical system into separate physical (e.g.
geometric or process) components, and if required dividing these components into smaller and/or simpler
parts, as required. The second is physics-based reductionism, which is to simplify, approximate or even
neglect entirely some part of the physics. Physics-based reductionism can be applied to the whole system
or to sub-components of the whole system after component-based reductionism has been carried out.

In Figure 1 the reductions are encoded as a set of assumptions. The reductionist philosophical ap-
proach has come to dominate scientific and engineering practices over time, and has been used to great
effect. Reductionism has become associated with a Newtonian world-view, and Newton himself said:

“We are to admit no more causes of natural things than such as are both true and sufficient
to explain their appearances. To this purpose the philosophers say that Nature does nothing
in vain, and more is in vain when less will serve; for Nature is pleased with simplicity and
affects not the pomp of superfluous causes.”
— Isaac Newton, Principia: The Mathematical Principles of Natural Philosophy (Newton,
1686).

Here the idea of avoiding “superfluous causes” and the idea that “Nature is pleased with simplicity” has
been taken as an argument for reduction to enable simplification. There is also the interpretation that
nature intends or prefers simplicity, which is related to the idea of parsimony which is discussed later.

However, it was not just Newton who contributed to what has become known as Newtonian (or
classical) mechanics. There are (at least) two other key philosophical components that are important for
our current discussion. First, the idea of a rules based mechanistic world view, leading to a set of “laws”
that could be relied upon to apply “universally”. A major contribution came from Descartes who said
that:

“...reliable rules which are easy to apply, and such that if one follows them exactly, one
will never take what is false to be true or fruitlessly expend one’s mental efforts, but will
gradually and constantly increase one’s knowledge till one arrives at a true understanding of
everything within one’s capacity.” — René Descartes: Rules for the Direction of the Mind
(see reprint: Descartes, 1985, first published 1701).

In addition to reduction (i.e. simplification) and laws, there is the idea of determinism which (has
come to mean) that the state of something in the future can be determined entirely from it’s current
state. This idea is generally attributed to Laplace (see reprint: Laplace, 2012, first published 1795) who
also made key contributions to the ideas of probability and “ignorance” (i.e. lack of knowledge), both
of which we return to later. Classical mechanics has been built on these principles of a reductionist,
mechanistic and deterministic approach, with huge success, and the plethora of models of this type are
typically defined with a high degree of mathematical rigour.

However, it has also been long recognised that reductionist models, by definition, cannot capture
the entire physical behaviour of the physical system, and the difference between a model output and
an observation is described as the error or uncertainty related to the model — see for example Smith
(2013). In particular, in the case when a deterministic model cannot capture the observed behaviour of the
physical system, the model is often considered to be “missing” some important part of the physics. The
missing knowledge is the model inadequacy of the reduced model, and is often defined as the epistemic

uncertainty. In other words, this type of uncertainty represents the lack of knowledge (e.g. our ignorance
of) of the real-world physical system.

In addition to this, observations of physical systems will always exhibit time varying fluctuations,
and the more precisely one tries to make an observation, the greater (typically) these fluctuations grow.
These fluctuations are often referred to as “noise” or “disturbances” and are typically considered to be
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an inherent part of the physics and observation processes6. Collectively they are known as aleatory

uncertainty — see for example Hughes and Hase (2010).
In contrast to reductionism is holism where the physical system is not reduced, but treated as a whole.

In the engineering domain, this philosophy has been developed primarily through the field of systems

engineering7 (and the related, overlapping subjects of cybernetics (see e.g. Ashby 1956), systems science
(see e.g. Edson et al. 2016), operations research (see e.g. Hillier and Lieberman 2001), complexity
science (see e.g. Waldrop 1993) and artificial intelligence (see e.g. Russell and Norvig 2010). Systems
engineering uses a hierarchical landscape of systems including the “closed” (relatively simple) systems
that can be modelled using deterministic (Newtonian) mathematical models such as those for the motions
of point masses (e.g. like billiards), which we call classical (linear or nonlinear) dynamics. There is also
the possibility of closed systems-of-systems, when many deterministic systems can interact with each
other. Beyond this are “open” complex systems (such as living organisms or social systems) where
closed, mechanistic models can fail to sufficiently represent the complexity of the underlying processes.
Open systems, are critically dependent of their environment and the interactions they have with outside
effects, such as other systems.

In the case of complex interacting systems, the occurrence of emergent behaviours can be induced
by interactions between different parts of the overall system. Crucially, the emergent behaviours cannot
typically be anticipated just from a knowledge of the parts of the system. Often such interacting systems
contain intricate hierarchies or interdependencies, and emergence (e.g. self-organisation) can happen
within a part, or across the entire system (see e.g. Bedau and Humphreys 2008). Systems engineering
recognises that systems exist within an environment, and that systems can interact with each other to
create systems-of-systems. An ongoing challenge with the systems engineering approach is how to rep-
resent the boundary between the system and its environment or other systems.8 For instance, the choice
of where to draw boundaries around a system is inherently a framing decision which influences what is
included and excluded from analysis. This framing can be influenced by various values and cognitive
biases, such as the researcher’s theoretical commitments, interests, and goals (e.g. the perceived value of
knowledge or insights to be derived). We will say more about this later in the paper. Emergent behaviour
has also been studied using complexity theory9 which (typically) uses coupled systems of dynamic mod-
els acting as “agents” to create models of emergent behaviours (typically in a deterministic sense — see
for example Jensen 2022), although a non-deterministic framework can also be adopted10.

More broadly, the role of humans is important in this discussion (more details are given in Sec-
tion 3.5), because humans are imperfect, and they make decisions and assumptions based on their own
worldview (or lens). Furthermore, communities and organisations can adopt and develop their own bi-
ases based on a range of factors, and perpetuate these over long periods of time11. Often this results in
current views and approaches that have been “inherited” from previous generations without being appro-
priately examined (a phenomena known as social learning (Hoppitt and Laland, 2013)). For example,

6In control engineering, the a disturbance is considered to be an input that acts on the underlying dynamic system defining
the plant, and noise is the unwanted corruption of the measured output signal.

7For a discussion of how systems engineering relates to the digital twin concept see Madni et al. (2019). Recent discus-
sions regarding the principles and hypotheses that underpin systems engineering can be found in Watson (2019); Watson et al.
(2019).

8This challenge is one area in which societal values enter into scientific theorising and engineering design choices.Longino
(1990)

9An excellent overview of the philosophical relationships between classical reductionist science, systems thinking and
complexity theory is given in Heylighen et al. (2007). The topic is discussed further in Section 3.

10Note the terminology of “agents” and “environment” used here is not to be confused with deep reinforcement learning,
which also uses this terminology — see for example Graesser and Keng (2019).

11The interplay between science and society, and the roles of both scientists and laypersons is also relevant here — see for
example Kitcher (2011).
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in science and engineering, the type of model iteration process shown in Figure 1 happens repeatedly,
often over many years, or even decades and involves multiple humans during that time. It is perfectly
possible for people to be working on a model for which they did not do any model making, and therefore
be unaware of the philosophical approach used in developing the original version of the model or the
encoded assumptions within the model that are inherited by successive generations of practitioners (e.g.
a choice to use one "standardised" measurement scale over another).

In many domains (engineering being one) the separation of practitioners from the model making
process (and the associated assumptions) is increasingly the case as modelling becomes more frequently
integrated into sophisticated software tools. This leads to the obvious questions of (i) is the model being
computed correctly in the software? (verification) and (ii) does the model output correctly represent the
behaviour of the observed physical system? (validation)12. These are important questions that naturally
can be extended to digital twins, and to which we will return later in Section 3.5.

2.2 The role of knowledge in model making

It will be argued here that a primary useful purpose of a model is to gain (or enhance, extend, and/or
clarify) knowledge. Once additional knowledge is gained, it can be used (exploited) to create value, for
example by supporting decisions. For the purpose of this discussion we focus on the process of gaining
knowledge rather than exploiting it. We return to the topic of decision making in Section 5.3.

There are a multiple theories of knowledge relating to science that have been developed over many
centuries13. One of the most important is the idea of empiricism which is the epistemological idea that
knowledge can only be obtained by physical observations (e.g. the sensory experience of the observer).
In the scientific context, during the 19th Century, empiricism led to what has become known as the
scientific method where physical observations are made and used to test a specific hypothesis, primarily
using statistical models to assess whether the hypothesis could be proven or not (see e.g. Lehmann et al.
(1986)).

An example of a this type of hypothesis-based model making process is shown schematically in
Figure 2. Here the model-making process of Figure 1 is expanded to show (very simplistically) the role
of knowledge in this type of model making. The first step is to establish a research question. Next (or
often as part of the first step) a review of existing knowledge that is relevant to the research question is
carried out. From there, a testable hypothesis needs to be created, after which an experiment that can
actually test the hypothesis needs to be designed and then performed. After the experimental outputs
have been reviewed, the process can be improved. All these steps require expert knowledge of the
specific application and the wider context. Multiple judgements are needed if the results are to be of use
at the end of the process.

The scientific method is still used extensively, but two significant developments in the 20th Century
have had a major influence14. Firstly, following the development of quantum mechanics, the philosophy
of science underwent a major shift in perspective (see for example, the discussion and references in
Chapter 2 of Oberkampf and Roy (2010)), resulting in far less certainty of what can be “proven”15.
Secondly, the 20th Century saw the development of computational power that has given birth to high-

12These terms are sometimes defined the opposite way around, but generically the abbreviation “V& V” means carrying
our the processes of model verification and validation.

13Epistemology is the philosophical study of knowledge theories. Although there is a longstanding tradition of relating
scientific research to a relevant epistemology, there has been, until very recently, been almost no equivalent in engineering
(Edson et al., 2016; Van de Poel and Goldberg, 2010).

14There is at least one other major factor, which is the development of artificial intelligence, but we will come to that later.
15There are also significant questions relating to “truth”, induction and inference (Kuhn, 2012; Popper, 2014) that we will

not discuss in detail here.

7



physical 

 system 

 

perform

experiment 

interpretation

observations

model making

output

 

 improvements 

 

establish

research

question 

 

review

existing

knowledge 

 

create 

testable

hypothesis 

 

design

experiment 

Figure 2: Schematic diagram showing the hypothesis-based method of making a model of a
physical system. The physical system can be a process or a material object
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Figure 3: Schematic diagram showing the typical method of making a model of a physical
system for a computational model. The physical system can be a process or a material object

powered software models that have surpassed all previous human capacities to simulate the physical
world.

Many computational models are not created with an explicit hypothesis to test, and this variant of the
model making process is shown in Figure 3. Here, the research question and knowledge review leads to a
conceptual model, from which a computational model is derived. Throughout this process, assumptions
will need to be made in order to define the precise form of the computational model.

There are several important points that can be understood from the processes shown in Figures 2 and
3 that will be important for our later discussion on digital twins. In particular, the role of knowledge and
expertise in the process of creating the model and making the associated assumptions, a topic we return
to later.

2.3 Defining a philosophical purpose for a model

In 1982, British statistician George Box published the now famous adage, “all models are wrong, some

are useful”. The context for this comment comes from a discussion regarding the level of validation a
model can have when compared to the real world system (Vining, 2013). Box’s main point is that no
(statistical) model can ever be “correct” in the sense that there is a “perfect” match with the physical
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system. The principle is key to understanding the limitation of all theoretical and computational models.
Box’s statement also introduces the idea of model usefulness (or utility16). In addition, Box’s state-

ment implies that models can have a useful purpose even though they can never be perfect. In Section
2.2 above we asserted that the key useful purpose is to gain knowledge17. We will expand on this idea
shortly, after first considering another important concept, captured in a quotation by Harlow Shapley, the
American astronomer, who said that “No one trusts a model except the man who wrote it; everyone trusts

an observation except the man who made it.” This quote from Shapley introduces the idea of trust which
is intrinsically linked to uncertainty. Shapley’s quote also captures two human biases. First, trust in ob-
servations over a model (e.g. most people always assume an observation is more likely to be ‘true’ than
a simulated model, even if they have no knowledge of how the observation was recorded or its closeness
to the ‘true values’). And, second, the difference between model makers (and data collectors) and users
(e.g. the idea that a proponent of a new model (or theory) are likely to be biased in over-stating the
value and fidelity of that new model, compared to those collecting data via observations, who in general
terms, are assumed to be unbiased seekers of real-world ‘truth’). It will be key to our later discussion to
understand why trust in models might be as important as usefulness.

Returning to Box’s main idea, what is the “useful purpose” of a model? It will be argued here that
a primary useful purpose of a model is to gain (or enhance, extend, and/or clarify) knowledge. Further-
more, the statements from Box and Shapley are key to understanding the limitations of all theoretical and
computational models. In the authors’ opinion, these limitations are broadly aligned to the idea of “model
dependent realism” expressed by Hawking & Mlodinow’s Grand Design (Hawking and Mlodinow, 2010).

The model dependent realism philosophy essential says that absolutely certainty is an impossible
goal, and therefore the most important thing is the usefulness of the model. Hawking & Mlodinow also
say:

“Model dependent realism short-circuits all this argument and discussion between the
realist and anti-realist schools of thought. According to model dependent realism, it is point-
less to ask whether a model is real, only if it agrees with observation.” — Hawking and Mlodinow
(2010).

In the context of digital twins, described later, the usefulness will be particularly important in terms
of explanatory capability. Therefore, for both models and digital twins, we will contend that the primary
useful purpose is to gain knowledge/insights that will ultimately lead to explanatory capability18. We
also acknowledge (following Shapley) that if utility is the primary criteria, then unbiased and trustworthy
models (and digital twins) are crucial secondary requirements, in order to gain this new knowledge
and insight. Therefore the claim made here is that utility, trust and insight are the three key generic

requirements (or properties) of models that we would like to extend to digital twins19.
But what about other important characteristics like fidelity, parsimony, cost or optimality? We argue

here, that these characteristics will depend on the specific context of the model (or digital twin). Here,
context means the specific application, objectives and other details relating the the physical system under
consideration. It is important to bear in mind that our discussion here is ultimately aimed at creating
digital twins that are not models (because of object-property inheritance — further explanation given
later). Despite that, the characteristics like fidelity, parsimony, cost, tractability, or optimality will be
considered to be context dependent, whereas utility, trust and insight are generic.

16A concept developed in economic and game theoretic models in the 20th Century (Heylighen et al., 2007) and also
extended to other contexts including, for example, structural health monitoring (Hughes et al., 2021).

17As mentioned in Section 2.2, typically the value may come from how the additional knowledge is exploited, e.g. by
supporting decisions. But the gain in knowledge is required first.

18Remembering that we are not including the exploitation of the gained knowledge in the purpose. That is considered to
be an additional step.

19These have some similarity with “purpose, trust and function" from the Gemini Principles (Bolton et al., 2018).
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Parsimony requires a further comment as it is often interpreted (following Newton’s quote above)
as “the natural order of things”. Essentially the parsimony principle for models means that a simpler
model with fewer parameters is regarded as better than a more complex models with more parameters,
assuming that both models fit the observations similarly well. However, in recent years, and particularly
in research related to living systems, cognitive science and AI, there is a growing amount of evidence
that does not favour parsimony. For example:

“AI researchers were beginning to suspect — reluctantly, for it violated the scientific
canon of parsimony—that intelligence might very well be based on the ability to use large
amounts of diverse knowledge in different ways,” — Pamela McCorduck, (McCorduck,
2004).

See also discussions in Marsh and Hau (1996); Huelsenbeck et al. (2008); Hastie et al. (2009) (for exam-
ple) relating to nonparsimonious models20. The relationship between parsimony and purpose will have
important consequences for digital twins that will be discussed in Section 4.2.

We finish this section, by noting that until relatively recently engineering has had no equivalent philo-
sophical epistemological foundations, such as those that have developed for science — see for example,
discussions in Vincenti et al. (1990); Bucciarelli (2003); Van de Poel and Goldberg (2010). Engineers
use models extensively, but their use has developed as a series of overlapping practices associated with
other functions such as the design, creation, testing, management, operation and decommissioning of
engineering applications. Any associated philosophical implications have primarily been considered in
terms of ethics, risk and safety — see for example Blockley (1980); Vincenti et al. (1990); Mitcham
(1998); Martin and Schinzinger (2008) — and not the philosophy of modelling itself. As a result, engi-
neers tend not to be trained and educated to consider the philosophy of modelling or the philosophy of
decision-making — something that will be explored in more detail in Section 3.5.

We will now take a more detailed look at topics relevant to digital twins for engineering applications.

3 Complexity in engineering systems

“Having been deeply enamoured of physics and reductionist goals, I was going through
my own antireductionist epiphany, realising that not only did current-day physics have little,
if anything, to say on the subject of intelligence but that even neuroscience, which actually
focused on those brain cells, had very little understanding of how thinking actually arises
from brain activity.” — Melanie Mitchell, from Complexity: A guided tour (Mitchell, 2009).

The reductionist philosophy described in Section 2.1 is strongly associated with classical mechanics

as initiated by Descartes, Newton, Laplace and many others since. In this (Newtonian) world view, any
physical process is reduced by division (and/or other simplification) until a deterministic, mechanistic
model can be used to explain it’s behaviour. If a model cannot be found, then the division is applied
again, and the logic is that eventually one reaches particles (the concept of indivisible atoms as defined
by Greek philosophers) that it was once thought, (before quantum mechanics) could no longer be divided.

The concept of division in classical mechanics is based on the division of material, and so we say
that the associated ontology21 is materialistic (e.g. related to physical matter)22 (Heylighen et al., 2007).

20Note also the recent advance in hyperdimensional computing Thomas et al. (2021).
21Ontology (a central part of metaphysics) is the branch of philosophy which examines the fundamental categories of

things. The other relevant branches related to engineering are epistemology and value theory (e.g. aesthetics or ethics).
22The idea that some things, like the human mind, are non-physical extended back to the ideas of Greek philosophers, and

meta-physics has become the established as the study of non-material phenomena. More specifically related to the human
mind, Descartes developed the idea of mind-body dualism.
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Classical mechanics broadly developed into the study of solids, liquids and gases, with more advanced
fields evolving to cover phenomena related to topics such as thermodynamics and electromagnetism
etc. The overall ethos is based on finding simplicity when modelling apparently complicated physical
processes e.g. the basic premise of creating parsimonious models. This approach works particularly
well for ordered systems, such as materials with lattice-like structures, or the dynamics of point-mass
systems. In these cases the behaviours can be encoded into a set of deterministic “laws”, as envisaged
by Descartes.

The classical mechanics approach couldn’t be applied in the same way to disordered systems, such as
a gas, consisting of molecules that act without any apparent constraints. To cope with this apparent dis-
order, statistical mechanics was developed whereby small particles (such as molecules in a gas) can be
treated statistically with probability theory and related techniques. This allowed for average behaviours
to be modelled, based on some basic assumptions about the independence of each particle and the nom-
inally identical nature of the associated probability (see the early contribution of Laplace 2012). Using
these simplifying assumptions allowed disordered systems to be treated within an essentially mechanistic
modelling framework as well23.

In a reductionist world-view, processes that could not be readily reduced were thought to be made
up from many coupled-together simpler systems. In that sense they were still thought to be mechanistic
and deterministic from the objectivist view point. Any observable complicated behaviour was believed
to be explainable in terms of the underlying coupled systems24.

Large numbers of coupled oscillator systems would fit into this category of systems, and they would
be considered to be a closed system from a systems engineering perspective25. It is interesting to note,
that as computational tools became available in the 20th Century, the Fermi-Pasta-Ulam-Tsingou para-
dox readily demonstrated how assumptions about a mechanistic model of many coupled oscillators did
not necessarily exhibit the behaviour the model makers expected — and the subtleties of such sys-
tems are still being discussed and expanded on to the present day — see for example Weissert (1999);
Berman and Izrailev (2005); Dauxois (2008).

Computational tools also led to the exploration of deterministic systems that contained nonlinear

behaviours, using numerical approximations, because the majority of nonlinear systems could not be
solved exactly. As Fermi and collaborators had discovered, the ability to compute numerical approxima-
tions of these systems led to the exploration of multiple new phenomena, and was a major contributory
factor to the subsequent expansion of the field of dynamical systems theory (that during the 1970s and
80s became known as chaos theory) (e.g. see Hirsch and Smale 1974; Guckenheimer and Holmes 1983;
Moon 1987; Glendinning 1994; Thompson and Stewart 2002; Strogatz 2019 and references therein).

The nonlinear systems that exhibited chaotic oscillations, and other related phenomena were entirely
deterministic and often quite straightforward to write down mathematically. They exhibited interesting
new behaviours, such as sensitivity to the initial starting conditions of the system (the butterfly effect

(Hall, 1992)), and bifurcations (Kuznetsov, 2004; Haragus and Iooss, 2010), all of which were eventually
explained in a rigorous, deterministic mathematical framework (which continues to be expended even
today), but raised awkward philosophical questions about our ability to make predictions.

Many others in the early and mid 20th Century were identifying that complex behaviours occurred in
a diverse range of applications including those that were long established, such as life sciences (see e.g.
Weaver (1948)), and those that were just forming like information theory (Shannon, 1948), cybernetics
(see e.g. Ashby (1956)), operations research (see e.g. Churchman et al. (1957)), and artificial intelli-
gence (see e.g. Turing (1950)). All of these topics would become large fields of research in their own

23The pioneering work of L. Boltzmann, J. Clerk Maxwell & J. W. Gibbs was key to the development of this field, and a
modern introduction to the topic can be found, for example, in Pathria and Beale (2011).

24Or for continua, by reducing the order of the model needed to represent the behaviour
25As opposed to open systems such as those in biology that interacted with their surrounding environment.
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right, but they also all had a relationship with the current fields of complexity science26, which primarily
focuses on emergent and adaptive behaviours (see e.g. Waldrop 1993; Mitchell 2009; Jensen 2022), and
systems research which is focused on managing large-scale socio-technical systems — see for example
Meadows (2008)27. The interesting distinction is that complexity science has typically focused on, and
made extensive use of, deterministic agents or network models28, whereas large-scale socio-technical
systems considered in systems research, cannot (in general) be treated in such a deterministic framework
(and are therefore often not even discussed)29.

Within this general context, it is possible to distinguish between different categories of system based
on linear vs nonlinear, ordered vs disordered, deterministic vs non-deterministic30, reduced vs holistic,
etc, and combinations of these categories. Here we will adopt the broad distinction that complex relates to
a system which can have emergent behaviour whereas complicated relates to a system that is not “simple”
but does not have interacting components that could lead to emergent behaviours — see discussion in
Grieves and Vickers (2017). These distinctions will become important when we set up the framework
for creating a digital twin, and complexity techniques are already being promoted for digital twins of
cities (see Rozenblat and Fernández-Villacanas 2023; Caldarelli et al. 2023).

3.1 Types of complexity in engineering systems

“Engineering is the art of modelling materials we do not wholly understand, into shapes
we cannot precisely analyse, so as to withstand forces we cannot properly assess, in such a
way that the public has no reason to suspect the extent of our ignorance” — Dr. A. R. Dykes,
from the British Institution of Structural Engineers President’s Address,1978.

Having (briefly) described the development of multiple related fields, including complexity and systems
science, and distinguished the difference between complex and complicated, we now consider what types
of complexity occur in engineering systems.

Engineers are expected to design, build, commission, operate, maintain, manage and decommission
a huge range of different systems. The quote from A. R. Dykes gives a sense of the engineering process.
Multiple categories of complex and uncertain factors (in this case materials, shapes, forces and public
expectations) need to be brought together to achieve the required task. Table 1 lists some of the types of
complex (and/or complicated) phenomena that can arise in, or influence, physical systems.

It’s typical for engineering applications to have multiple types of complexity contained within it from
the list in Table 1. For example, geometric complexity and joints are used extensively in a wide range
of manufactured products, as are sophisticated materials, such as composites. These different aspects
of the manufactured product are often designed, modelled and tested separately before being integrated
into the final version of the product.

As the format of Table 1 indicates, our usual method for dealing with mixed complexity is to separate
it out and consider each type independently. Usually this is mapped onto our siloed (e.g. reduced) set of

26Complexity science (including complex adaptive networks) has primarily been developed through the study of life and
information sciences and sociology with an emphasis on the interaction that occurs between ‘agents’ in networks or other in-
teractive frameworks (Waldrop, 1993; Mitchell, 2009; Jensen, 2022). There are a range of emergent behaviours, for example,
self-organisation (Gershenson, 2007).

27We will discuss the related field of systems engineering further in Section 3.2.
28Another related subfield is that of complex networks or network science, which we do not discuss explicitly here, but a

historical and philosophical introduction can be found in Baker (2013).
29Although there are overlapping concepts relating to phenomena such as hierarchies, feedbacks, interconnections and

delays.
30Note that the use of non-deterministic can be interpreted in different ways by different communities. There is also

indeterminism which is generally taken to mean non-causal e.g. not caused in a deterministic way.
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Table 1: Examples of complex (and/or complicated) phenomena that can influence physical
systems.

Type Examples (not an exhaustive list)
Environmental Temperature, pressure humidity & climatic effects; physical location;

geographical effects
Geometric Multiple compliments of varied shape & geometries; joints and jointing

between components; mechanisms & interactions
Material The physical & chemical properties of matter; combined & composite

materials; wear, ageing & damage
Behavioural Mechanistic behaviour of solids & fluids; vibrations & time-dependent

behaviours; emergent behaviour; multi-physics; length-scales
Operational Control & feedback; updates & changes; faults & failures; networks &

connectivity; computational hardware & software
Computational deterministic vs non-deterministic; time & memory requirements; processing

resources; data size & formats, Kolmogorov complexity
Processes Design; decisions & interventions; sequencing & workflow; human

behaviour; communications; heuristics
Organisational Structure & hierarchies; practices & organisation culture; rewards & incentives
Social Attitudes; motivations; culture; education level; religion; beliefs; gender etc.

divisions within subject areas (and education system). Roles and specialisms are also then aligned with
these divisions, creating teams of experts in each separate topic area.

Furthermore, unlike scientific enquiry, where the focus is on understanding and explaining the be-
haviour we observe (as in complexity science), engineering is often required to create something new,
or deal with a socio-technical system that is highly complex/uncertain and is changing over time31. In
order to try to address some of the related challenges, the field of systems engineering has developed
some useful methodologies, which we discuss next.

3.2 Systems engineering

“Engineering is not merely knowing and being knowledgeable, like a walking ency-
clopaedia; engineering is not merely analysis; engineering is not merely the possession of
the capacity to get elegant solutions to non-existent engineering problems; engineering is
practicing the art of the organised forcing of technological change... Engineers operate at
the interface between science and society” — Gordon S. Brown, Dean of the School of
Engineering, MIT. 1959 – 1968.

Systems engineering was developed during the 20th Century alongside the related other fields of
systems research and complexity already described above32 (Schlager, 1956). The field has now matured
into an established methodology for managing complex engineering projects (see e.g. Walden et al.
2015; Hirshorn et al. 2017). NASA and the space programme was undoubtedly a major influence in the
development of systems engineering, and continues to be a driving force for the further development of
the topic (Hirshorn et al., 2017). At the heart of current-day systems engineering is the role of processes,
to enable the design, implementation and management of the engineering application or project.

31Added to which there is also the complexity of cooperation (Axelrod, 1997).
32It has also incorporated multiple other influences that we have not described, most notably aspects of management

research.
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Systems engineering processes have evolved from being document-based to being model-based

(Estefan et al., 2007), as technologies have improved to allow information to be captured with more
automation and presented graphically. This approach underpins the diagrammatic approach to enter-

prise architecture (Dandashi et al., 2006) and could be regarded as a predecessor to digital twinning.
Indeed, digital twins that enable planning and design may be considered examples of model based sys-
tems engineering as they facilitate the exchange of information, alignment of design, and management
of programmatic complexity in the same way as now-traditional systems engineering documentation
processes do.

The ethos of systems engineering is to give a framework which enables multiple uncertainties and
complexities to be managed simultaneously, and for the technical processes to be aligned with the de-
cision, management and wider related business processes. It is important to make a clear distinction
between working with “engineered systems" and the practice of engineering in complex systems. Con-
fusingly, both can be called systems engineering, but the key distinction is that engineered systems can
be controlled/optimised whereas complex systems typically can’t.

The systems engineering community has given a considerable amount of time and thought into the
philosophical and pragmatic frameworks needed to deal with complex/complicated engineering applica-
tions. For example, in recent papers (Watson, 2019; Watson et al., 2019) 15 principles and 3 hypothesis
for systems engineering were articulated. The three hypotheses given in Watson et al. (2019) are:

H1. If a solution exists for a specific context, then there exists at least one ideal systems engineering
solution for that specific context.

H2. System complexity is greater than or equal to the ideal system complexity necessary to fulfil all
system outputs.

H3. Key stakeholders’ preferences can be represented mathematically.

We shall discuss these hypotheses further in Sect. 4.2, in the context of digital twins, but to mention
just briefly, H1 relates to the concept of existence & uniqueness, H2 is related to the idea of counter-

parsimony by which we mean choosing not the simplest model that fits the data, but the model with
sufficient complexity33. Lastly, H3 is anticipating the stakeholders preference for quantitative solutions.

Other important concepts that are emphasised in systems engineering are the idea of the lifecycle

of a system, requirements analysis and hierarchies of systems that lead to systems-of-systems (see e.g
Adams and Meyers (2011)).

Although the subject borrows from, and integrates, several of the concepts and methodologies from
systems research and complexity science, it should be noted that some researchers have been critical of
the systems theory ethos. For example, Micheal Grieves (Grieves, 2005), expresses reservations about
treating everything as a process;

“We like to think that what we do in our organisations is process. Under systems theory,
process is a deterministic way of linking inputs to outputs. In a systems view of the world,
we have inputs, processes, and outputs. For any given set of inputs, we get a well-specified
and consistent set of outputs. It is all very neat and well defined — Micheal Grieves (Grieves,
2005), from Product Lifecycle Management”. Page 19.

Grieves argues instead, that not everything can be made a deterministic process, and that engineers need
to make extensive use of practices as well, with results that lead to satisficing34 instead of optimisation
(Grieves, 2005).

33This has an interesting connection to the concept of requisite complexity in cybernetic systems — see Beer (1985).
34A decision-making strategy (or heuristic) in which an agent selects the first option that meets some pre-defined criteria

or threshold, regardless of whether it is the optimal one. See also regret minimisation.
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The broader point is that engineering contains some form of “art” (as alluded to by both A. R. Dykes
and Gordon S. Brown in the quotes above) typically encoded in the form of attributes like engineering

judgements and design choices35. As much as many practitioners would like, these creative activities
cannot be entirely turned into repeatable processes. It is interesting to note that some in the social
science community, who have adapted systems thinking, have extended the concepts to include dialogue

and create an architecture of evolution — see for example Christakis (2006)36.
Using more philosophical arguments, Weinbaum (2015) describes systems theories as based on a

“black box dogma” with unresolved clarity on issues relating to the role of feedback, evolutionary adap-
tion and causality.

In response to the criticisms, it’s certainly true that the systems engineering approach favours defining
multiple processes with associated inputs and outputs, and that in itself could be an over-constraining
structural format for some applications. It’s also true that the role of reductionism and deterministic
modelling was strongly used in some of the early systems research fields, and some of that thinking has
been inherited by the modern version of the field. Finally, creative activities cannot always be turned
into processes, and we should recognise that37.

As pragmatists, engineers often have little concern for this type of philosophical subtlety, but it should
be borne in mind when these approaches are used in digital twins. Despite the limitations, systems engi-
neering offers some useful tools for constructing digital twins, and the connections have already begun
to be discussed in the literature — e.g. by Heber and Groll (2017); Schluse et al. (2018); Madni et al.
(2019); Jinzhi et al. (2022); Michael et al. (2022); Olsson and Axelsson (2023).

3.3 Emergent behaviours

“What does this mean? That the essential reality of a system is indescribable?...Or does
it mean, as it seems to me, that we must accept the idea that reality is only interaction?” —
Carlo Rovelli (Rovelli, 2016)

In the sections above, we have already mentioned the importance of emergent behaviours. The
quotation from Rovelli emphasises the importance of interactions in the context of quantum physics. In
the context of digital twins, the basic idea is to join components together to reconstruct the dynamical
behaviour of the combined system. The simplest case is joining two components — and a detailed
example will be shown in Section 4.3 (the example results are shown in Fig. 7)

In engineering we make extensive use of numerical simulation tools that essentially break up com-
plex geometries and behaviours into an assemblage of simpler elements for which the behaviour can
be defined. These techniques, such as the finite element method, have evolved into sophisticated tools
that are widely used to simulate the behaviour of complex/complicated systems that cannot be captured
using simpler modelling techniques (see e.g. Crisfield 1997). The outputs from element-based methods
are, in fact, emergent behaviours. This usually relates to field quantities such as stress, displacement,
flow rate or temperature which are approximated as a form of “self-organisation" between the elements,
acting within the overall element-based model. Essentially, the overall behaviour arises from local inter-
actions between the multiple elements. This is a type of time dependent emergent behaviour, generally
considered to be a subset of evolutionary dynamics (Jensen, 2022).

35There is a similar quotation from Ove Arup, who is quoted to have said that: “Engineering problems are under-defined,
there are many solutions, good, bad and indifferent. The art is to arrive at a good solution. This is a creative activity, involving
imagination, intuition and deliberate choice.”

36Note that we are not distinguishing here between the different facets of systems theory such as “hard” and “soft” systems
thinking. For a more in-depth discussion of these topics, the interested reader can find more information in Checkland (1999).

37In fact, creative process such as design have been explored using qualitative research methodologies, such as activity

theory, see e.g. Barthelmess and Anderson (2002); Cash et al. (2015); Lu et al. (2018).
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In addition to self-organisation, there are other types of emergent behaviour, and multiple authors
have described how the various types might be categorised — see for example Ashby (1956); Holland
(2007); Frei and Serugendo (2012); Fernández et al. (2014); Holland (2018); Tadić (2019); Jensen (2022)
and references therein. Broadly speaking, the types of emergent behaviours range from relatively simple
types, such as self-organisation and synchronisation, (Jensen, 2022), through to evolutionary forms of
emergence (Kauffman, 2000). The ability to make predictions for emergent behaviours is a significant
capability that is seen as a very desirable functionality (Gershenson, 2013), including for digital twins.
We will not spend time more time describing types of emergent behaviours. Instead we are more inter-
ested in how digital twins might be expected to produce such behaviours, especially for very complicated
applications, something considered in Section 4.3.

3.4 Artificial Intelligence, and other methods for dealing with complexity and

uncertainty

“Early AI was mainly based on logic. You’re trying to make computers that reason like
people. The second route is from biology: You’re trying to make computers that can perceive
and act and adapt like animals.” — Geoffrey Hinton

The roots of artificial intelligence (AI), as Geoffrey Hinton’s quote says, can be found in the devel-
opment of formal logical methods and the early attempts to create mechanical computation machines38.
Developments by Alan Turing and others during the second world war (Turing, 1950) were the cata-
lyst for the current incarnation of the field, and the name artificial intelligence came from a meeting at
Dartmouth in 1956 organised by John McCarthy and colleagues.

The 20th Century saw multiple parallel developments of AI based on, for example, Turing ma-
chines, and computational complexity (Li et al., 2008), biologically inspired natural computing tech-
niques (Worden et al., 2011), symbolic AI (Dingli and Farrugia, 2023), pattern recognition & machine
learning (Bishop, 2006), and multiple other fields, including the recent development of large language
models such as ChatGPT (Teubner et al., 2023).

The quest for AI (as described, for example, by Nilsson (2009)) is multi-faceted, and has been driven
by several different motivations. Those motivations include inspiration from human intelligence and
other biological examples, the desire to create intelligent machines, and the application of AI to solve
complex applied problems. There are multiple other facets, implementations and deployments of AI,
which we leave to the interested reader to explore — see for example Minsky (1988); Nilsson (2009);
Russell and Norvig (2010); Haenlein and Kaplan (2019); Marcus (2020) and references therein.

Russell and Norvig (2010) use the unifying theme of intelligent agents in their comprehensive text
book on artificial intelligence. A current topic of interest is deep reinforcement learning, where agents are
used (for example) to solve sequential decision-making problems, such as autonomous driving vehicles
(Kiran et al., 2021). Sequential decision-making problems are also highly relevant to digital twins, which
by their nature are time evolving, and will be discussed in more detail later in this chapter. Importantly
for the digital twin paradigm, the AI work on agent-based methods has enabled more sophisticated multi-
agent methods than previously developed either in complexity science or systems engineering (although
there is now some cross-over between these topics Vrabič et al. (2021)). For example, techniques such
as multi-agent reinforcement learning where the agents take actions and receive feedback in a highly
adaptive manner, Graesser and Keng (2019); Kiran et al. (2021).

38We will give only the briefest sketch of the history here. For a more in-depth historical review, the interested reader
should consult the wider literature including, for example Nilsson (2009); Russell and Norvig (2010); Haenlein and Kaplan
(2019); Marcus (2020).
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Another way to (very) broadly categorise different aspect of AI research and innovation is in terms
of:

1. Symbolic AI, such as logical reasoning, knowledge models and expert systems (Krishnamoorthy and Rajeev,
2018)

2. Sub-symbolic AI (connectionism), which includes all types of machine learning (ML) (Bishop,
2006; Kelleher et al., 2020)

3. Neuro-symbolic AI, which is the fusion of the other two categories. (Marcus, 2003; Dingli and Farrugia,
2023; Garcez and Lamb, 2023)

In very general terms, it could be said that symbolic AI was the earliest to mature, but despite the suc-
cess of some aspects, such as expert systems (Krishnamoorthy and Rajeev, 2018), it has more recently
been overtaken by sub-symbolic AI which has become the dominant force in AI in recent years, par-
ticularly deep learning (LeCun et al., 2015; Goodfellow et al., 2016) and most recently large language
models (Teubner et al., 2023). In the past few years, some AI experts have been pointing out the limi-
tations of connectionism, (Marcus, 2018), and there is a revised interest in the possibility of combining
the two approaches in the form of neuro-symbolic AI39 (Belle, 2022).

For the purposes of our discussion, we note the following points regarding AI for digital twins.
Firstly, both learning and reasoning are highly desirable functions that we often want to build into our
digital twins applications, meaning that AI techniques are very important in this respect. In addition,
digital twins can be viewed as a method of deployment for AI and it’s associated techniques40. There
are multiple examples of this type of deployment — see for example DebRoy et al. (2017); Farhat et al.
(2020); Kapteyn et al. (2020); Ritto and Rochinha (2021); Tripura et al. (2023); Siyaev et al. (2023) —
and this is a topic we will return to later on. Finally just like digital twins, AI still has no formally
agreed overarching definition. In large part this is because of the philosophical breadth of the topic —
something which hopefully is described by the preceding discussion41.

3.5 Human interpretations and bias

“Efficient learning requires an open mind. To be open-minded means you don’t cast
out new information before evaluating it and if it’s useful, making an honest attempt to
incorporate it into your present way of thinking. But beware! Few people actually admit to
being or feeling close-minded. The ego doesn’t allow that. We trick ourselves into thinking
we are objective and open, when in fact we may be judgemental and closed.” — Arno Linger
(Linger, 2006).

It was already mentioned in Section 1, that digital twins have been open to a very wide range of
interpretations and some hype, often causing confusion, frustration and scepticism regarding their value.
We now return to this theme to consider the human interpretations related to digital twins, and the
associated biases that often occur.

Firstly, human interpretations are problematic, and it is difficult for us to be objective when construct-
ing models and interpreting the results. The discussion above has already described multiple different
philosophical viewpoints. Humans tend to adopt worldviews that suits them, and we are all subject to

39This is a overly simplistic summary, but readers who are interested can find more detail in the associated references. See
also recent work on hyperdimensional computing Thomas et al. (2021).

40Digital twins can be considered as a ‘method of deployment’ of other technologies too. More broadly digital twins are
also a ‘method of integration’ for a range of technologies.

41It is also due to the universality and versatility of the digital twin concept.
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confirmation bias. In fact researchers are particularly susceptible as we are often searching for or select-
ing data and evidence that confirms and supports our specific ideas. In addition to that, poor research
practices can mean that models are not properly validated, calibrated or tested once they are built, leading
to claims that many published research results may in fact be false (Ioannidis, 2005; Marques, 2021).

In addition to this, all teams, groups and communities are subject to negative group dynamic effects.
A lack of diversity and inclusivity combined with entrenchment and group think can exacerbate negative
views of other groups, and their associated philosophies even further. For example, those working in the
“hard sciences”, often fail to understand the approach and values of those working in social sciences or
humanities and vice versa (see reprint: Snow, 2012, first published 1964).

It was already mentioned in Sect. 2.1 that there is a tendency for groups to adopt past assumptions
without necessarily re-examining them. There are multiple other types of philosophical tribalism and
dogmatic behaviour42. This can often impede the adoption of useful research methodologies. For exam-
ple, individuals can become “locked-in” to a favoured methodology and fail to explore other potentially
useful alternatives.

More broadly, researchers and practitioners are often philosophically aligned to either quantitative or
qualitative methodologies, where in many circumstances mixed-methods (e.g. a combination of quanti-
tative and qualitative methodologies) (Varga, 2018) would be more beneficial. This will be an important
point for digital twins, where both quantitative and qualitative functions are often required.

3.6 Other methods

Lastly in this section, we would like to mention that there are multiple other communities of researchers
and practitioners that have developed sophisticated methods for modelling highly complex and un-
certain applications. Some overlap with AI and other fields mentioned above, and others have devel-
oped their own areas of endeavour. For example (with just a few selected references) data assimilation
(Evensen et al., 2009; Kutz, 2013), Bayesian statistics (Barber, 2012; Särkkä, 2013; Gelman et al., 2014;
Kruschke, 2014), data mining (Hastie et al., 2009; Han and Kamber, 2022), game theory (Jones, 2000),
ensemble modelling (Zhou, 2019), spatiotemporal modelling (Banerjee et al., 2014), agent-based mod-
elling (Abar et al., 2017; Zhang et al., 2021b), statistical relational learning (Getoor and Taskar, 2007;
Belle, 2022), asymptotic theory (Van der Vaart, 2000), time series analysis (Hamilton, 2020), adaptive &
nonlinear control (Åström and Wittenmark, 1995; Fradkov et al., 1999; Barlow, 2002; Wagg and Neild,
2015), information theory (MacKay, 2003), network science, (Baker, 2013), and optimisation methods
(Boyd and Vandenberghe, 2004) to name just a few.

4 A philosophical framework for digital twins

“It ought to be remembered that there is nothing more difficult to take in hand, more
perilous to conduct, or more uncertain in its success, than to take the lead in the introduction
of a new order of things.” — Niccol Machiavelli, The Prince, 1532.

As we discussed in Section 1, the ambitions for digital twins are set very high across a very wide
spectrum of possible applications. In practice we need to manage these high expectations, and make clear
what are the possibilities and limitations to using digital twins. To this end, in this section we develop
the foundations for a philosophical framework within which we can build specific instances of digital
twins. As noted by Machiavelli, introducing something new is fraught with potential difficulties, and we

42French philosopher, Simone Weil captured this sentiment with the quotation: “The villagers seldom leave the village;
many scientists have limited and poorly cultivated minds apart from their specialty” — Weil (1968).
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argue that a firm philosophical foundation is an essential part of the process. However, it is important
to note that we are not the first to attempt this goal. For instance, (Korenhof et al., 2021) reviewed and
critically analysed the dominant conceptualisations of digital twins in the academic literature. In doing
so, they raise the question, "if a digital twin is expected to actively intervene in a physical entity, is it
really only a representation?". Their answer is that DTs should be treated as "steering representations"
that are used to "direct a physical entity towards certain goals by means of multiple representations".
Their proposal has considerable merit, and should likely figure (in some form) in a fully articulated and
developed philosophical framework. However, we do not wish to take this argument as our starting point
without first considering the fundamental purpose of a digital twin ourselves. In Section 2.3 we argued
that utility, trust and insight are the three key generic properties we want for digital twins. These three
characteristics form the basis of our characterisation of purpose.

Specifically, we take utility to mean a context-specific usefulness that relates to the application at
hand, and is expressed as a set of functional requirements within the contextual setting that the digital
twin operates — here, the contextual setting relates to the specific properties of the physical twin, such
as it’s geometry, materials, the environment in which it is located or deployed etc. Digital twins should
be able to capture the heterogeneity (e.g. the diverse nature of the representational states and processes),
while also highlighting their differences in type or kind.

The functional requirements could be, for example, to support decisions, to learn patterns of be-
haviour, or to develop more efficient ways of operation. The attribute of (unbiased) trust is related to the
uncertainty within the digital twin, and also connected to security, openness and quality (Bolton et al.,
2018). Trust is therefore essential for supporting the functional requirements of the digital twin. Lastly,
the role of insight is related to knowledge, but not just lists of facts, insight relates to enhanced under-

standing of the physical twin within the contextual setting. The insight(s) gained from the use of a digital
twin could be some measurable improvement in understanding the behaviour of the physical twin, or the
learning acquired via the successful completion of a sequential decision-making problem(s) over time
(such as mentioned in Section 3.4.)

Since the concept of digital twins was first suggested there has been lots of discussion and debate
over what exactly the definition of a digital twins actually is — see for example Negri et al. (2017);
Miller et al. (2018); Wright and Davidson (2020); Wagg et al. (2020); Arthur et al. (2020). This is natu-
ral when the idea is new, but can be unhelpful to the overall debate at times. This is in part made more
difficult because there are multiple communities involved, all of which have different philosophical cul-
tures and disciplinary perspectives or assumptions (e.g. a tendency to favour one modelling technique
over another due to familiarity with a contingent method or practice).

We know from philosophy that definitions can be challenging, and even today there are ongoing
philosophical debates about the definitions of broad terminology — for example the distinctions and
overlap between science, engineering and technology (Van de Poel and Goldberg, 2010). In an attempt
to give some additional clarity about digital twins, but without getting overly restricted by a technical
definition (at least for now), a set of philosophical principles for digital twins is proposed here, based in
part on the discussion above.

These principles are set out in three categories: a) what digital twins are, b) what properties they

should have, and c) what they should enable.
We begin with what digital twins are. Digital twins are:

1. Holistic in nature, but may use reductionist ideas when appropriate. e.g. both the whole and the
parts are considered important, in order to capture any heterogeneity;

2. Purpose driven where the clearly articulated useful purpose (or set of purposes) is underpinned
by as set of functional requirements;
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3. Time evolving dynamic systems that can reflect changes in the physical twin that occur over time
via updating and evolution of the digital twin;

4. Context specific representations, which are bespoke to an individual physical twin, that can be
both artefacts (objects) and/or processes within the contextual setting;

5. Counter-parsimonious, meaning not seeking simplicity for its own sake, instead aiming to reflect
the required level of complexity — but may make use of parsimonious concepts, when appropriate;

6. Reconstructivist, meaning they aim to reconstruct (some or all of) the behaviour of a physical
twin by assembling the components of the digital twin, including emergent behaviours; and

7. Biased, due to the philosophical worldviews of the communities that constructed them, but able to
acknowledge the limitations that this brings.

Digital twins should have:

8. A set of components, which can include agents, models, networks, data sets, and other digital
objects;

9. Access to real-world data recorded/streamed from the physical twin, or its surrounding environ-
ment.

10. A means of dynamic assembly, so that the components can be connected, or otherwise integrated
together;

11. An operational platform, consisting of software, hardware & network infrastructure, including a
user interface, data storage and other computational resources;

12. A method for representing and updating knowledge that is shared between the users and the digital
twin;

13. A time dependent connectivity to the physical twin, usually via an internet-of things (IoT) network
or similar, so that data, control and other signals can be exchanged between the twins; and

14. An integration architecture that enables components and/or other parts of the digital twin to
interoperate and/or federate with each other, and in some cases entire other digital twins.

Digital twins should enable:

15. Outputs to be produced that relate to observed quantities of interest (QoIs) in the physical twin
and to the functional requirements;

16. Trust in the outputs to be expressed through processes such as validation and verification and/or
error detection and correction43 in order to account of relevant forms of uncertainty44;

17. Inheritance of (at least) some of the properties of the components within the digital twin (e.g.
object-property inheritance, described below);

18. Interaction, such that the components are able to interact with the aim of reconstructing emergent
behaviour(s);

43see for example Chapter II of MacKay (2003).
44Note that this form of trust depends on the inherent trustworthiness of the outputs. Trust without trustworthiness is

misplaced. Another way of stating this, therefore, is to say that digital twins should enable justified trust.
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Figure 4: Schematic diagram showing (a) a digital model, (b) a digital shadow, and (c) a
digital twin. Note that the digital twin together with the physical twin forms a ‘cyber-physical
system’. It is in this digital/physical connection that the source of its value lies

19. Learning both from data (e.g. QoIs and outputs), and more broadly from the deployment of
advanced techniques such as those from AI, statistic, dynamical systems etc;

20. Insights to be obtained that serve the purpose of the user, and maximise explainability and inter-
pretability of the outputs; and

21. Exploitation of the insights to give value e.g. improved decisions, efficiency gains etc. and/or
enable real-world actions to be taken such as control/scheduling actions for the physical twin.

These 21 principles incorporate the key attributes of a digital twin. To summarise in a sentence, they
capture the holism of systems engineering, emergent behaviours from complexity science, uncertainty
analysis from statistics, time-evolution from dynamical systems theory, techniques from AI, control
actions, and decision theories — amongst multiple other things! Our belief is that such a framework
is sufficiently versatile and universal to fit a wide range of digital twin applications, across multiple
domains, whilst still capturing some of the most important specific aspects of digital twins.

We now consider how these philosophical principles can be applied to explain some common ques-
tions relating to digital twins.

4.1 Why is a digital twin not a model?

We will offer more than a single answer to this particular question, all of which can coexist with each
other. The first is shown in Figure 4 and relates to the connectivity of the physical twin and the digital
object. Kritzinger et al. (2018) make the following distinctions between three concepts which are shown
schematically in Figure 4;

1. Digital model — no connection between virtual and physical (Figure 4 (a)). This is the ‘traditional’
approach to modelling in science and engineering.

2. Digital shadow — data received from a connection (e.g. over a IoT network) with the physical
twin is used to update and “shadow" the state of the physical twin (Figure 4 (b)). In this way the
digital shadow will evolve over time to reflect changes that occur in the physical twin.

3. Digital twin — as for the digital shadow, but with the addition of control actions, or interventions
(in the case of a system that cannot be directly controlled) being given over the network to the
physical twin domain (Figure 4 (c))
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Figure 5: Schematic diagram showing (a) how the outputs from a digital twin might be
able to predict emergent behaviours proposed by Grieves and Vickers (2017), and (b) the
“Rumsfeld” matrix.

The 21 principles set out above relate to digital twins, but the categories could also be represented by
selecting fewer principles to apply.

However, the model/shadow/twin explanation does not capture some aspects that we have discussed
above relating to digital twins. Critics can point out that using existing terminology, Figure 4 (a) shows
a model. Figure 4 (b) an updated model, and Figure 4 (c) a control system. For example, the explanation
given in relation to Figure 4 has little or no sense of timing or mechanisms. E.g. when does the digital
become connected to the physical? Is the data transfer to the shadow continuous or intermittent? Are the
actions taken part of the digital twin or something separate. Another criticism is that Figure 4 does not
show (or even anticipate) connections between digital twins, via federation.

Furthermore, it is difficult to understand the ideas of holism, or emergent behaviour with the model/shadow/twin
explanation. So, we believe it is useful to also suggest an additional explanation that can complement the
rationale of Figure 4. This additional explanation relates to the use of models in digital twins, as we have
described it in this paper (e.g. as a combination of multiple digital objects). As a result, digital twins
will have the property of object-property inheritance. Therefore, digital twins include models among
their components, such that digital twins are more than just models (and models are not digital twins).
In other words, a digital twin is something more than a model, but can be used to perform functions that
have been previously carried out using models, because it inherits the properties of the model. In general,
object-property inheritance relates to all the components within a digital twin, and will be explained in
further detail in the next section.

4.2 What previously unseen results can we expect from a digital twin?

“It is the mark of an educated mind to rest satisfied with the degree of precision which
the nature of the subject admits and not to seek exactness where only an approximation is
possible” — Aristotle (384 BC – 322 BC)

It will be fundamental to the purpose of a digital twin to establish whether the digital twin can
produce an output that suits our particular purpose(s). As the quote from Aristotle reminds us, every
output from a digital twin will most likely include (multiple) approximations, and we should be wary of

seeking exactness beyond that which is possible. The “degree of precision”, as Aristotle puts it, relates to
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the fidelity of an output. However, before any attempt to assess fidelity can be made, we need to consider
if a viable output for our particular purpose is possible.

Grieves & Vickers have considered how the outputs from digital twins might be used to anticipate
the types of emergent behaviours that might arise (Grieves and Vickers, 2017). They proposed a cate-
gorisation of outcomes for the digital twin that is shown in Fig. 5 (a). Here there are four categories of
outcome that depend on what the digital twin predicts and whether the predicted behaviour was desirable
in a design context (meaning the intended design) or undesirable (problematic and/or unwanted designs).
This framework is then used iteratively to try and minimise the undesirable and unpredicted aspects as
much as possible45.

However, this approach also suffers from the problem of the need to know in advance what to include
in the digital twin to get a desired outcome. As pointed out by Kauffman (2000) for example, this is a
particular problem in the field of emergent behaviour. In fact, problems relating to prior knowledge
are well known in other fields. For example, in the domain of uncertainty and risk management (e.g.
Okashah and Goldwater (1994); Lanza (2000)). The “Rumsfeld” matrix46 captures the key issue as
shown in Fig. 5 (b).

In the Rumsfeld matrix we create four categories based on what is known (e.g. meaning what we
know at this present moment) and what could be known (e.g. all possible knowledge, if we had a way
to access it). It should be clear that if we don’t know something at the present moment, then we cannot
include it in our digital twin, and therefore (using this type of philosophical framework) we can never
access the “unknown unknowns” category47. Knowing in advance, for example by prescribing a specific
solution space, is a practical necessity for modelling, but will exclude the more advanced behaviours,
particularly evolutionary forms of emergence — see for example Tononi et al. (2016); Kauffman (2000)
and references therein.

To take one example, emergent behaviours are often modelled using multiple agents that interact
with each other according to a predefined set of ‘rules’, typically relating to the environment and their
nearest neighbouring agents (Jensen, 2022). The idea has already been explored in a digital twin context
by several authors — see for example Croatti et al. (2020); Zheng et al. (2020); Vrabič et al. (2021);
Clemen et al. (2021); dos Santos et al. (2022). So, although the emergent behaviours are not necessarily
known in advance, the rules for the agents have to be prescribed in advance, and so the rules are therefore
known knowns. The emergence will be a product of the prescribed rules (as was the case for Deepmind
AlphaGo algorithm (Silver et al., 2016; Chouard, 2016)), and so if we have never observed a particular
type of interaction before, it cannot be included in the digital twin. It also won’t be in any of our
previously recorded data sets, or associated data-based models.

With this in mind, let us consider what can be reasonably expected from digital twins in terms of
emergent behaviours. Object-property inheritance can be interpreted as both related to individual com-

ponents (objects) in the digital twin, and relational combinations of the components.48 The relational
combinations of the components are achieved using dynamic assembly — an example of which is de-
scribed in the next section — all of which we assume is prescribed in advance.

Therefore, if a digital twin consists of = objects it would be expected to have a number (say 3) of
directly inherited properties which come from the = objects without any interaction between them. In ad-
dition, the digital twin would have a combinatoric number (say A) of relational properties, including any
emergent behaviours, which are generated from the dynamic assembly. Note also that the combinatoric
metric will depend on the specific context of the digital twin.

45Another variation would be to replace the desirable and undesirable with “authentic” and “spurious” to try and capture
when the digital twin succeeds or fails to give a valid output.

46Made famous by Donald Rumsfeld in 2002, this is an adaptation of the Johari window.
47This is the category which is associated with black swans Taleb (2007); Aven (2013).
48For the purposes of this paper we use the labels ‘objects’ and ‘components’ to mean the same thing.
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properties, such as any reconstructed or emergent behaviours, come from the process of dy-
namic assembly. Both the directly inherited and relational properties can be used to form
digital twin outputs

A simplified schematic example for a series of digital objects (e.g. components) is shown in Fig. 6,
where dynamic assembly methods are used to obtain interactions between the components. In Fig. 6,
the directly inherited properties are shown to come from the components, and relational properties come
from the dynamic assembly of the components. Both direct and relational properties can be then used as
digital twin outputs.

It is important to emphasise that all the emergent (and non-emergent) behaviours observed in digital
twin outputs are contained in the categories of known knowns, known unknowns, and unknown knowns,
shown in Fig. 5 (b). The unknown unknowns, shown in Fig. 5 (b) are not accessible to the digital twin by

definition, and could only be known by the addition of new information not known at the current time.
As a result, assuming that the known knowns category is already well understood, it is the known

unknowns, and particularly the unknown knowns categories where value can be obtained from using
digital twins. Note that we would expect to see more previously unseen results from an ecosystem of
connected digital twins. This is simply because of the nature of systems - the more connections there
are, the more potential there is for emergence. We now consider an example of dynamic assembly.

4.3 How can emergent behaviours be predicted using a digital twin?

Emergent behaviour can be reconstructed via interaction. This can be achieved using certain components
in digital twins (e.g. models, agents, etc.) which can be dynamically assembled (e.g. joined together) as
was shown schematically in Fig. 6. Dynamic assembly can be interpreted in several ways, but here we
use the idea of creating “connectors” such that the resulting connections lead to interactions between the
components with the aim of reconstructing emergent behaviour. To demonstrate this concept we show a
specific example of a dynamic assembly method.

We will consider a digital twin to be made up of a series of digital components such as models, agents
etc. The components will be combined in such a way that they reconstruct the time-evolving behaviour
of the physical twin. In order to show how two models can be combined to reconstruct a behaviour, we
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Figure 7: Schematic diagram showing (a) the underlying concept of hybrid simulation, (b)
the use of a transfer system, and (c) the two main components in the transfer system. In (d)
a mass-spring-damper-pendulum system is shown (labeled as “complete system” on the left
of the subfigure”) which is decomposed (via component-based reductionism) into the addi-
tion of two subsystems (labelled as “numerical” and ”physical” on the right of the subfigure)
Gonzalez-Buelga et al. (2005). The two subsystems are “virtually joined" at the pendulum
pivot joint, using the controller to impose force equilibrium and compatibility of displace-
ments. The output of the numerical subsystem is H∗ and the output of the physical system
is Ĥ. The combined hybrid numerical-physical system is used to reconstruct a nonlinear
codimenson-2 bifurcation boundary. This behaviour is only exhibited by the combined sys-
tem, as shown in (e). The control algorithm is configured to ensure that Ĥ tracks H∗, and
that if they are synchronised as closely as possible then the hybrid system will reconstruct
the required behaviour to some level of fidelity. The “synchronisation subspace” for the
test in subfigure (e) is shown in subfigure (f). For full details of these and related results
see Gonzalez-Buelga et al. (2005); Kyrychko et al. (2006); Gonzalez-Buelga et al. (2007);
Gawthrop et al. (2009).
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consider the methodology used in the field of hybrid simulation. Note that we have deliberately cho-
sen this method because, unlike agent-based-models (and related techniques) this enables complicated

heterogeneous components (in this case two dynamical systems) to be joined together.
Hybrid simulation is a technique where a physical experiment and numerical simulation are com-

bined using control and data acquisition hardware, typically in real time — see for example Wallace et al.
(2005); Carrion (2007); Carrion et al. (2009); Chen and Ricles (2009); Gao et al. (2013); Tsokanas et al.
(2021) and references therein49. The concept is shown schematically in Figure 7.

In Fig. 7 (a) the basic idea of hybrid simulation is shown, where a numerical simulation and a
physical experiment are combined in real-time using control algorithms and measurements. In the case
of most physical experiments, a transfer system is required to achieve this as shown in Fig. 7 (b) and
(c)50. Note that in this case the transfer system is the connector. Furthermore, the objective in hybrid
simulation is to get the transfer system to act like an identity transformation between the two systems
being connected. In other words, the characteristics of the connector (transfer system) should not distort
the interaction between the two models. In Fig. 7 (c) the two key parts of the transfer system are shown.

To consider a specific (although simple) example of hybrid simulation, in Fig. 7 (d) we show a mass-
spring-damper-pendulum example originally developed in Gonzalez-Buelga et al. (2005). The complete
system (on the left of the subfigure (d)) is the mass-spring-damper-pendulum system. The idea is that
the nonlinear part, in this example the pendulum, is ‘difficult’ to model, and is therefore taken to be the
physical experiment part (labelled as ‘physical’ on the right of subfigure (d))51. The remaining linear
part, the mass-spring-damper is modelled numerically (labelled as ‘numerical’ on the right of subfigure
(d)).

During the hybrid simulation, the output of the numerical system, H∗, is used as the setpoint in a
control algorithm that controls the input to the physical system so that Ĥ tracks H∗. At the same time the
physical force, �̂, from the experiment is measured and feedback to be applied in the next computation
of the numerical model. Delay compensation schemes are used to remove the effects of latency in the
control and measurement hardware, and ensure that the numerical and physical systems are properly
synchronised.

Minimising the error between Ĥ and H∗, shown in subfigure (f), allows the hybrid numerical-physical
system to reconstruct dynamical behaviour of the complete system. In this example, the combined
hybrid numerical-physical system is used to reconstruct a nonlinear codimenson-2 bifurcation boundary,
as shown in subfigure (e).

In this type of hybrid simulation, we only numerically model the parts that are relatively easy (e.g. the
linear part in the example). The physical part of the hybrid simulation (in this example the pendulum),
is represented by the data from measurements used directly52.

It is important to notice that the complete system output, H only “exists” during the hybrid simulation.
Or in other words, complete system outputs only exist whilst the control algorithm is working to connect
the two systems together (a process we call dynamic assembly) such that Ĥ → H∗ → H (and �̂ →

�∗
→ �). Without the control system connection, the output of the two systems would not dynamically

assemble the output of the combined system (e.g. Ĥ ≠ H∗ ≠ H) — we refer back to the Carlo Rovelli
quotation at the start of Section 3.3. As a result, emergent behaviours in digital twins will have the

49This and related techniques are also known by numerous other names such as hybrid testing, hardware-in-the-loop,
real-time dynamic substructuring, and pseudo-dynamic testing.

50For some electrical and electronic engineering applications a transfer system is not used, and this is typically referred to
as hardware-in-the-loop testing.

51Of course the simple pendulum is not that difficult to model, but the concept was developed for systems that have very
complicated behaviours, like the failure of a concrete or masonry structural component during an earthquake.

52Although we do need to consider other effects of fidelity, such as any signal corruption that could occur in the measure-
ment system.
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property of dynamically (or operationally) dependent outputs meaning that the output(s) only exist whilst
the digital twin is operational, e.g. meaning “live” or “switched on”.

It should be noted that in some digital twin designs, models (or other digital objects) are either
selected and/or ensembled together. For example in Edington et al. (2023), two models out of a choice
of three were ensembled together with weighted coefficients. This type of ensembling (as it is currently
implemented) is not designed to simulate emergent behaviours because there is no interaction between
components in the digital twin. Furthermore, it should be noted that if the desired outputs are time
dependent quantities of interest, such as velocities or accelerations, then the model interaction needs to
be carried out in real-time in order to properly represent those variables53.

4.4 How can we assess the existence and uniqueness of digital twin outputs?

As we said above it will be fundamental to the purpose of a digital twin that some type of output exists
that is relevant to the context of the physical twin.54 We have shown in the example from Fig. 7 that
one example of an output is to choose a quantity of interest (QoI). In the study of differential equations,
an important underlying concept is the idea of existence and uniqueness of a solution to the problem
(Hirsch and Smale, 1974; Guckenheimer and Holmes, 1983; King et al., 2003). The concept asks the
questions (1) does a solution exist?, and (2) if it does, is it a unique solution? If the solution is nonunique,
then other solutions will exist that also satisfy the same defined problem55.

Although the idea of existence and uniqueness is typically applied in a deterministic worldview, in
the absence of a developed theory for digital twins, we consider how questions (1) & (2) could be applied
to the case of digital twins in general. To widen the application beyond the deterministic realm instead of
“solution” (that typically implies a precise answer to a specific set of equation(s)), we will instead take
the idea of an output from the digital twin.

In practical terms there would appear to be two potential approaches (and at least one caveat) to
determining the existence and uniqueness of digital twin outputs. The first approach is to rely on the
object-property inheritance of the digital twin, so that if the underlying objects (components) in the
digital twin have the property of existence and uniqueness, then the digital twin can also inherit those
properties (under some defined conditions). For example, if the digital twin has an ordinary differential
equation (ODE) as one component, and that ODE has solutions that exist and are unique, then the digital
twin can also inherit those properties — see for example Han et al. (2022); Area et al. (2022). The caveat
is that the philosophical framework for differential equations is (almost always) deterministic, and so this
will act as a limiting factor with this approach.

The second possible approach (either separately or in combination with the above) is to consider
the behaviour of the interconnections between components in the digital twin. It might be possible that
existence and uniqueness of digital twin outputs (e.g. the reconstructed behaviours) could be assessed
using information at the interface of components. Further work is needed to develop a more formal
analysis relating to the existence of digital twin outputs.

Now turning to the question of uniqueness, it is perhaps obvious to state that digital twin outputs
may or may not be unique. Nonuniqueness could be a major problem for digital twin users if they are
expecting (or assuming) a unique output, but do not obtain one. However, the precise nature of what is

53There is a related field of pseudo-dynamic testing that operates at speeds less than real-time and estimates the dynamic
variables — see for example Jung and Shing 2006.

54Note the similarity between the hypothesis H1 listed above in Sect. 3.2 and the questions of existence and uniqueness.
Firstly H1 is prefaced with “if a solution exists”, which is an assumption of existence. Furthermore, H1 contains the phrase “at
least one”, which we interpret as the possibility that there many be many solutions, and therefore allowing for nonuniqueness.

55Note that in the study of differential equations, even though there are many examples where solutions are nonunique,
nonuniqueness is generally seen as a situation to be avoided.
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meant by uniqueness of an output, will depend on the context and components that make up the digital
twin.

Finally, we note that nonuniqueness relates to a broader issue of spurious solutions and related
problems such as missing solutions, and false emergent behaviours — this could be considered to be
a failure mode of the digital twin. We will not consider these problems explicitly here, but we would
need to consider the possibility of these outcomes when building a digital twin — see discussion in
Grieves and Vickers (2017).

5 Conclusions and future directions for research

5.1 Summary and conclusions

In this paper we have described the philosophical context for the digital twin concept. This began, in
Section 2, with a selected introduction to the philosophy of modelling, and a discussion of the role of
knowledge in model making. This selected introduction enabled us to consider how a philosophical
purpose for a model could be defined, and it was concluded that utility, trust and insight are the three
key generic requirements of models that we wanted to extend to digital twins. Broadly speaking this
philosophical approach aligns with the model dependent realism concept from Hawking & Mlodinow’s
Grand Design (Hawking and Mlodinow, 2010) — although some qualifications to this are given below.

A key part of the digital twinning philosophy is representing complicated/complex systems. This
was discussed in detail in Section. 3, where we considered the limitations of traditional reductionist
methodologies. We then discussed how systems engineering and complexity science had been used to
attempt to overcome these limitations by adopting a more holistic world-view. In particular, we discussed
the importance of modelling emergent behaviours, that cannot be captured in a reductionist paradigm.
Importantly, it is interactions that lead to emergent behaviours, and these have to occur dynamically
— depending on the exact context, we note that the environment might also influence the emergent
behaviour.

Some of the limitations of systems engineering (overly reliant on input-output processes and black-
boxes) and complexity science (mainly focuses on deterministic interactions of ‘simple’ agent-based
models) prompted a review of the more recent role of artificial intelligence research. Here the devel-
opment of ‘intelligent’ agents has been a distinguishing feature, with techniques such as reinforcement
learning. Such intelligent agents have the capacity to both learn from data and take actions in real-world
environments (although they also have limitations relating to reliance on learning over knowledge). It
was also noted that symbolic-based AI methods, although currently out-of-fashion, offers the potential
of combined learning and reasoning using so-called neuro-symbolic AI methods. The last part of our
review was a discussion on human biases and the effects of phenomena such as confirmation bias and
philosophical tribalism. This is often an under-rated, or even neglected, factor but we consider it to be
highly relevant to the current context of digital twins.

In Section 4 of the paper we presented a proposed foundation of a philosophical framework for digital
twins. This foundation consisted of 21 principles set out in three categories; what digital twins are, what
properties they should have, and what they should enable. We then used the 21 principles to consider
some common questions that arise regarding digital twins. Namely the questions were: Why is a digital
twin not a model? What previously unseen results can we expect from a digital twin? How can emergent
behaviours be simulated using a digital twin? How can we assess the existence and uniqueness of digital
twin outputs? We do not claim to have provided definitive answers to these questions, rather we have
used the philosophical principles to frame the questions in a way that might help provide more insight
and understanding of the questions and the associated topics they relate to.
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Next we draw together some further comments not captured directly in the other parts of the paper,
which leads to some open research questions.

5.2 Further comments and open questions

As a reflection of some of the key points raised in this paper, we offer the following further comments
that lead to some open research questions.

1. Potential limitations of model dependent realism: In practice, adopting model dependent realism
commits us to the following three beliefs/attitudes:

(a) Pragmatism: a digital twin (or model) is deemed successful if it is able to explain and predict
phenomena according to some validation criteria (e.g. like making observations). The issue
of realism vs. non-realism is effectively side-stepped.

(b) Utility as an over-arching value for digital twin (or model): the new emphasis is on the utility
of a digital twin output(s) rather than on finding a digital twin (or model) that is ontologically
"true" in terms of representing the behaviour(s) of the physical twin.

(c) Pluralism: as there may be multiple digital twin output(s) that adequately describe the same
phenomena, or have similar levels of utility, the choice between different twins may depend
on additional (so-called, extra-theoretic virtues) — which also links to the issue of uniqueness
of outputs.

Furthermore, model dependent realism is developed from a scientific world-view which is focused
entirely on explaining the physical behaviour of the Universe we live in. It could be considered
that the “direction-of-fit" is one-way. Or in other words, the definition of utility is focused primar-
ily on ‘representation’ or ‘description’. For engineering problems we also need to consider other
factors, such as: (i) the consequences of utility on subsequent actions taken, such as decisions
and interventions in the real-world, and (ii) it could be the case that there is no physical system
to represent, if we are trying to engineer something completely new. In both these cases, the ar-
gument for a philosophy built on model dependent realism is more difficult to make, and leaves
open the question of whether there is a more appropriate philosophical approach in these cases?
We note also, that more formally the utility, trust and insight requirements could be contextualised
using a more detailed philosophical analysis such as that proposed by Douglas (2013) which dis-
tinguishes between between internal consistency (a minimal criteria) and external consistency (an
ideal desiderata, presuming a general confidence in other scientific theories). While internal con-
sistency is a minimum requirement for acceptance of any scientific theory, external consistency is
not as it depends on confidence in other theories and external bodies of knowledge. This is an area
for future research development.

2. Emergence is counter-parsimonious: As was described in Section 4.2, a digital twin will only be
able to exhibit behaviours within the constraints of the choices and assumptions that have been
made during its construction. Therefore the less simplification in the process of constructing the
digital twin, the more likelihood there is for a wider range of emergent behaviours to be exhib-
ited in the subsequent digital twin outputs. The aim stated in Principle 5 (and system engineering
Hypothesis H2 from Section 3.2) is to represent the observed complexity rather than seek parsi-
mony. Furthermore, it’s also possible that if the digital twin maker has been too parsimonious
(and/or biased in worldview), there is a possibility of creating a digital twin that’s only capable
of reinforcing your own (or an inherited) prejudicial expectation. The exact relationship between
emergent behaviours and parsimony is an open question.
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3. Purpose dictates your parsimony: Following on from the comments above, digital twins developed
for different purposes will enable different levels of parsimony to be used. Therefore, care should
be exercised if transferring a digital twin developed for one purpose into a new domain or purpose.
One way to help mitigate these effects is to make use of error detection and correction (EDAC)
(MacKay, 2003). Similar comments relate to the interoperation or federation of digital twins that
might have been constructed using different levels of assumed parsimony. It is an open question
of how such systems might be integrated in a systematic way.

4. Validation of digital twins: Some comments on the validation of digital twin outputs:

(a) In general the validation of a digital twin is context specific, and will be relevant to a specific
application56. In some cases, validation can be defined as a function of utility, where the
metric of validity relates to the output of some utility function. This situation enables a
strong connection with the model dependent realism philosophy.

(b) In some applications, the accuracy of a digital twin output does not serve well as a universal
metric for validation. For example, from a control perspective, the stability and robustness
of a predictive model might be more important than the tracking accuracy of any particular
output.

(c) In Section 4 we presented a framework for defining what potential outputs can be expected
from a digital twin. In the example (e.g. results in Fig. 7), the system was simple, and
therefore we knew in advance what behaviour to expect, and could therefore validate the
hybrid result quite easily57 (e.g. the validation between a numerical computation and the
hybrid system results is shown in Fig. 7 (e)). Cases where we cannot know what to expect in
advance will obviously be more challenging to validate, and there is ongoing research as to
how this might be most effectively achieved.

5. Logic vs learning: In Section 3.4 we touched upon symbolic and neurosymbolic AI, but did not
explicitly discuss, the types of logical approaches that could be applied to digital twins. There
has long been a philosopical discussion about how logic, learning and probability interrelate (see
for example the discussion in Belle (2022)). This is an interesting topic, that we has several rele-
vant questions for digital twin research. For example, is there an underlying logical methodology
relating to digital twins, or is the logic dependent on the context? How is the logic and learning
combined? How does the logic relate to a ‘top-down’ vs ‘bottom-up’ approach to creating a digital
twin?58 It should also be noted that statistical relational learning and hyperdimensional comput-
ing are novel approaches that enable knowledge representation, logic and learning to be brought
together (Getoor and Taskar, 2007; Thomas et al., 2021). These processes offer the possibility of
bringing logic more formally into the digital twin operation. The exact details of how this might
work are an open question.

Next we consider areas for future research development, that haven’t already been mentioned above.

56This is also true in the assurance of systems and technologies more generally, as claims made about some goal of a
system, such as the safety or efficacy of the system, are always contextual to some environment (e.g. an airplane may only be
assured as safe when in operation by a qualified operator and in a highly-regulated airspace).

57Also a limitation in supervised learning techniques, also sometime referred to as an ‘oracle’ e.g. as a source of the
‘correct’ solution.

58For example, there may be things to learn from the idea of polycentricity Ostrom (2010).
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5.3 Future directions for research

1. Human-factors; is a topic we have only mentioned very briefly in this paper. However, it is one of
the most important for future understanding of digital twins. Broadly this area of research includes
the topics of (i) the role of humans in designing and building digital twins (partially discussed in
Sections 2.1 and 3.5), (ii) how human users interface with digital twins & act on the outputs they
receive, and (iii) digital twins that include humans in some way, for example in medicine or social
systems that include human behaviours. Early work in this area includes (Nguyen, 2022; Lin et al.,
2022; Sun et al., 2021; Fan et al., 2021).

2. Ethical, legal and societal issues: in their original context as tools for product engineering, DTs
raised a (relatively) narrowly circumscribed set of ethical, legal, and societal issues (e.g. safety
compliance). However, as DTs are now used increasingly to represent not just products or objects,
but living entities and systems (from the cellular level to whole ecosystems) they enable new forms
of knowledge generation (i.e. principles 19 and 20: learning and insights obtained from the DT)
and means for interacting with and influencing the coupled physical systems (principle 21: exploit-

ing the derived value of the relevant insights). A number of papers have already explored a variety
of normative issues that arise in the context of DTs, especially in high-stakes and fault-intolerant
environments such as health and healthcare (Kuersten, 2023; Huang et al., 2022; Tigard, 2021;
Popa et al., 2021; Korenhof et al., 2021; Braun, 2021). In combination with current and emerging
frameworks for regulation, governance, and assurance, these analyses provide significant value for
identifying and mitigating possible risks that could arise when deploying and using DTs within
society (e.g. unintended behaviours caused by model drift, data privacy and security violations).
There is a lot to explore here, and the presence of a robust conceptual framework could provide a
systematic means for grounding and evaluating the myriad normative issues associated with DTs.
For this reason, while we have acknowledged the existence of some of the associated issues (e.g.
presence of bias), we leave this as a topic for future research.

3. Methods for dynamic assembly: In practical terms, one of the most interesting areas for future
research is methods that enable dynamic assembly of the digital objects within a digital twin.
As we have already noted, dynamic assembly is the method by which we can recreate interaction
within the digital twin, and thereby reconstruct emergent behaviours. There are already techniques,
such as agent-based modelling including intelligent agents, and heterogeneous multi-agents, as
discussed and reviewed in Sections 3.3 and 3.4. Such models have the potential to recreate the
type of multi-level interactions that occur in complex system, including socio-economic systems (
see for example Yossef Ravid and Aharon-Gutman (2022); Wang et al. (2020); Okita et al. (2019);
Tadić (2019)). However, creating appropriate ‘connectors’ for heterogenous sets of digital objects
is an open area of research. In fact, the method used in Section 4.3 was ‘borrowed’ from another
application domain, but essentially relied on real-time control to create the interaction. The scope
for new developments in this area is significant.

4. The role of knowledge: relates to human factors listed above, but is so important that is warrants
a separate discussion point. In particular the role of knowledge and insight, in supporting subse-
quent actions taken, such as decisions. One way in which we can distinguish this topic from human
factors, is the idea of removing the process from the human, and automating the action/decision
process, possibly using some form of artificial intelligence. From a practical perspective, a starting
point would be to establish with more rigour what knowledge means in a DT context, particularly
linking to topics such as knowledge representation, inference, model interpretability. See for exam-
ple the discussions and examples in Pan et al. (2023); Olsson and Axelsson (2023); Akroyd et al.
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(2021); Li et al. (2021). Much of the existing work relates to ontologies (e.g. see for example
(Nguyen, 2022; Akroyd et al., 2021; Singh et al., 2020; West, 2011)), there is scope for more in-
vestigation based on the ideas of causality, and more general epistemology.
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