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Abstract

Localization of the stress-induced martensitic phase transformation plays an important role in the

fatigue behavior of shape memory alloys (SMAs). The phenomenon of return-point memory that is

observed during the subloop deformation of a partially-transformed SMA is a clear manifestation of

the interaction between localized transformation and degradation of the functional properties. The

goal of the present study is to demonstrate this structure–material interaction through modeling the

phenomenon of return-point memory. A gradient-enhanced model of functional fatigue is developed

for this purpose. The model is first employed to reproduce the hierarchical return-point memory in

a pseudoelastic NiTi wire under isothermal uniaxial tension with nested subloops. Additionally, a

more detailed analysis is carried out for a NiTi strip with more complex transformation pattern. Our

study highlights on the subtle morphological changes of the phase transformation under different

loading scenarios and resulting implications on the cyclic degradation and return-point memory.

Keywords: Phase transformation; Propagating instabilities; Functional fatigue; Subloop

deformation; Finite-element method

1. Introduction

The practical interest in shape memory alloys (SMAs), especially NiTi, stems from their unique

characteristics of pseudoelasticity and shape memory effect (Otsuka and Wayman, 1998; Mohd Jani

et al., 2014). The operational lifespan of SMAs in most of the applications involves enduring cyclic

mechanical/thermal loadings, which highlights the great importance of identifying their fatigue be-

havior. It is well-recognized that, due to the martensitic phase transformation, fatigue in SMAs is

more complex than in common engineering metals. This complexity necessitates special attention
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and, as a result, has prompted a tremendous number of studies that focus on the fatigue charac-

terization of SMAs from a variety of perspectives and on the underlying micromechanical processes

(Eggeler et al., 2004; Pelton, 2011; Mahtabi et al., 2015; Kang and Song, 2015; Zheng et al., 2017;

Nargatti and Ahankari, 2022).

Stress-induced martensitic transformation in pseudoelastic NiTi appears (typically, in tension-

dominated loadings) as localized instabilities in the form of martensite bands, and subsequently

progresses via propagation of the instabilities in the form of patterned interfaces (macroscopic trans-

formation fronts) that separate the domains of low-strained austenite and high-strained martensite

(e.g., Shaw and Kyriakides, 1997b,a; Sun and Li, 2002; Reedlunn et al., 2014). Due to the high strain

incompatibilities that exist within the transformation front and the ensuing large local stresses, it

can be reasonably inferred that propagating instabilities can vitally influence both the functional

fatigue and structural fatigue of the material. Despite the longstanding recognition of this crucial

aspect (Lin et al., 1994; Lim and McDowell, 1994; Iadicola and Shaw, 2002; Eggeler et al., 2004;

Brinson et al., 2004), its direct validation was provided only a few years ago in the experiments

conducted by Zheng et al. (2016a,b, 2017). It was demonstrated that in view of the repetitive nucle-

ation and propagation of the localized transformation in NiTi strips under cyclic uniaxial tension, a

rapid degradation of pseudoelasticity occurs that accelerates the fatigue crack initiation and fatigue

failure.

An interesting manifestation of the interaction between propagating instabilities and functional

fatigue is found in the subloop deformation behavior of a partially-transformed SMA specimen

under deformation-controlled loading. The subloop behavior has been extensively investigated ex-

perimentally, notably for NiTi (Lin et al., 1994; Lim and McDowell, 1994; Tobushi et al., 2003;

Doraiswamy et al., 2011; Takeda et al., 2012) but also for other SMAs (Ortin, 1991; Müller and Xu,

1991). Fig. 1(a), reproduced from Tobushi et al. (2003), depicts the global mechanical response of

a NiTi wire subjected to subloop paths. For a more intuitive description of the phenomenon, hypo-

thetical schematics of the corresponding transformation front evolution are provided in Fig. 1(b).

As the front propagates along the wire, it leaves behind transformation-induced microstructural

defects, such as dislocations and stabilized (locked-in) martensite. During the subloop unloading

(for instance, the first subloop, which starts at point A), the front travels backward over an already

swept zone (from A to B), hence intensifying the generated defects. Accordingly, during the subloop

reloading, the propagation of the front over the twice-swept zone occurs with a lower stress level

compared to the original transformation plateau. When the front enters the pristine zone (at point

A), the stress passes through the subloop unloading point and catches up with the original plateau.

This trait is known as the return-point memory. The process repeats in the subsequent subloops

and culminates in an intriguing hierarchical return-point memory.
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Figure 1: Return-point memory in NiTi wire subjected to uniaxial tension with three nested subloop paths: (a) the

structural stress–strain response, and (b) hypothetical schematics of the corresponding transformation front evolution.

The stress–strain response in panel (a) is reproduced from Tobushi et al. (2003) (courtesy of R. Matsui). The red

arrows in panel (b) indicate the trajectory of the front propagation, and the color scales quantify the recurrence of

the front’s traversal over the wire’s segments.

Motivated by the experimental results, numerous attempts have been made to develop SMA

models capable of capturing the phenomenon of return-point memory during the subloop defor-

mation, either through incorporating fatigue inelastic mechanism and degradation of functional

properties (Savi and Paiva, 2005; Saint-Sulpice et al., 2009; Chan et al., 2012; Bartel et al., 2017)

or by merely refining the constitutive equations of non-fatigue model of pseudoelasticity (Bouvet

et al., 2004; Stupkiewicz and Petryk, 2010; Doraiswamy et al., 2011). In fact, a physically-relevant

approach for modeling the return-point memory should hinge on the interaction between the prop-

agating instabilities (structural inhomogeneities) and the functional fatigue of the material. Nev-

ertheless, most of the existing models (including those referenced above) postulate a homogeneous

martensitic phase transformation, while addressing a problem with a transformation of localized

nature. Albeit this simplifies the computations significantly, it is not a plausible assumption in the

present context. To the best of our knowledge, the only related modeling study that has accounted

for this structure–material interaction is the 1D model of Bartel et al. (2017). In their model, how-

ever, instabilities do not originate from a softening-type intrinsic material response but are rather

treated as weak displacement discontinuities that separate the transformed and untransformed ma-

terial points (indeed, experiments (e.g., Hallai and Kyriakides, 2013) have confirmed that the true

intrinsic response of NiTi is characterized by a significant softening branch). It should be remarked

that recently Xiao and Jiang (2020, 2022) have acknowledged this structure–material interaction in
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their simulations, however, their applications did not specifically pertain to the subloop deformation

and return-point memory.

In light of the above premise, this work aims to provide a detailed modeling study of the

phenomenon of return-point memory with an emphasis on the interaction between the propagating

instabilities and the degradation of the functional properties of the material. A phenomenological

gradient-enhanced model of functional fatigue is thus developed and is applied to the problem

of subloop deformation in NiTi wire and strip under uniaxial tension. In what follows, we first

introduce the model in Section 2. Then, in Section 3, the simulation results are presented and

discussed. In addition, a simplified 1D version of the model is also provided in Appendix A.

2. A small-strain model of functional fatigue

The present functional fatigue model is formulated in the framework of the energy minimization

principle. The basic structure of the model is adopted from the non-gradient model of pseudoelas-

ticity developed by Stupkiewicz and Petryk (2013), while the gradient enhancement, micromorphic

regularization and thermomechanical coupling are simply borrowed from our previous gradient-

enhanced model. The latter has proved to be capable of reproducing complex patterns of phase

transformation in different loading conditions (Rezaee-Hajidehi et al., 2020; Rezaee-Hajidehi and

Stupkiewicz, 2021, 2023).

Functional fatigue is here treated in a simple phenomenological manner, and thus the constitu-

tive relations are tailored to mimic the pseudoelasticity degradation effects. Since the focus of this

study revolves around the macroscopic modeling of the return-point memory, a phenomenological

formulation seems to adequately fulfill the intended purpose. In Section 2.1, we introduce the con-

stitutive model in an isothermal format. Subsequently, in Section 2.2, micromorphic regularization,

thermomechanical coupling and finite-element implementation are briefly discussed.

2.1. Constitutive model

We begin the model description by noting that functional fatigue in SMAs is typically attributed

to a number of mechanisms. Among them, generation of dislocation slip (Eggeler et al., 2004;

Delville et al., 2011), formation of stabilized martensite (Brinson et al., 2004; Zhang et al., 2019)

and non-transforming austenite (Sedmák et al., 2015; Zhang et al., 2019) are the most likely involved

mechanisms. In the present model, a detailed subdivision into the possible mechanisms and their

mutual interaction is not attempted, instead, they are unitedly represented by phenomenological

evolution equations, and are directly linked to the martensitic phase transformation through the

accumulated martensite volume fraction ηacc. In line with this notion, fatigue mechanism is herein

denoted as transformation-induced plasticity (TRIP).
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The model is confined to small-strain theory. The material state at each point is characterized

by two quantities, namely the total strain ε = 1
2

(
∇u + (∇u)T

)
, with u as the displacement vector,

and the martensite volume fraction η. The total strain is additively decomposed into

ε = εe + εt + εp, (1)

where εe denotes the elastic contribution, εt denotes the martensitic transformation contribution

and εp is the permanent strain associated with TRIP. At the same time, it is assumed that during

the martensitic transformation a fraction of martensite stabilizes and does not transform back

to austenite. Hence, the martensite volume fraction η is split into the reversible part ηrev and

irreversible part ηir, viz.,

η = ηrev + ηir, (2)

and the following inequality constraints hold,

0 ≤ ηir ≤ η ≤ 1 =⇒ 0 ≤ ηrev ≤ 1 − ηir. (3)

The material is in the fully austenitic state when η = ηrev = 0 and is in the fully martensitic state

when η = 1. Nevertheless, once the material starts transforming to martensite from a pristine

austenitic state, ηir becomes immediately nonzero, as indicated by Eqs. (4)–(6) below, and thereby,

a fully austenitic state will not be recoverable.

It has been repeatedly observed in the experiments that the degradation of pseudoelasticity in

conventional polycrystalline NiTi are mostly pronounced during the first tens of cycles, gradually

diminishing and eventually reaching saturation as the material passes the so-called shakedown

stage. In view of this general consensus, we adopt the assumption that both the irreversible volume

fraction ηir and the permanent strain εp follow exponential-type evolution laws. Note that this

assumption is not unique to the present model and has been exploited in various SMA functional

fatigue models (e.g., Zaki and Moumni, 2007; Kan and Kang, 2010; Scalet et al., 2021; Xiao and

Jiang, 2020). With this assumption in place, we first introduce the accumulated volume fraction

ηacc as

η̇acc = |η̇rev| =⇒ ηacc =

∫ t

0

|η̇rev|dτ, (4)

where the overdot denotes the rate of change of the variable and t denotes the time. The evolution

equation for the irreversible volume fraction ηir is then explicitly postulated as

ηir = hsat
ir (1 − exp(−Cpη

acc)), (5)

which results from the time-integration of the following rate equation (with ηacc
∣∣
t=0

= 0 and

ηir
∣∣
t=0

= 0 as the initial conditions),

η̇ir = hsat
ir Cp exp(−Cpη

acc)η̇acc. (6)
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Analogously, the evolution equation for the permanent strain εp is postulated as

ε̇p = ϵsatp Cp exp(−Cpη
acc)η̇accNp. (7)

In Eqs. (5)–(7), hsat
ir and ϵsatp represent the respective saturation values for irreversible volume

fraction and permanent strain, Cp is the degradation rate, and Np is the direction tensor which is

defined such that the rate of the permanent strain ε̇p is aligned with the martensitic transformation

strain εt, i.e.,

Np =
εt

∥εt∥
, ∥εt∥ =

√
tr(εt)2. (8)

Note that, in view of the definition of the accumulated volume fraction ηacc, the variables ηir and

εp evolve continuously during both the forward and backward transformations.

Martensitic transformation in SMAs usually exhibits negligible volumetric change (Bhattacharya,

2003). The transformation strain εt is therefore assumed to be deviatoric (i.e., tr εt = 0). More-

over, since the stress-induced transformation renders the martensite variants to be oriented in the

direction of the applied stress, martensite is here considered to appear in a fully-oriented state so

that the transformation strain εt is defined as a function of the reversible volume fraction ηrev and

the transformation strain of fully-oriented martensite ε̄t,

εt = ηrevε̄t, ε̄t ∈ P̄ = { ε̄t : g(ε̄t) = 0 }. (9)

The set P̄ defines the admissible transformation strain tensors characterized by the surface g(ε̄t) = 0

which is expressed in the following form (Sadjadpour and Bhattacharya, 2007),

g(ε̄t) =
[
(−I2)3/2 − bI3 − cI34

]1/3
− a. (10)

In Eq. (10), I2 and I3 denote the principal invariants of the transformation strain tensor ε̄t while

I4 denotes a mixed invariant, defined as

I2 = −1

2
tr(ε̄t)2, I3 = det ε̄t, I4 = m · ε̄t m, (11)

where m is the axis of the transverse isotropy. The parameters a, b and c characterize the shape

and size of the surface g(ε̄t) = 0 and are specified as

a = ϵT

[ 3
√

3

4(1 + α3)

]1/3
, b =

√
3

6

9α3β3 − 7α3 + 7β3 − 9

(1 + α3)(1 + β3)
, c =

2
√

3

3

α3 − β3

(1 + α3)(1 + β3)
, (12)

with ϵT as the maximum transformation strain in tension, α as the tension–compression asymmetry

ratio in the direction along the axis of transverse isotropy (i.e., parallel to m), and β as the tension–

compression asymmetry ratio in the direction perpendicular to the axis of transverse isotropy (i.e.,

perpendicular to m).

It is noteworthy that the deviatoric nature of the transformation strain εt dictates, in accordance

with the definition of the direction tensor Np, see Eq. (8), that the permanent strain εp is also
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deviatoric. Models within the present context often postulate that the fatigue-induced inelastic

strain evolves in the direction of stress deviator (e.g., Zaki and Moumni, 2007; Kan and Kang,

2010; Xiao and Jiang, 2020). In the present formulation, it can be easily shown that the stress

deviator is perpendicular to the surface g(ε̄t) = 0, see Stupkiewicz and Petryk (2013), and thereby,

the transformation strain εt depends on the direction of stress deviator. This, however, does not

imply that the transformation strain εt, and accordingly the permanent strain rate ε̇p, are colinear

with the stress deviator.

Another important aspect to highlight is that the surface g(ε̄t) = 0 and so the transformation

strain of fully-oriented martensite ε̄t remain intact throughout the cyclic transformation. However,

the accumulation of the irreversible volume fraction ηir and its impact on the reversible volume

fraction ηrev result in the contraction of the maximum transformation strain attainable during the

phase transformation, see Eqs. (3) and (9).

We now elaborate on the Helmholtz free energy function and the dissipation potential, both

customized to incorporate the degradation effects. Assuming an isothermal process, the Helmholtz

free energy ϕ is composed of the following contributions: the chemical energy ϕchem, the elastic strain

energy ϕel, the austenite–martensite interaction energy ϕint, the energy of the diffuse interface ϕgrad,

and the energy contribution ϕdeg related to the pseudoelasticity degradation, i.e.,

ϕ(ε, ε̄t, εp, ηrev,∇ηrev, ηir) =

ϕchem(ηrev, ηir) + ϕel(ε, ε̄
t, εp, ηrev) + ϕint(η

rev) + ϕgrad(∇ηrev) + ϕdeg(ηrev, ηir). (13)

Among the contributions to the Helmholtz free energy ϕ, only ϕdeg is specific to the present

model. The remaining contributions are rather standard and adhere to the non-fatigue model

of pseudoelasticity (cf., Stupkiewicz and Petryk, 2013; Rezaee Hajidehi and Stupkiewicz, 2018;

Rezaee-Hajidehi et al., 2020), and are formulated as

ϕchem(ηrev, ηir) = (1 − η)ϕa
0 + ηϕm

0 = ϕa
0 + ∆ϕ0η, (14)

ϕel(ε, ε̄
t, εp, ηrev) = µ tr(εedev)2 +

1

2
κ(tr εe)2, εe = ε− ηrevε̄t − εp, (15)

ϕint(η
rev) =

1

2
Hint(η

rev)2, (16)

ϕgrad(∇ηrev) =
1

2
G∇ηrev · ∇ηrev. (17)

Here, ∆ϕ0 = ϕm
0 − ϕa

0 is the phase transformation chemical energy, µ is the elastic shear modulus

and is calculated via applying the Reuss averaging scheme based on the total volume fraction η to

the shear moduli of austenite µa and martensite µm (i.e., 1/µ = (1− η)/µa + η/µm), κ is the elastic

bulk modulus (assumed constant), Hint is the parameter that characterizes the material response

(softening- or hardening-type) within the transformation regime, and G > 0 is the gradient energy
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coefficient. Note that the parameter Hint can be adapted such that it reflects a loading-dependent

material response (typically, a softening-type response in tension and hardening-type response in

compression) (e.g., Rezaee-Hajidehi and Stupkiewicz, 2021). However, for simplicity, Hint is here

considered as a constant parameter. Given that the simulations in this study involve predominantly

tensile loading, see Section 3, this simplification does not pose a serious limitation.

On the other hand, the degradation contribution ϕdeg takes the following form

ϕdeg(ηrev, ηir) = Adegη
irηrev +

1

2
Hdegη

ir(ηrev)2, (18)

where Adeg and Hdeg represent the degradation parameters. The energy ϕdeg is specifically tailored

to address two primary effects of pseudoelasticity degradation: it accounts for the reduction of the

transformation-onset stress (described by the term Adegη
irηrev) and the conversion of the mechan-

ical response towards a hardening-type response (described by the term 1
2Hdegη

ir(ηrev)2). In line

with the evolution of ηir, Eq. (5), both effects progress exponentially. Note that the approach of

incorporating the cyclic degradation effects into the free energy function has been also used in other

SMA functional fatigue models in the literature (e.g., Auricchio et al., 2007; Petrini and Bertini,

2020).

Finally, a rate-independent dissipation potential is adopted in the following form

D(η̇rev, ηacc) = fc(η
acc)|η̇rev|, (19)

where fc(η
acc), which is called the critical thermodynamic driving force, controls the width of the

hysteresis loop in the stress–strain response. To capture the decrease in the hysteresis loop area

(i.e., the dissipated energy) during the cyclic loading, the parameter fc is defined in relation to the

accumulated volume fraction ηacc. Similar to the permanent strain εp and the irreversible volume

fraction ηir, Eqs. (5)–(7), fc evolves exponentially as follows

fc(η
acc) = ffin

c + (f ini
c − ffin

c ) exp(−Cfη
acc), (20)

where f ini
c and ffin

c represent, respectively, the initial and final values of fc and Cf denotes the

corresponding evolution rate.

To formulate the incremental energy minimization problem, we derive the time-discrete version

of the constitutive equations by employing the backward Euler scheme. Having known the variables

related to the previous time step tn, the variables related to the current time step tn+1 = tn+∆t are

sought. We begin by approximating the incremental evolution equation for the irreversible volume

fraction ηir and the permanent strain εp,

∆t η̇ir ≈ ∆ηir = hsat
ir Cp exp(−Cpη

acc)∆ηacc, ∆t ε̇p ≈ ∆εp = ϵsatp Cp exp(−Cpη
acc)∆ηaccNp, (21)

where

ηacc =

∫ tn+1

0

∆ηacc dτ, ∆ηacc = |∆ηrev|, ∆ηrev = ηrev − ηrevn , (22)
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with ηrevn as the value of the reversible volume fraction from the previous time step tn. At the same

time, the incremental form of the rate-independent dissipation potential is obtained as

∆D(∆ηrev, ηacc) = fc(η
acc)|∆ηrev|. (23)

The solution of the problem is determined via the incremental energy minimization principle

(Petryk, 2003; Rezaee-Hajidehi et al., 2020). A global incremental potential Π is defined by sum-

ming up the increment of the total Helmholtz free energy ∆Φ (where Φ =
∫
B
ϕdV ), the global

dissipation potential ∆D (where ∆D =
∫
B

∆DdV ) and the potential of the external loads ∆Ω, and

is subsequently minimized with respect to the unknowns u, ε̄t and ηrev, i.e.,

Π = ∆Φ + ∆Ω + ∆D → min
u,ε̄t,ηrev

(24)

which is subject to the inequality constraints on the reversible volume fraction ηrev, Eq. (3), and to

the constraint related to the transformation strain surface, Eq. (9). At the same time, ηir and εp,

which contribute directly to the minimization problem, are explicitly evaluated from Eq. (21). To

provide a clearer idea of the structure of the minimization problem and the underlying constitutive

behavior of the model, a simplified 1D version of the model is elaborated in Appendix A.

Fig. 2 showcases the intrinsic stress–strain response predicted by the model under cyclic tensile

loading. Two cases are highlighted: the pseudoelasticity degradation effects observed within the

first three cycles, relevant to the problem of subloop deformation investigated in this study, and

the degradation effects observed within 50 cycles, which provides a more holistic view of the model

behavior. Note that the material parameters adopted to generate the intrinsic response in Fig. 2

are the same as those adopted in the main simulations in Section 3.

2.2. Further extensions and finite-element implementation

The model presented in Section 2.1 is now enriched with micromorphic regularization and is

made thermomechanically coupled. Both extensions have been thoroughly discussed in our previous

works (Rezaee Hajidehi and Stupkiewicz, 2018; Rezaee-Hajidehi et al., 2020). Hence, we only briefly

discuss them here.

The purpose of adopting the micromorphic regularization is to facilitate the finite-element im-

plementation of the model by restructuring the minimization problem in a way that the constitutive

complexities are transferred to the local level (for instance, at the Gauss points) where they can be

treated in a more efficient way. To do so, a new degree of freedom η̆ is introduced and is coupled

with the volume fraction ηrev through the following penalization term ϕpen which is added into the

Helmholtz free energy function, see Eq. (13),

ϕpen(ηrev, η̆) =
1

2
χ(ηrev − η̆)2, (25)
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Figure 2: The intrinsic stress–strain response of the model under full-transformation uniaxial-tension cycles: (a) the

first three cycles, and (b) the first 50 cycles. The dashed curve in panel (a), denoted as ‘reference’, represents the

pseudoelastic intrinsic response with no degradation effects. The model parameters adopted to produce the intrinsic

responses are the same as those in the main simulations, see Section 3.

with χ as the penalty parameter. The gradient energy ϕgrad, see Eq. (17), is then redefined in terms

of the gradient of the new variable η̆, i.e.,

ϕgrad(∇η̆) =
1

2
G∇η̆ · ∇η̆. (26)

Following this modification, the volume fraction ηrev can be considered as a local quantity and the

respective evolution equation can be solved (together with that of ε̄t) locally. For further details

regarding the micromorphic regularization, interested readers are referred to Forest (2009); Mazière

and Forest (2015).

To arrive at a thermomechanically-coupled model, two most important couplings are taken

into consideration. First, the chemical energy ϕchem, Eq. (14), is extended to reflect the effect of

temperature on the mechanical response (the Clausius–Clapeyron relation), i.e.,

ϕ0(ηrev, ηir, T ) = ϕa
0(T ) + ∆ϕ0(T )η, ∆ϕ0(T ) = ∆s∗(T − Tt), (27)

where ∆s∗ represents the transformation entropy change, T is the temperature, and Tt is the

transformation equilibrium temperature. Next, the internal heat source Ṙ is defined to encompass

the latent heat of transformation and the heat release by mechanical dissipation, viz.,

Ṙ = ∆s∗T η̇rev + fc(η
acc)|η̇rev|. (28)
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Eq. (28) is then introduced into the (isotropic) heat conduction equation

ϱ0cṪ + ∇ ·Q = Ṙ, Q = −κ∇T, (29)

where ϱ0c is the specific heat, Q is heat flux and the scalar κ is the heat conduction coefficient.

It follows from Eq. (28) that the internal heat generation is influenced during the cyclic phase

transformation. This influence is manifested by both the latent heat of transformation and the

mechanical dissipation and operates through the reversible volume fraction ηrev and the hysteresis

parameter fc, cf. Eqs. (3) and (20).

The full thermomechanically-coupled model comprises three global unknown fields: the displace-

ment u, the micromorphic variable η̆ and the temperature T ; and two local unknown variables: the

reversible volume fraction ηrev and the transformation strain ε̄t. Recall that the irreversible vol-

ume fraction ηir and the permanent strain εp are explicitly integrated by using Eq. (21). The

finite-element discretization of the displacement field u is performed by using 20-noded quadratic

hexahedral (Serendipity) elements with reduced Gauss integration rule (2 × 2 × 2). On the other

hand, 8-noded linear hexahedral elements with standard Gauss integration rule (2 × 2 × 2) are

used for η̆ and T . For the 2D axisymmetric wire problem discussed in Section 3.2, the respective

discretizations have been done by 8-noded quadratic elements and 4-noded linear elements. The

resulting global–local problem is structured as a nested iterative-subiterative scheme and is solved

at both the global and local levels by using the Newton method. Notably, a fully-coupled monolithic

scheme is adopted so that the global problem is solved simultaneously with respect to all unknowns.

It is worth noting that the local minimization problem of ηrev is non-smooth, in view of the

presence of the rate-independent dissipation, see Eqs. (19) and (23). To address this issue, the

augmented Lagrangian method is utilized, which handles adeptly both the non-smoothness of the

rate-independent dissipation and the inequality constraints on the reversible volume fraction ηrev,

i.e., 0 ≤ ηrev ≤ 1 − ηir, see Eq. (3). Moreover, the local problem has an additional constraint to be

satisfied, namely the equality constraint of the transformation strain surface g(ε̄t) = 0, see Eq. (9).

The latter is addressed by using a standard Lagrange multiplier method. For brevity, the related

technical details are not discussed here, see Stupkiewicz and Petryk (2013).

The model is transformed into a finite-element code using the automatic differentiation tool

AceGen (Korelc, 2009; Korelc and Wriggers, 2016), thanks to which the residual vector and the

tangent matrix are derived automatically, and thereby, the quadratic convergence of the Newton

method is ensured. The simulations are carried out in the finite-element environment AceFEM.
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Figure 3: The loading programs used in the simulations.

3. Simulations

3.1. Preliminaries

Our modeling study concerns a NiTi specimen subjected to uniaxial tension with subloop loading

paths. Two scenarios are explored. First, in line with the experimental study of Tobushi et al.

(2003), the subloop deformation behavior of a NiTi wire is analyzed. The loading program in

this scenario encompasses three nested subloops with increasing strain amplitudes, as depicted in

Fig. 3(a). As shown later, this setup enables us to reproduce neatly the hierarchical return-point

memory. Next, we extend our analysis to a NiTi strip, where we elucidate how the subloop behavior

is influenced by the complexity of the pattern of propagating instabilities. This scenario is then

examined under two additional loading programs, see Fig. 3(b,c). In all simulations, the loading is

exerted in a displacement-control mode at a (constant) low strain rate of 1.67 × 10−4 s−1.

The NiTi wire has a diameter of 0.75 mm and a total length of L0 = 20 mm. To facilitate

this analysis, the wire is justifiably reduced to a 2D axisymmetric geometry. The corresponding

2D problem is then discretized by a uniform finite-element mesh consisting of equiaxed elements

with an edge size of 0.01 mm. This resulted in 76 000 elements and approximately 620 000 degrees

of freedom. Meanwhile, the NiTi strip is treated as a full 3D problem. The strip has a thickness

of 0.4 mm, a width of 10 mm and a total length of L0 = 100 mm. It is discretized by a uniform

mesh consisting of elements with an in-plane edge size of 0.2 mm and a through-thickness size of

0.4 mm (i.e., only one element is used though the thickness). This mesh led to 25 000 elements

and nearly 640 000 degrees of freedom. In both problems, the following boundary conditions are

imposed. The displacements at the bottom edge of the specimen are fully constrained. At the top

edge, the axial displacement δ is prescribed and the lateral displacements are constrained. At the
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same time, the temperature at both top and bottom edges is set equal to the ambient temperature,

i.e., T = T0 = 353 K, which is the actual ambient temperature maintained during the experiment

(Tobushi et al., 2003). Finally, the heat convection effect is neglected.

The model parameters adopted in the simulations are summarized in Tab. 1. Except for the

gradient energy parameter G, all the model parameters are identical in the wire and strip problems.

The parameter G sets the length-scale associated with the phase transformation front and can

be linked to the geometry and micromechanical characteristics (Sedmák et al., 2016; Stupkiewicz

et al., 2021). Thus, G takes different values in each problem. First, an assumption ought to

be made regarding the theoretical thickness of the macroscopic interface, λ. Subsequently, G is

determined through the analytical relation G = −Hintλ
2/π2, which is derived from the solution

of the 1D small-strain model of pseudoelasticity (Rezaee Hajidehi and Stupkiewicz, 2018). The

identification procedure for the remaining model parameters which are unrelated to fatigue has been

thoroughly discussed in our recent study (Rezaee-Hajidehi and Stupkiewicz, 2023), see Section 2.3

and Appendix E therein, and is not repeated here.

Identification of some fatigue-related parameters is guided by the indications obtained from the

structural stress–strain response from the experiment, see Fig. 1(a). These include the significant

decrease in the level of the upper stress plateau during the hierarchical subloop deformation and

the value of the remnant strain at the end of the experiment. Accordingly, the parameters Adeg =

−45 MPa, ϵsatr = 0.4ϵT = 2.4% (recall that ϵT denotes the maximum transformation strain, Eq. (12))

and Cp = 0.05 have been calibrated to produce similar effects. We, however, acknowledge that

there exists a degree of uncertainty in the identification of the remaining parameters, for which

we lack definitive experimental evidence. With this in mind, the parameters Hdeg = 40 MPa,

ffin
c = 2 MPa, Cf = Cp = 0.05 and hsat

ir = 0.4 are selected such that the changes in the intrinsic

stress–strain response under a large number of loading cycles (in particular, as it concerns the

transition to a hardening-type response, decrease in the hysteresis loop area and decrease in the

extent of the transformation strain) are in a reasonable qualitative agreement with those reported

in other experimental and modeling studies (e.g., Eggeler et al., 2004; Wang et al., 2008; Delville

et al., 2011; Morin et al., 2011; Petrini and Bertini, 2020). The intrinsic response of the model

resulting from the adopted parameters is illustrated in Fig. 2.

It is worth noting that in all the simulations, as a way to trigger the phase transformation

instability, a geometric imperfection in the form of a slight indent is applied to the specimen. The

indent is located at a distance equal to the diameter/width of the wire/strip from its lower end.

3.2. Simulation results: NiTi wire

The results pertaining to the subloop behavior of the NiTi wire are presented in Figs. 4 and 5.

The phase transformation evolution in Fig. 4(a) and TRIP evolution in Fig. 4(b) are displayed via,
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Table 1: Model parameters adopted in the simulations.

Category Parameter Value

Elasticity κ Bulk modulus 130 GPa

µa Shear modulus for austenite 21 GPa

µm Shear modulus for martensite 9 GPa

Martensitic phase transformation ∆s∗ Chemical energy of transformation 0.24 MPa/K

Tt Transformation equilibrium temperature 222 K

f ini
c Hysteresis loop parameter (initial) 10 MPa

Hint Austenite–martensite interaction parameter -10.5 MPa

ϵT Maximum tensile transformation strain 6%

α Tension–compression asymmetry ratio 1.4

β Transverse isotropy parameter 1.0

Macroscopic transformation front G Gradient energy parameter (wire problem) 0.04 MPa mm2

G Gradient energy parameter (strip problem) 0.4 MPa mm2

χ Micromorphic regularization parameter 100 MPa

Heat transfer ϱc0 Specific heat 2.86 MJ/(m3K)

κ Heat conductivity 18 W/(m K)

TRIP Adeg Pseudoelasticity degradation parameter -45 MPa

Hdeg Pseudoelasticity degradation parameter 40 MPa

ϵsatp Permanent strain saturation value 0.4 ϵT = 2.4%

hsat
ir Irreversible volume fraction saturation value 0.4

ffin
c Hysteresis loop parameter (final) 2 MPa

Cp Degradation rate 0.05

Cf Hysteresis loop degradation rate 0.05
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respectively, the distribution of the reversible volume fraction ηrev and irreversible volume fraction

ηir. Note that, for a more natural visualization, the results of the 2D axisymmetric wire are post-

processed and presented in a 3D configuration. As anticipated, the transformation initiates at the

position of the geometric imperfection. Throughout the entire loading stage of the global cycle

(hereinafter, to avoid confusion with the subloops, we use the term ‘global’), the transformation

maintains a single propagating front. Interestingly, while the front appears to be a flat (and visibly

diffuse) interface in the 3D-wire configuration (e.g., Watkins et al., 2018), it takes on a spherical-

shaped appearance (or ‘cone-shaped’ as described in Sedmák et al. (2016); Sedlák et al. (2021)),

as can be conceived from the corresponding pattern in the axisymmetric planes (not shown here).

During the global unloading, the backward transformation commences from the wire’s central part.

As shown in Fig. 4(b) and discussed below, the highest amount of irreversible volume fraction ηir,

thus the highest TRIP, is accumulated within the central part, making it a favorable site for the

nucleation of the austenitic band. At the same time, due to a slight asymmetry in the distribution

of ηir with respect to the wire’s midpoint, the two evolved fronts do not propagate concurrently.

More specifically, first, the top front reaches the boundary and annihilates, after which the bottom

front follows suit.

Within each subloop path, the front retreats downward during unloading and advances upward

during reloading. This cyclic movement prompts the material points inside the front’s sweeping zone

to undergo backward-then-forward transformation, and thereby, gives rise to the accumulation of

TRIP within the sweeping zone, while the material points beyond it remain unaffected. Given that

the loading program adheres to a fixed nominal mean strain (set at ε̄ = 4.5%, which corresponds

to the front’s proximity to the wire’s midpoint) but an increasing strain amplitude, see Fig. 3(a),

the sweeping zone expands successively from subloop 1 to subloop 3, and at the same time, the

sweeping zone of each subloop encompasses that of the previous one. This therefore results in the

highest concentration of TRIP within the central part of the wire and its step-wise decreasing trend

as it moves away from it, as can be clearly seen in Fig. 4(b).

The hierarchical return-point memory, which is an outcome of the cyclic traversal of the front

across the boundaries of the swept zones, is correctly reproduced in the structural stress–elongation

(σ̄–ε̄) response in Fig. 5. The reproduced feature is in a reasonable agreement with the experi-

mental result of Tobushi et al. (2003), see Fig. 1 and the accompanying discussion. In view of

the exponential nature of the pseudoelasticity degradation effects, the reduction in the level of the

upper stress plateau is at the highest within the first level of hierarchy (of about ∆σ̄ = 21 MPa)

and diminishes to its lowest within the last level of hierarchy (of about ∆σ̄ = 17 MPa). It is worth

noting that in this scenario, where the strain rate corresponds to nearly isothermal conditions (i.e.,

the temperature variation lies within the range of −2 K to 2 K), the stress, upon reaching the
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subloop 1 subloop 2 subloop 3

global unloadingglobal loading

subloop 1 subloop 2 subloop 3

global unloadingglobal loading

Figure 4: NiTi wire subjected to loading program 1: snapshots of (a) reversible volume fraction ηrev and (b)

irreversible volume fraction ηir.
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Figure 5: NiTi wire subjected to loading program 1: structural stress–elongation (σ̄–ε̄) response. The average axial

stress σ̄ is calculated as the reaction force P over the initial cross-section area A0.

return-point, appears to catch up closely with the corresponding stress plateau before applying the

subloop. As shown in Section 3.3 and also observed in the experiments (Doraiswamy et al., 2011;

Takeda et al., 2012), such a close catching up does not occur when thermal effects are at play.

A notable observation from the experimental curve in Fig. 1(a) is the absence of the return-point

memory during the unloading stages of the subloops. Instead, the lower stress plateau seems to

shift downward from one subloop to the next. Anyway, no attempt was made to adjust the material

parameters to replicate the observed behavior, which is, however, present in the results of NiTi strip

reported in Section 3.3.

3.3. Simulation results: NiTi strip

We begin this section by analyzing the NiTi strip under loading program 1. The primary aim is

to examine the subloop behavior in a notably more involved scenario than the NiTi wire discussed

earlier, arising mainly from a more complex transformation pattern and heightened thermal effects.

The simulation results are presented in Figs. 6 and 7. A quick look at Fig. 7 immediately indicates

that the return-point memory is only observable in the trajectories that lead to the global stress

plateau, while the hierarchical return-point memory is lost. This is undoubtedly an outcome of

the nontrivial pattern of phase transformation and resulting TRIP distribution within the strip.

In contrast to the NiTi wire, where a single phase transformation front remained active during

all subloops, the strip features multiple transformation fronts, each presenting a less predictable

pattern of activation. Below, we provide a more detailed account of the unfolding events.

The phase transformation initiates by the nucleation of a single martensite band at the location

of the geometric imperfection. As the overall elongation reaches about ε̄ = 3%, another marten-
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subloop 1 subloop 2 subloop 3

global unloadingglobal loading

subloop 1 subloop 2 subloop 3

global unloadingglobal loading

Figure 6: NiTi strip subjected to loading program 1: snapshots of (a) reversible volume fraction ηrev and (b)

irreversible volume fraction ηir.

18



(a) (b) (c)

subloop 1

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

Overall elongation, ε
_
=δ/L0 [%]

A
ve
ra
ge
ax
ia
ls
tr
es
s,
σ_
=
P
/A
0
[M
P
a]

subloop 2

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

Overall elongation, ε
_
=δ/L0 [%]

A
ve
ra
ge
ax
ia
ls
tr
es
s,
σ_
=
P
/A
0
[M
P
a]

subloop 3

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

Overall elongation, ε
_
=δ/L0 [%]

A
ve
ra
ge
ax
ia
ls
tr
es
s,
σ_
=
P
/A
0
[M
P
a]

Figure 7: NiTi strip subjected to loading program 1: structural stress–elongation (σ̄–ε̄) response.

site band emerges at the opposite end, and as the loading progresses, both transformation fronts

propagate towards each other. This non-synchronous double nucleation is commonly observed in

the experiment of NiTi specimens at relatively low strain rates (e.g., Shaw and Kyriakides, 1997b;

Zhang et al., 2010; Bechle and Kyriakides, 2014). Within subloop 1, the two fronts exhibit a short

back-and-forth movement, manifesting a clear return-point memory in the σ̄–ε̄ response in Fig. 7(a).

During subloop 2, not only the hitherto active fronts but also the fronts near the boundaries become

engaged in the transformation evolution. As a consequence, TRIP is induced via all fronts. This

behavior is reflected in the σ̄–ε̄ response which takes on an irregular appearance characterized by

few sudden stress changes, thus spoiling the return-point memory in the inner part (Fig. 7(b)). A

similar process recurs within subloop 3, albeit with a more complex phase transformation evolution

during the reloading stage and also more distinct stress events in the mechanical response. During

the global unloading, the backward transformation proceeds predominantly in a criss-cross mode,

which persists until an overall elongation of about ε̄ = 3%. Subsequently, the fronts reconfigure

into sharp inclined interfaces that move towards each other until the complete annihilation of the

(reversible) martensite domain. It is worth remarking that the distribution of the irreversible vol-

ume fraction ηir within the entire strip at the end of the global unloading remains consistent with

that at the end of the global loading, while its magnitude increases uniformly.

Upon inspecting the return-point memory in Fig. 7, a slight difference can be noticed concerning

the level of the global stress plateau before and after a subloop path. This difference stems from the

thermal effects. Specifically, compared to the NiTi wire, a more pronounced temperature variation

is produced across the specimen during the forward transformation (for instance, of about 10 K

immediately before subloop 1), resulting in a more visible thermal hardening that sustains a higher
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stress for the propagation of the front. Within the subloop path, the transformation latent heat is

initially absorbed during the backward transformation (self-cooling) and is subsequently released

when the forward transformation resumes (self-heating). Accordingly, as the front reaches the

pristine material, the temperature variation across the specimen is reduced compared to the state

before the subloop (for instance, of about 5 K immediately after subloop 1). Thereby, thermal

hardening diminishes, necessitating a lower stress for interface propagation. Note also that as a

result of the cyclic transformation of the material points, a smaller martensite volume fraction

is transformed during the subloop reloading compared to the state before the subloop, and this

contributes to the reduction of the latent heat generation (Iadicola and Shaw, 2002).

We now proceed with the analysis of the NiTi strip under two additional loading programs, one

consisting of nested subloops with decreasing strain amplitudes, i.e., subloops are applied in a reverse

order compared to loading program 1, and the other consisting of three equally-spaced distinct

subloops with a constant strain amplitude, see Fig. 3(b,c). The corresponding results are shown in

Figs. 8, 9 and 10. The comparison of the snapshots of the reversible volume fraction ηrev in the two

additional cases to those of loading program 1 reveals noticeable morphological differences, which are

beyond the differences arising solely from the loading-dependent transformation evolution pathways.

The differences mainly concern the varying number of martensite domains formed during the global

loading stage and the activation pattern of the fronts within the subloops. More specifically, unlike

loading program 1, loading programs 2 and 3 exhibit only two martensite domains during the

global loading. In loading program 2, all four fronts remain consistently active within all subloops,

resulting in a clear demonstration of the hierarchical return-point memory in the σ̄–ε̄ response, as

shown in Fig. 10(a). In loading program 3, however, while the involvement of the fronts near the

boundaries is eye-catching within subloop 1, overall, the interior fronts are prominently active. In

this case, the front sweeping zones in the subloops do not interact with each other (as can be also

recognized from the snapshots of ηir in Fig. 9), and the resulting subloops are independent, see

Fig. 10(b). During the global unloading, all cases show a similar transformation evolution pattern.

We conclude this discussion by addressing TRIP accumulation within the strip in relation to

the loading program. Similar to the martensitic transformation, TRIP exhibits characteristics that

are specific to the applied loading program. Given that loading programs 1 and 2 have a reverse

arrangement of the subloops but are otherwise identical, one would intuitively expect that the

resulting TRIP accumulations, in terms of both the pattern and the intensity, would be the same

after applying all the three subloops. A comparison of the snapshots of the irreversible volume

fraction ηir (Figs. 6 and 8) indeed confirms that TRIP hotspots in these two cases are located in

nearly the same regions, with two hotspots near the boundaries and two within the interior of the

strip, corresponding to the regions with the highest activity of the fronts. Yet, minor discrepancies
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subloop 1 subloop 2 subloop 3

global unloadingglobal loading

subloop 1 subloop 2 subloop 3

global unloadingglobal loading

Figure 8: NiTi strip subjected to loading program 2: snapshots of (a) reversible volume fraction ηrev and (b)

irreversible volume fraction ηir.
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subloop 1 subloop 2 subloop 3

global unloadingglobal loading

subloop 1 subloop 2 subloop 3

global unloadingglobal loading

Figure 9: NiTi strip subjected to loading program 3: snapshots of (a) reversible volume fraction ηrev and (b)

irreversible volume fraction ηir.
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Figure 10: Structural stress–elongation (σ̄–ε̄) response of NiTi strip subjected to (a) loading program 2 and (b)

loading program 3.

can be observed, particularly concerning the intensity of TRIP within the hotspot regions. On the

other hand, loading program 3 demonstrates a rather distinct TRIP accumulation characterized by

several regions with mild intensity within the interior and localized hotspots near the boundaries.

As previously noted, this particular TRIP distribution results from the lack of interaction among

the fronts sweeping zones of the independent subloops. As a summary of this discussion, Fig 11

compares the distribution of ηir along the entire length of the strip for various loading programs.

4. Conclusion

The phenomenon of return-point memory that appears during the subloop deformation of pseu-

doelastic SMA is an outcome of the interaction between the structural instabilities of phase trans-

formation and the degradation of functional properties. It seems that this crucial aspect has been

generally overlooked in existing modeling approaches, thus motivating the present work to address

this gap. A phenomenological model of functional fatigue is developed for this purpose, which

branches from our previous gradient-enhanced model of pseudoelasticity. The main goal of our

study is to demonstrate, through modeling the return-point memory, how the instabilities and

functional fatigue interact. We first examine an illustrative example of a NiTi wire subjected to

nearly isothermal uniaxial tension with nested subloops. The obtained results clearly correlate with

the experimental observations of Tobushi et al. (2003), especially regarding the hierarchical return-

point memory. The study is then extended to a more involved example of a NiTi strip, where a

detailed analysis is performed by examining three different loading programs. The corresponding

results underline the intertwined evolution of the phase transformation and TRIP, its relation to
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Figure 11: Distribution of the irreversible volume fraction ηir along the entire length of the strip (taken in the

reference configuration) at the end of the global loading stage. The graphs correspond to the midsection of the strip,

as indicated by the white dashed curve overlaid on the snapshot.

the applied loading program, and its implications on the phenomenon of the return-point memory.

In addition, the results hint at the visible contribution of the thermomechanical coupling effects.
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Appendix A. A simplified 1D demonstration of the model

In this appendix, we derive the governing equation of the transformation stress for a simplified

isothermal 1D model. In 1D setting, the model features four variables, namely the total strain

ε = ∇u, the reversible volume fraction ηrev, the irreversible volume fraction ηir and the permanent

strain εp. The Helmholtz free energy is thus expressed as follows

ϕ(ε, εp, ηrev, ηir) = ϕchem(ηrev, ηir) + ϕel(ε, ε
p, ηrev) + ϕint(η

rev) + ϕdeg(ηrev, ηir) + I(ηrev), (A.1)
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where the indicator function I pertains to the inequality constraints on the reversible volume fraction

ηrev (I = 0 if 0 < ηrev < 1 − ηir and I = ∞ otherwise). Note that the gradient energy associated

with the austenite–martensite diffuse interface, ϕgrad, is disregarded here.

The elastic strain energy ϕel is formulated as

ϕel(ε, ε
p, ηrev) =

1

2
E(ε− εt − εp)2, εt = ηrevϵT, (A.2)

where E is the Young’s modulus (for simplicity, E is assumed constant and independent of η) and

the constant ϵT is the maximum transformation strain. The remaining components of the free

energy, as well as the dissipation potential, are identical to those of the general 3D model, see

Eqs. (14), (16), (18) and Eq. (23). Moreover, the evolution equations for the permanent strain εp

and the irreversible volume fraction ηir are postulated as (cf. Eq. (5))

ηir = hsat
ir (1 − exp(−Cpη

acc)), εp = ϵsatp (1 − exp(−Cpη
acc)). (A.3)

For a given total strain ε, the volume fraction ηrev can be determined by minimizing the local

potential π = ∆ϕ + ∆D, see Eq. (24). It is immediate to see that the local potential π is non-

smooth, due to the presence of the rate-independent dissipation ∆D and the indicator function I.

In line with Rezaee Hajidehi and Stupkiewicz (2018), the minimization of π with respect to ηrev is

written as a differential inclusion, given by

fηrev ∈ ∂ηrevD̄(ηrev, ηacc) (A.4)

where D̄ = ∆D + I encompasses the non-smooth components of π and fηrev is the thermodynamic

driving force associated with ηrev and is expressed as

fηrev = −
(

∂ϕ

∂ηrev
+

∂ϕ

∂εp
∂εp

∂ηrev
+

∂ϕ

∂ηir
∂ηir

∂ηrev

)
. (A.5)

During the forward/backward transformation, i.e., when the bound constraints are inactive, the

inclusion (A.4) yields

fηrev = ±fc, (A.6)

and gives the following equation for the transformation stress σt
± (σt

+ for the forward transformation

and σt
− for the backward transformation),

σt
± =

∆ϕ0k1 ± fc + Hintη
rev + Adegk2 + Hdegη

revk3
k4

, (A.7)

where fc is defined in Eq. (20) and ki are expressed as

k1 = 1 +
∂ηir

∂ηrev
, k2 = ηir + ηrev

∂ηir

∂ηrev
, k3 = ηir +

1

2
ηrev

∂ηir

∂ηrev
, k4 = ϵT +

∂εp

∂ηrev
. (A.8)

It is important to highlight that the necessary condition for the minimum of π with respect to

ηrev, which leads to the transformation criteria (A.7), is not computed in a standard manner. This
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arises as a result of the state-dependence of the dissipation potential D, i.e., the dependence of fc

on the accumulated volume fraction ηacc, see Eq.(20). Having the minimization problem formu-

lated in rates (not shown here), it becomes apparent that fc is treated as constant when evaluating

the necessary condition for the rate η̇rev. In the incremental setting, to maintain consistency with

the rate-problem, the increment of the volume fraction, ∆ηrev, present in the current unknown

ηrev = ∆ηrev + ηrevn is distinguished from the increment upon which the evolution equation for fc

rely. Despite the two increments coincide, the latter is considered as constant when evaluating the

necessary condition (it should be remarked that the extra differentiation terms that result from a

non-constant fc would only marginally contribute to the results). Accordingly, the minimization

problem here does posses the structure of a quasi-optimization problem and not a genuine opti-

mization problem. To avoid the complexity in the model presentation, this issue is not elaborated

here. For more details, interested readers are referred to Tůma et al. (2016).
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Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load. Science

353, 559–562.
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