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Abstract

Localization of the stress-induced martensitic phase transformation plays an important role in the

fatigue behavior of shape memory alloys (SMAs). The phenomenon of return-point memory that is

observed during the subloop deformation of a partially-transformed SMA is a clear manifestation of

the interaction between localized phase transformation and degradation of the functional properties.

The present study aims to demonstrate this structure–material interaction in the modeling of return-

point memory. It seems that this crucial aspect has been overlooked in previous modeling studies.

For this purpose, we developed a gradient-enhanced model of pseudoelasticity that incorporates

the degradation of functional properties in its constitutive description. The model is employed

to reproduce the hierarchical return-point memory in a pseudoelastic NiTi wire under isothermal

uniaxial tension with nested subloops. Additionally, a detailed analysis is carried out for a NiTi

strip with more complex transformation pattern. Our study highlights the subtle morphological

changes of phase transformation under different loading scenarios and the resulting implications for

return-point memory.

Keywords: Shape memory alloys; Phase transformation; Functional degradation; Propagating

instabilities; Subloop deformation; Modeling

1. Introduction

The practical interest in shape memory alloys (SMAs), especially NiTi, stems from their ability1

to withstand and recover large strains. This ability is exhibited through mechanical loading and2

unloading at sufficiently high temperatures (pseudoelasticity) or through mechanical loading and3

unloading followed by heating (shape memory effect). The underlying mechanism is the crystallo-4

graphically reversible martensitic phase transformation that occurs between the austenitic parent5

phase (stable at higher temperatures, possessing higher crystal symmetry) and the martensitic prod-6

uct phase (stable at lower temperatures, possessing lower crystal symmetry) [1]. By leveraging the7

unique characteristics of SMAs, they have found a broad range of applications across various fields,8

from micro-scale biomedical devices to macro-scale industrial components [2, 3]. The operational9

lifespan of SMAs in most of the applications involves enduring cyclic mechanical/thermal loadings,10
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which highlights the great importance of identifying their fatigue behavior. It is well-recognized11

that, due to the martensitic phase transformation, fatigue in SMAs is more complex than in common12

engineering metals and is mainly classified into two aspects: degradation of functional properties13

(such as recoverable strain, transformation stress, and hysteresis loop area), known as functional14

fatigue, and the evolution of damage in the material, known as structural fatigue [4]. This complex15

nature demands special attention and, as a result, has prompted a tremendous number of stud-16

ies that focus on the fatigue characterization of SMAs from a variety of perspectives and on the17

underlying micromechanical processes [3–13].18

Stress-induced martensitic transformation in pseudoelastic NiTi appears (typically, in tension-19

dominated loadings) as localized instabilities in the form of martensite bands, and subsequently20

progresses via propagation of the instabilities in the form of patterned interfaces (macroscopic trans-21

formation fronts) that separate the domains of low-strained austenite and high-strained martensite,22

e.g., [14–17]. Due to the high strain incompatibilities that exist within the transformation front23

and the ensuing large local stresses, it can be reasonably inferred that propagating instabilities can24

vitally influence both the functional fatigue and structural fatigue of the material. Despite the25

longstanding recognition of this crucial aspect [4, 18–21], its direct validation was provided only a26

few years ago in the experiments conducted by Zheng et al. [8, 22, 23]. It was demonstrated that27

in view of the repetitive nucleation and propagation of the localized transformation in NiTi strips28

under cyclic uniaxial tension, a rapid degradation of pseudoelasticity occurs that accelerates the29

fatigue crack initiation and fatigue failure.30

An interesting manifestation of the interaction between propagating instabilities and functional31

degradation is found in the subloop deformation behavior of a partially-transformed SMA specimen32

under displacement-controlled loading. The subloop behavior has been extensively investigated ex-33

perimentally, notably for NiTi [18, 19, 23–26] but also for other SMAs [27, 28]. Fig. 1(a), reproduced34

from Tobushi et al. [24], depicts the global mechanical response of a NiTi wire subjected to subloop35

paths. For a more intuitive description of the phenomenon, hypothetical schematics of the corre-36

sponding transformation front evolution are provided in Fig. 1(b). As the front propagates along37

the wire, it leaves behind transformation-induced microstructural defects, such as dislocations and38

stabilized (locked-in) martensite. During the subloop unloading (for instance, the first subloop,39

which starts at point A), the front travels backward over an already swept zone (from A to B),40

hence intensifying the generated defects. Accordingly, during the subloop reloading, the propaga-41

tion of the front over the twice-swept zone occurs with a lower stress level compared to the original42

transformation plateau. Upon entering the pristine zone (at point A), which is virtually free of43

transformation-induced defects, the front experiences the transformation-onset stress characteristic44

to the initial material state. This causes the stress to catch up with the original plateau by passing45

through the subloop unloading point. This trait is known as the return-point memory. The pro-46

cess repeats in the subsequent subloops and culminates in an intriguing hierarchical return-point47

memory.48

Motivated by the experimental results, numerous attempts have been made to develop SMA49

models capable of capturing the phenomenon of return-point memory during the subloop deforma-50

tion, either through incorporating the permanent strain contribution and degradation of functional51

properties [29–32] or by merely refining the constitutive equations of (non-cyclic) model of pseudoe-52
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Figure 1: Return-point memory in NiTi wire subjected to uniaxial tension with three nested subloop paths: (a)
the structural stress–strain response, and (b) hypothetical schematics of the corresponding transformation front
evolution. The stress–strain response in panel (a) is reproduced from Tobushi et al. [24] (courtesy of R. Matsui). The
red arrows in panel (b) indicate the trajectory of the front propagation, and the color scales quantify the recurrence
of the front’s traversal over the wire’s segments.

lasticity [25, 33, 34]. In fact, a physically-relevant approach for modeling the return-point memory53

should hinge on the interaction between the propagating instabilities (structural inhomogeneities)54

and the functional degradation of the material. Nevertheless, most of the existing models (including55

those referenced above) postulate a homogeneous martensitic phase transformation, while address-56

ing a problem with a transformation of localized nature. Albeit this simplifies the computations57

significantly, it is not a plausible assumption in the present context. To the best of our knowledge,58

the only related modeling study that has accounted for this structure–material interaction is the 1D59

model of Bartel et al. [32]. In their model, however, instabilities do not originate from a softening-60

type intrinsic material response but are rather treated as weak displacement discontinuities that61

separate the transformed and untransformed material points (indeed, experiments, e.g., [35, 36],62

have confirmed that the true intrinsic response of NiTi is characterized by a significant soften-63

ing branch). It should be remarked that recently Xiao and Jiang [37, 38] have acknowledged this64

structure–material interaction in their simulations, however, their applications did not specifically65

pertain to the subloop deformation and return-point memory.66

In light of the above premise, this work aims to provide a detailed analysis of the phenomenon67

of return-point memory by accounting for the interaction between propagating instabilities and the68

degradation of the functional properties of the material. To achieve this, a gradient-enhanced model69

of pseudoelasticity with functional degradation is developed in this work. The model is formulated70

within the small-strain theory. The basic structure of the model follows the non-gradient model of71

pseudoelasticity developed by Stupkiewicz and Petryk [39] and is based on the energy minimization72

principle. The gradient-enhancement, micromorphic regularization, and thermomechanical cou-73

pling are adopted from our previously-developed gradient-enhanced model [40, 41]. This previous74

model was proven to be capable of reproducing the complex patterns of phase transformation in75
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pseudoelastic NiTi specimens under uniaxial tension [41], including the effect of loading rate and76

latent heat of transformation on martensite domain formation, and in pseudoelastic NiTi tubes77

under combined tension–torsion [42, 43]. The main advancement of the model in the present work78

compared to the previous version lies in the incorporation of permanent inelastic strain and the79

enrichment of the constitutive equations with functional degradation effects. Consequently, given80

its ability to treat localization effects via gradient-enhancement and micromrophic regularization,81

the model can be considered a suitable tool for addressing problems where both cyclic loading and82

transformation localization are at play.83

In what follows, we first introduce the model in Section 2. The model is employed to analyze the84

problem of subloop deformation in NiTi wire and strip under uniaxial tension. The corresponding85

results are presented and discussed in Section 3. In addition, a simplified version of the model is86

provided in Appendix A.87

2. A small-strain model of pseudoelasticity with functional degradation

The present model falls in the category of phenomenological models. Accordingly, the consti-88

tutive relations are tailored, in a simple phenomenological manner, to mimic the pseudoelasticity89

degradation effects. Since the focus of this study is on the analysis of the return-point memory,90

which is relevant at the macroscopic scale, a phenomenological description seems to adequately91

fulfill the intended purpose. In Section 2.1, we introduce the constitutive model in an isothermal92

format. Subsequently, in Section 2.2, micromorphic regularization, thermomechanical coupling, and93

finite-element implementation are briefly discussed.94

2.1. Constitutive model

We begin the model description by noting that functional fatigue in SMAs is typically attributed95

to a number of mechanisms. Among them, generation of dislocation slip [4, 44], formation of sta-96

bilized martensite [21, 45] and non-transforming austenite [45, 46] are the most likely involved97

mechanisms. In the present model, a detailed subdivision into the possible mechanisms and their98

mutual interaction is not attempted, instead, they are unitedly represented by phenomenological99

evolution equations, and are directly linked to the martensitic phase transformation through the100

accumulated martensite volume fraction ηacc. In line with this notion, the inelastic mechanism re-101

sponsible for functional degradation is herein denoted as transformation-induced plasticity (TRIP).102

The material state at each point is characterized by two quantities, namely the total strain103

ε = 1
2

(
∇u + (∇u)T

)
, with u as the displacement vector, and the martensite volume fraction η.104

The total strain is additively decomposed into105

ε = εe + εt + εp, (1)

where εe denotes the elastic contribution, εt denotes the martensitic transformation contribution106

and εp is the permanent strain associated with TRIP. At the same time, it is assumed that during107

the martensitic transformation a fraction of martensite stabilizes and does not transform back108

to austenite. Hence, the martensite volume fraction η is split into the reversible part ηrev and109

4



irreversible part ηir, viz.,110

η = ηrev + ηir, (2)

and the following inequality constraints hold,111

0 ≤ ηir ≤ η ≤ 1 =⇒ 0 ≤ ηrev ≤ 1 − ηir. (3)

The material is in the fully austenitic state when η = ηrev = 0 and is in the fully martensitic state112

when η = 1. Nevertheless, once the material starts transforming to martensite from a pristine113

austenitic state, ηir becomes immediately nonzero, as indicated by Eqs. (4)–(6) below, and thereby,114

a fully austenitic state will not be recoverable.115

It has been repeatedly observed in the experiments that the degradation of pseudoelasticity in116

conventional polycrystalline NiTi are mostly pronounced during the first tens of cycles, gradually117

diminishing and eventually reaching saturation as the material passes the so-called shakedown118

stage, e.g., [22, 47, 48]. In view of this general consensus, we adopt the assumption that both the119

irreversible volume fraction ηir and the permanent strain εp follow exponential-type evolution laws.120

Note that this assumption is not unique to the present model and has been exploited in various121

SMA models that account for functional degradation, e.g., [37, 49–51]. With this assumption in122

place, we first introduce the accumulated volume fraction ηacc as123

η̇acc = |η̇rev| =⇒ ηacc =

∫ t

0

|η̇rev|dτ, (4)

where the overdot denotes the rate of change of the variable and t denotes the time. The evolution124

equation for the irreversible volume fraction ηir is then explicitly postulated as125

ηir = hsat
ir (1 − exp(−Cpη

acc)), (5)

which results from the time-integration of the following rate equation (with ηacc
∣∣
t=0

= 0 and126

ηir
∣∣
t=0

= 0, as for the initial conditions),127

η̇ir = hsat
ir Cp exp(−Cpη

acc)η̇acc. (6)

Analogously, the evolution equation for the permanent strain εp is postulated as128

ε̇p = ϵsatp Cp exp(−Cpη
acc)η̇accNp. (7)

In Eqs. (5)–(7), hsat
ir and ϵsatp represent the respective saturation values for irreversible volume129

fraction and permanent strain, Cp is the degradation rate, and Np is the direction tensor which is130

defined such that the rate of the permanent strain ε̇p is aligned with the martensitic transformation131

strain εt, i.e.,132

Np =
εt

∥εt∥
, ∥εt∥ =

√
tr(εt)2. (8)

Note that, in view of the definition of the accumulated volume fraction ηacc, the variables ηir and133

εp evolve continuously during both the forward and backward transformations.134
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Martensitic transformation in SMAs usually exhibits negligible volumetric change [1]. The135

transformation strain εt is therefore assumed to be deviatoric (i.e., tr εt = 0). Moreover, since136

the stress-induced transformation renders the martensite variants to be oriented in the direction137

of the applied stress, martensite is here considered to appear in a fully-oriented state so that the138

transformation strain εt is defined as a function of the reversible volume fraction ηrev and the139

transformation strain of fully-oriented martensite ε̄t,140

εt = ηrevε̄t, ε̄t ∈ P̄ = { ε̄t : g(ε̄t) = 0 }. (9)

The set P̄ defines the admissible limit transformation strain tensors characterized by the surface141

g(ε̄t) = 0 which is expressed in the following form [52],142

g(ε̄t) =
[
(−I2)3/2 − bI3 − cI34

]1/3
− a. (10)

In Eq. (10), I2 and I3 denote the principal invariants of the limit transformation strain tensor ε̄t143

while I4 denotes a mixed invariant, defined as144

I2 = −1

2
tr(ε̄t)2, I3 = det ε̄t, I4 = m · ε̄t m, (11)

where m is the axis of the transverse isotropy. The parameters a, b and c characterize the shape145

and size of the surface g(ε̄t) = 0 and are specified as146

a = ϵT

[ 3
√

3

4(1 + α3)

]1/3
, b =

√
3

6

9α3β3 − 7α3 + 7β3 − 9

(1 + α3)(1 + β3)
, c =

2
√

3

3

α3 − β3

(1 + α3)(1 + β3)
, (12)

with ϵT as the maximum transformation strain in tension, α as the tension–compression asymmetry147

ratio in the direction along the axis of transverse isotropy (i.e., parallel to m), and β as the tension–148

compression asymmetry ratio in the direction perpendicular to the axis of transverse isotropy (i.e.,149

perpendicular to m).150

It is noteworthy that the deviatoric nature of the transformation strain εt dictates, in accordance151

with the definition of the direction tensor Np, see Eq. (8), that the permanent strain εp is also152

deviatoric. Models within the present context often postulate that the permanent inelastic strain153

evolves in the direction of stress deviator, e.g., [37, 49, 50]. In the present formulation, it can be154

easily shown that the stress deviator is perpendicular to the surface g(ε̄t) = 0, see [39], and thereby,155

the transformation strain εt depends on the direction of stress deviator. This, however, does not156

imply that the transformation strain εt, and accordingly the permanent strain rate ε̇p, are colinear157

with the stress deviator.158

Another important aspect to highlight is that the accumulation of the irreversible volume frac-159

tion ηir and its impact on the reversible volume fraction ηrev cause the magnitude of the transfor-160

mation strain εt, which serves as the actual transformation strain measure in the present model,161

to decrease. However, the surface g(ε̄t) = 0 and so the limit transformation strain ε̄t remain in-162

tact throughout the cyclic transformation. This represents an underlying modeling assumption in163

the present framework regarding the interaction between phase transformation and cyclic degra-164

dation. It reflects the notion that the inherent characteristics of the transformation strain are not165
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affected during the cyclic degradation. Instead, it is the accumulation of TRIP and the decrease in166

the amount of transformable (reversible) martensite that lead to the contraction of the maximum167

attainable transformation strain.168

We now elaborate on the Helmholtz free energy function and the dissipation potential, both169

customized to incorporate the degradation effects. Assuming an isothermal process, the Helmholtz170

free energy ϕ is composed of the following contributions: the chemical energy ϕchem, the elastic strain171

energy ϕel, the austenite–martensite interaction energy ϕint, the energy of the diffuse interface ϕgrad,172

and the energy contribution ϕdeg related to the pseudoelasticity degradation, i.e.,173

ϕ(ε, ε̄t, εp, ηrev,∇ηrev, ηir) =

ϕchem(ηrev, ηir) + ϕel(ε, ε̄
t, εp, ηrev) + ϕint(η

rev) + ϕgrad(∇ηrev) + ϕdeg(ηrev, ηir). (13)

Among the contributions to the Helmholtz free energy ϕ, only ϕdeg is specific to the present174

model. The remaining contributions are rather standard and adhere to the non-cyclic model of175

pseudoelasticity [39–41] and are formulated as176

ϕchem(ηrev, ηir) = (1 − η)ϕa
0 + ηϕm

0 = ϕa
0 + ∆ϕ0η, (14)

177

ϕel(ε, ε̄
t, εp, ηrev) = µ tr(εedev)2 +

1

2
κ(tr εe)2, εe = ε− ηrevε̄t − εp, (15)

178

ϕint(η
rev) =

1

2
Hint(η

rev)2, (16)

179

ϕgrad(∇ηrev) =
1

2
G∇ηrev · ∇ηrev. (17)

Here, ∆ϕ0 = ϕm
0 − ϕa

0 is the phase transformation chemical energy, µ is the elastic shear modulus180

and is calculated via applying the Reuss averaging scheme based on the total volume fraction η to181

the shear moduli of austenite µa and martensite µm (i.e., 1/µ = (1− η)/µa + η/µm), κ is the elastic182

bulk modulus (assumed constant), Hint is the parameter that characterizes the material response183

(softening- or hardening-type) within the transformation regime, and G > 0 is the gradient energy184

coefficient. Note that the parameter Hint can be adapted such that it reflects a loading-dependent185

material response (typically, a softening-type response in tension and hardening-type response in186

compression), e.g., [42]. However, for simplicity, Hint is here considered as a constant parameter.187

Given that the simulations in this study involve predominantly tensile loading, see Section 3, this188

simplification does not pose a serious limitation. Note also that the interaction energy ϕint is189

a quadratic function of the volume fraction ηrev, resulting in a tri-linear intrinsic stress–strain190

response, as illustrated in Fig. 2. This choice is also made for simplicity and can be readily adapted191

to more complex functions to achieve a more realistic response [43].192

On the other hand, the degradation contribution ϕdeg takes the following form193

ϕdeg(ηrev, ηir) = Adegη
irηrev +

1

2
Hdegη

ir(ηrev)2, (18)

where Adeg and Hdeg represent the degradation parameters. The contribution ϕdeg is specifically194

tailored to address two primary effects of pseudoelasticity degradation: it accounts for the reduction195
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of the transformation-onset stress (described by the term Adegη
irηrev) and the conversion of the196

mechanical response towards a hardening-type response (described by the term 1
2Hdegη

ir(ηrev)2).197

In line with the evolution of ηir, Eq. (5), both effects progress exponentially. Note that the approach198

of incorporating the cyclic degradation effects into the free energy function has been also used in199

other SMA models in the literature, e.g., [53, 54].200

Finally, a rate-independent dissipation potential is adopted in the following form201

D(η̇rev, ηacc) = fc(η
acc)|η̇rev|, (19)

where fc(η
acc), which is called the critical thermodynamic driving force, controls the width of the202

hysteresis loop in the stress–strain response. To capture the decrease in the hysteresis loop area203

(i.e., the dissipated energy) during the cyclic transformation, the parameter fc is defined in relation204

to the accumulated volume fraction ηacc. Similar to the permanent strain εp and the irreversible205

volume fraction ηir, Eqs. (5)–(7), fc evolves exponentially as follows206

fc(η
acc) = ffin

c + (f ini
c − ffin

c ) exp(−Cf η
acc), (20)

where f ini
c and ffin

c represent, respectively, the initial and final values of fc, and Cf denotes the207

corresponding evolution rate.208

To formulate the incremental energy minimization problem, we derive the time-discrete version209

of the constitutive equations by employing the backward Euler scheme. Having known the variables210

related to the previous time step tn, the variables related to the current time step tn+1 = tn+∆t are211

sought. We begin by approximating the incremental evolution equation for the irreversible volume212

fraction ηir and the permanent strain εp,213

∆t η̇ir ≈ ∆ηir = hsat
ir Cp exp(−Cpη

acc)∆ηacc, ∆t ε̇p ≈ ∆εp = ϵsatp Cp exp(−Cpη
acc)∆ηaccNp, (21)

where214

ηacc =

∫ tn+1

0

∆ηacc dτ, ∆ηacc = |∆ηrev|, ∆ηrev = ηrev − ηrevn , (22)

with ηrevn as the value of the reversible volume fraction from the previous time step tn. At the same215

time, the incremental form of the rate-independent dissipation potential is obtained as216

∆D(∆ηrev, ηacc) = fc(η
acc)|∆ηrev|. (23)

The solution of the problem is determined via the incremental energy minimization principle217

[39, 41, 55]. A global incremental potential Π is defined by summing up the increment of the218

total Helmholtz free energy ∆Φ (where Φ =
∫
B
ϕdV ), the global dissipation potential ∆D (where219

∆D =
∫
B

∆DdV ) and the potential of the external loads ∆Ω, and is subsequently minimized with220

respect to the unknowns u, ε̄t and ηrev, i.e.,221

Π = ∆Φ + ∆Ω + ∆D → min
u,ε̄t,ηrev

(24)

which is subject to the inequality constraints on the reversible volume fraction ηrev, Eq. (3), and222
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Figure 2: The intrinsic stress–strain response of the model under full-transformation cycles of uniaxial-tension: (a)
the first three cycles, and (b) the first 50 cycles. The dashed curve in panel (a), denoted as ‘reference’, represents the
pseudoelastic intrinsic response with no degradation effects. The model parameters adopted to produce the intrinsic
responses are the same as those in the main simulations, see Section 3.

to the constraint related to the limit transformation strain surface, Eq. (9). At the same time,223

ηir and εp, which contribute directly to the minimization problem, are explicitly evaluated from224

Eq. (21). To provide a clearer idea of the structure of the minimization problem and the underlying225

constitutive behavior of the model, a simplified 1D version of the model is elaborated in Appendix226

A.227

Fig. 2 showcases the intrinsic stress–strain response predicted by the model under cyclic tensile228

loading. Two cases are highlighted: the pseudoelasticity degradation effects observed within the229

first three cycles, relevant to the problem of subloop deformation investigated in this study, and230

the degradation effects observed within 50 cycles, which provides a more holistic view of the model231

behavior. Note that the material parameters adopted to generate the intrinsic response in Fig. 2232

are the same as those adopted in the main simulations in Section 3.233

2.2. Further extensions and finite-element implementation

The model presented in Section 2.1 is now enriched with micromorphic regularization and is234

made thermomechanically coupled. Both extensions have been thoroughly discussed in our previous235

works [40, 41]. Hence, we only briefly discuss them here.236

The purpose of adopting the micromorphic regularization is to facilitate the finite-element imple-237

mentation of the gradient-enhanced model by restructuring the minimization problem in a way that238

the constitutive complexities are transferred to the local level (for instance, at the Gauss points)239

where they can be treated in a more efficient way. To do so, a new degree of freedom η̆ is introduced240

and is coupled with the volume fraction ηrev through the following penalization term ϕpen which is241

added into the Helmholtz free energy function, see Eq. (13),242

ϕpen(ηrev, η̆) =
1

2
χ(ηrev − η̆)2, (25)
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with χ as the penalty parameter. The gradient energy ϕgrad, see Eq. (17), is then redefined in terms243

of the gradient of the new variable η̆, i.e.,244

ϕgrad(∇η̆) =
1

2
G∇η̆ · ∇η̆. (26)

Following this modification, the volume fraction ηrev can be considered as a local quantity and the245

respective evolution equation can be solved (together with that of ε̄t) at the local level. For further246

details regarding the micromorphic regularization, interested readers are referred to [56, 57].247

To arrive at a thermomechanically-coupled model, two most important couplings are taken248

into consideration. First, the chemical energy ϕchem, Eq. (14), is extended to reflect the effect of249

temperature on the mechanical response (the Clausius–Clapeyron relation), i.e.,250

ϕ0(ηrev, ηir, T ) = ϕa
0(T ) + ∆ϕ0(T )η, ∆ϕ0(T ) = ∆s∗(T − Tt), (27)

where ∆s∗ represents the transformation entropy change, T is the temperature, and Tt is the251

transformation equilibrium temperature. Next, the internal heat source Ṙ is defined to encompass252

the latent heat of transformation and the heat release by mechanical dissipation, viz.,253

Ṙ = ∆s∗T η̇rev + fc(η
acc)|η̇rev|. (28)

Eq. (28) is then introduced into the (isotropic) heat conduction equation254

ϱ0cṪ + ∇ ·Q = Ṙ, Q = −K∇T, (29)

where Q is the heat flux, ϱ0c is the specific heat, and the scalar K is the heat conduction coefficient.255

It follows from Eq. (28) that the internal heat generation is influenced during the cyclic phase256

transformation. This influence is manifested by both the latent heat of transformation and the257

mechanical dissipation and operates through the reversible volume fraction ηrev and the hysteresis258

parameter fc, cf. Eqs. (3) and (20).259

The full thermomechanically-coupled model comprises three global unknown fields: the displace-260

ment u, the micromorphic variable η̆ and the temperature T ; and two local unknown variables: the261

reversible volume fraction ηrev and the limit transformation strain ε̄t. Recall that the irreversible262

volume fraction ηir and the permanent strain εp are explicitly integrated by using Eq. (21). The263

finite-element discretization of the displacement field u is performed by using 20-noded quadratic264

hexahedral (Serendipity) elements with reduced Gauss integration rule (2 × 2 × 2). On the other265

hand, 8-noded linear hexahedral elements with standard Gauss integration rule (2 × 2 × 2) are266

used for η̆ and T . For the 2D axisymmetric wire problem discussed in Section 3.2, the respective267

discretizations have been done by 8-noded quadratic elements and 4-noded linear elements. The268

resulting global–local problem is structured as a nested iterative-subiterative scheme and is solved269

at both the global and local levels by using the Newton method. Notably, a fully-coupled monolithic270

scheme is adopted so that the problem is solved simultaneously with respect to all unknowns.271

It is worth noting that the local minimization problem of ηrev is non-smooth, in view of the272

rate-independent dissipation potential, see Eqs. (19) and (23). To address this issue, the aug-273
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mented Lagrangian method is utilized, which handles adeptly both the non-smoothness of the274

rate-independent dissipation potential and the inequality constraints on the reversible volume frac-275

tion ηrev, i.e., 0 ≤ ηrev ≤ 1 − ηir, see Eq. (3). The local problem has an additional constraint to be276

satisfied, namely the equality constraint of the limit transformation strain surface, g(ε̄t) = 0, see277

Eq. (9). The latter is addressed by using a standard Lagrange multiplier method. For brevity, the278

related technical details are not discussed here, see [39].279

The model is transformed into a finite-element code using the automatic differentiation tool280

AceGen [58, 59], thanks to which the residual vector and the tangent matrix are derived automat-281

ically, and thereby, the quadratic convergence of the Newton method is ensured. The simulations282

are carried out in the finite-element environment AceFEM.283

3. Simulations

This section is devoted to the analysis of the simulation results. Section 3.1 begins with a284

presentation of the simulation setup and calibration of the material parameters, and concludes285

with a brief discussion on the results for NiTi wire under full loading–unloading cycles. Our main286

modeling study concerns a NiTi specimen subjected to uniaxial tension with subloop loading paths.287

Two scenarios are explored. First, in line with the experimental study of Tobushi et al. [24], the288

subloop deformation behavior of a NiTi wire is analyzed, see Section 3.2. The loading program in289

this scenario encompasses three nested subloops with increasing strain amplitudes, as depicted in290

Fig. 3(a). As shown later, this setup enables us to reproduce neatly the hierarchical return-point291

memory. Section 3.2 concludes with a supplementary analysis of the TRIP evolution under a large292

number of subloops. Next, in Section 3.3, we extend our analysis to a NiTi strip, where we elucidate293

how the subloop behavior is influenced by the complexity of the pattern of propagating instabilities.294

This scenario is then examined under two additional loading programs, see Fig. 3(b,c).295

3.1. Preliminaries

In all simulations, the loading is exerted in a displacement-control mode at a (constant) low296

strain rate of 1.67 × 10−4 s−1. The NiTi wire has a diameter of 0.75 mm and a total length of297

L0 = 20 mm. To facilitate this analysis, the wire is justifiably reduced to a 2D axisymmetric298

geometry. The corresponding 2D problem is then discretized by a uniform finite-element mesh299

consisting of equiaxed elements with an edge size of 0.01 mm. This resulted in 76 000 elements300

and approximately 620 000 degrees of freedom. Meanwhile, the NiTi strip is treated as a full 3D301

problem. The strip has a thickness of 0.4 mm, a width of 10 mm and a total length of L0 = 100302

mm. It is discretized by a uniform mesh consisting of elements with an in-plane edge size of 0.2 mm303

and a through-thickness size of 0.4 mm (i.e., only one element is used though the thickness). This304

mesh led to 25 000 elements and nearly 640 000 degrees of freedom. In both problems, the following305

boundary conditions are imposed. The displacements at the bottom edge of the specimen are fully306

constrained. At the top edge, the axial displacement δ is prescribed and the lateral displacements307

are constrained. At the same time, the temperature at both top and bottom edges is set equal to the308

ambient temperature, i.e., T = T0 = 353 K, which is the actual ambient temperature maintained309

during the experiment [24]. Finally, the heat convection effect is neglected.310
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Figure 3: The loading programs used in the simulations. All loading programs represent displacement-controlled
uniaxial tension (with a low strain rate of 1.67 × 10−4 s−1) and incorporate three subloops. Loading program 1
consists of three nested subloops with increasing strain amplitudes. Loading program 2 employs subloops in a reverse
order compared to loading program 1. Loading program 3 consists of three equally-spaced subloops with a constant
strain amplitude.

The model parameters adopted in the simulations are summarized in Tab. 1. Except for the311

gradient energy parameter G, all the model parameters are identical in the wire and strip problems.312

The parameter G sets the length-scale associated with the phase transformation front and can be313

linked to the geometry and micromechanical characteristics [60, 61]. Thus, G takes different values314

in each problem. To calibrate G, first, an assumption ought to be made regarding the theoretical315

thickness of the macroscopic interface, λ. Subsequently, G is determined through the analytical316

relation G = −Hintλ
2/π2, which is derived from the solution of the 1D small-strain model of317

pseudoelasticity [40]. The identification procedure for the remaining model parameters which are318

unrelated to TRIP has been thoroughly discussed in our recent study [43], see Section 2.3 and319

Appendix E therein, and is not repeated here.320

Identification of some TRIP-related parameters is guided by the indications obtained from the321

structural stress–strain response from the experiment, see Fig. 1(a). These include the significant322

decrease in the level of the upper stress plateau during the hierarchical subloop deformation and323

the value of the residual strain at the end of the experiment. Accordingly, the parameters Adeg =324

−45 MPa, ϵsatr = 0.4ϵT = 2.4% (recall that ϵT denotes the maximum transformation strain, Eq. (12))325

and Cp = 0.05 have been calibrated to produce similar effects. We, however, acknowledge that there326

exists a degree of uncertainty in the identification of the remaining parameters, for which we lack327

definitive experimental evidence. With this in mind, the parameters Hdeg = 40 MPa, ffin
c = 2 MPa,328

Cf = Cp = 0.05 and hsat
ir = 0.4 are selected such that the changes in the stress–strain response329

under a large number of loading cycles (in particular, as it concerns the transition to a hardening-330

type response, decrease in the hysteresis loop area and decrease in the extent of the transformation331

strain) align with the trends observed in the experiments, e.g., [47, 62–64], see also the discussion332

below. The intrinsic response of the model resulting from the adopted parameters is illustrated in333

Fig. 2.334
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Table 1: Model parameters adopted in the simulations.

Category Parameter Value

Elasticity κ Bulk modulus 130 GPa

µa Shear modulus for austenite 21 GPa

µm Shear modulus for martensite 9 GPa

Martensitic phase transformation ∆s∗ Chemical energy of transformation 0.24 MPa/K

Tt Transformation equilibrium temperature 222 K

f ini
c Hysteresis loop parameter (initial) 10 MPa

Hint Austenite–martensite interaction parameter -10.5 MPa

ϵT Maximum tensile transformation strain 6%

α Tension–compression asymmetry ratio 1.4

β Transverse isotropy parameter 1.0

Macroscopic transformation front G Gradient energy parameter (wire problem) 0.04 MPa mm2

G Gradient energy parameter (strip problem) 0.4 MPa mm2

χ Micromorphic regularization parameter 100 MPa

Heat transfer ϱ0c Specific heat 2.86 MJ/(m3K)

K Heat conductivity 18 W/(m K)

TRIP Adeg Pseudoelasticity degradation parameter -45 MPa

Hdeg Pseudoelasticity degradation parameter 40 MPa

ϵsatp Permanent strain saturation value 0.4 ϵT = 2.4%

hsat
ir Irreversible volume fraction saturation value 0.4

ffin
c Hysteresis loop parameter (final) 2 MPa

Cp Degradation rate 0.05

Cf Hysteresis loop degradation rate 0.05
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Figure 4: (a) NiTi wire subjected to 50 loading–unloading cycles of uniaxial tension: structural stress–elongation
(σ̄–ε̄) responses. The average axial stress σ̄ and the average elongation ε̄ are calculated, respectively, as the reaction
force P divided by the initial cross-section area A0, and the axial displacement δ divided by the initial length L0.
The intrinsic responses associated with these structural responses are illustrated in Fig. 2. (b)–(e) Typical cyclic
responses of NiTi specimens observed in the experiments, taken from (b) Wang et al. [47], (c) Morin et al. [62], (d)
Kan et al. [63], and (e) Šittner et al. [64].

It is worth noting that in all the simulations, as a way to trigger the phase transformation335

instability, a geometric imperfection in the form of a slight indent is applied to the specimen. The336

indent is located at a distance equal to the diameter/width of the wire/strip from its lower end.337

Before entering into the main analysis of subloop deformation, a simulation is performed for338

the NiTi wire subjected to 50 loading–unloading cycles of uniaxial tension. Fig. 4 illustrates the339

structural response of the wire. Here, as well as in the figures in the following subsections, the340

structural response is represented in terms of the average axial stress σ̄ = P/A0 versus average341

elongation (engineering strain) ε̄ = δ/L0, where P denotes the reaction force and A0 denotes the342

initial cross-section area. Recall that δ and L0 are the axial displacement and the initial length,343

respectively. As it is evident, the wire undergoes a complete phase transformation within each344

cycle. Initially, the wire exhibits a localized phase transformation, characterized by a stress drop at345

the transformation onset and a subsequent stress plateau in the structural stress-elongation (σ̄–ε̄)346

response. The localized transformation persists for about 15 cycles. Thereafter, the transformation347

proceeds in a more homogeneous manner, and the structural response displays a mild hardening. As348

the number of cycles increases, the slope of the hardening branch also increases. The cyclic behavior349

captured in the simulation is in a qualitative agreement with the typical cyclic behavior of NiTi350

specimens observed in experiments [47, 62–64], which underscores the reliability of the simulation351

results.352
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3.2. NiTi wire subjected to subloop deformation

The results pertaining to the subloop behavior of the NiTi wire are presented in Figs. 5 and 6.353

The phase transformation evolution in Fig. 5(a) and TRIP evolution in Fig. 5(b) are displayed via,354

respectively, the distribution of the reversible volume fraction ηrev and irreversible volume fraction355

ηir. Note that, for a more natural visualization, the results of the 2D axisymmetric wire are post-356

processed and presented in a 3D configuration. As anticipated, the transformation initiates at the357

position of the geometric imperfection. Throughout the entire loading stage of the global cycle358

(hereinafter, to avoid confusion with the subloops, we use the term ‘global’), the transformation359

maintains a single propagating front. Interestingly, while the front appears to be a flat (and visibly360

diffuse) interface in the 3D-wire configuration, e.g., [65], it takes on a spherical-shaped appearance361

(or ‘cone-shaped’ as described in [60, 66]), as can be conceived from the corresponding pattern in the362

axisymmetric planes (not shown here). During the global unloading, the backward transformation363

commences from the wire’s central part. As shown in Fig. 5(b) and discussed below, the highest364

amount of irreversible volume fraction ηir, thus the highest TRIP, is accumulated within the central365

part, making it a favorable site for the nucleation of the austenitic band. At the same time, due to366

a slight asymmetry in the distribution of ηir with respect to the wire’s midpoint, the two evolved367

fronts do not propagate concurrently. More specifically, first, the top front reaches the boundary368

and annihilates, which manifests as an abrupt stress rise in the structural stress-elongation (σ̄–ε̄)369

response, occurring at an average elongation of about ε̄ = 4% (see Fig. 6). Subsequently, the bottom370

front follows suit.371

Within each subloop path, the front retreats downward during unloading and advances upward372

during reloading. This cyclic movement prompts the material points inside the front’s sweeping373

zone to undergo backward-then-forward transformation, and thereby, gives rise to the accumulation374

of TRIP within the sweeping zone, while the material points beyond it remain unaffected. Note that375

the loading program adheres to a fixed nominal mean strain (set at ε̄ = 4.5%, which corresponds376

to the front’s proximity to the wire’s midpoint) but an increasing strain amplitude, see Fig. 3(a).377

Thus, the sweeping zone expands successively from subloop 1 to subloop 3, and at the same time,378

the sweeping zone of each subloop encompasses that of the previous one. This therefore results in379

the highest concentration of TRIP within the central part of the wire and its step-wise decreasing380

trend as it moves away from it, as can be clearly seen in Fig. 5(b).381

The hierarchical return-point memory, which is an outcome of the cyclic traversal of the front382

across the boundaries of the swept zones, is correctly reproduced in the structural stress–elongation383

response in Fig. 6. The reproduced feature is in a reasonable agreement with the experimental result384

of Tobushi et al. [24], see Fig. 1 and the accompanying discussion. In view of the exponential nature385

of the pseudoelasticity degradation effects, the reduction in the level of the upper stress plateau386

is at the highest within the first level of hierarchy (of about ∆σ̄ = 21 MPa) and diminishes to its387

lowest within the last level of hierarchy (of about ∆σ̄ = 17 MPa). It is worth noting that in this388

scenario, where the strain rate corresponds to nearly isothermal conditions (i.e., the temperature389

variation lies within the range of −2 K to 2 K), the stress, upon reaching the return-point, appears390

to catch up closely with the corresponding stress plateau before applying the subloop. As shown in391

Section 3.3 and also observed in the experiments [25, 26], such a close catching up does not occur392

when thermal effects are at play.393
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subloop 1 subloop 2 subloop 3

global unloadingglobal loading

subloop 1 subloop 2 subloop 3

global unloadingglobal loading

Figure 5: NiTi wire subjected to loading program 1: (a) snapshots of reversible volume fraction ηrev illustrating the
phase transformation evolution, and (b) snapshots of irreversible volume fraction ηir illustrating the TRIP evolution.
For a natural visualization, the axisymmetric wire is presented in full 3D configuration.
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Figure 6: NiTi wire subjected to loading program 1: structural stress–elongation (σ̄–ε̄) response.

A notable observation from the experimental curve in Fig. 1(a) is the absence of the return-point394

memory during the unloading stages of the subloops. Instead, the lower stress plateau seems to395

shift slightly downward from one subloop to the next. Anyway, no attempt was made to adjust the396

material parameters to replicate the observed behavior, which is, however, present in the results of397

NiTi strip reported in Section 3.3.398

In concluding the discussion in this section, we present the results of a supplementary analysis399

on the NiTi wire subjected to 12 subloops. The aim of this analysis is to illustrate the evolution400

of TRIP and subloop deformation behavior over a large number of subloops. The results, as401

depicted in Fig. 7, follow an expected trend. However, two specific observations deserve further402

comment. Firstly, the stress plateau in a number of subloops exhibits irregularities, specifically a403

second stress drop appears ahead of the return-point memory. This is because in these subloops404

the transformation during subloop reloading does not proceed by the propagation of the existing405

font. Instead, a second front emerges at the opposite end of the sweeping zone and eventually406

merges with the original front, thereby, leading to the observed effects. Secondly, as shown in407

Fig. 7(b), the sweeping zone continuously expands from one subloop to the next. This is explained408

by the accumulation of TRIP within the sweeping zone, which reduces the amount of transformable409

martensite. Consequently, since the applied strain amplitude of the subloops is held fixed, the front410

gradually moves towards the untransformed segments of the wire to compensate for the reduced411

transformation.412

3.3. NiTi strip subjected to subloop deformation

We begin this section by analyzing the NiTi strip under loading program 1. The primary aim is413

to examine the subloop behavior in a notably more involved scenario than the NiTi wire discussed414

earlier, arising mainly from a more complex transformation pattern and heightened thermal effects.415

The simulation results are presented in Figs. 8 and 9. A quick look at Fig. 9 immediately indicates416

that the return-point memory is only observable in the trajectories that lead to the global stress417

plateau, while the hierarchical return-point memory is lost. This is undoubtedly an outcome of418
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Figure 7: NiTi wire subjected to uniaxial tension with 12 subloop paths: (a) structural stress–elongation (σ̄–ε̄)
response, and (b) snapshots of irreversible volume fraction ηir illustrating the TRIP evolution at the end of each
subloop. The inset in panel (a) represents the loading program used for this simulation. The applied subloops have
the same mean strain and the same strain amplitude, i.e., with ε̄max = 5.75% and ε̄min = 2.75%.

the nontrivial pattern of phase transformation and resulting TRIP distribution within the strip.419

In contrast to the NiTi wire, where a single phase transformation front remained active during420

all subloops, the strip features multiple transformation fronts, each presenting a less predictable421

pattern of activation. Below, we provide a more detailed account of the unfolding events.422

The phase transformation initiates with the nucleation of a single martensite band at the location423

of the geometric imperfection. The band is oriented at approximately 54◦ with respect to the424

longitudinal axis, in agreement with the experimental observations [14] and theoretical analysis425

[67], and changes gradually as loading progresses. At an average elongation of about ε̄ = 3%,426

another martensite band emerges at the opposite end, and henceforth, the two transformation427

fronts propagate towards each other. This non-synchronous double nucleation has been commonly428

observed in the experiment of NiTi specimens at relatively low strain rates, e.g., [14, 68, 69].429

Within subloop 1, the two fronts exhibit a short back-and-forth movement, manifesting a clear430

return-point memory in the structural stress–elongation response in Fig. 9(a). During subloop431

2, not only the hitherto active fronts but also the fronts near the boundaries become engaged in432

the transformation evolution. As a consequence, TRIP is induced via all fronts. This behavior is433

reflected in the structural response which takes on an irregular appearance characterized by few434

sudden stress changes, thus spoiling the return-point memory in the inner part (Fig. 9(b)). A435

similar process recurs within subloop 3, albeit with a more complex phase transformation evolution436

during the reloading stage and also more distinct stress events in the structural response. During the437

global unloading, the backward transformation proceeds predominantly in a criss-cross mode, which438

persists until an average elongation of about ε̄ = 3%. Subsequently, the fronts reconfigure into sharp439

inclined interfaces that move towards each other until the complete annihilation of the (reversible)440
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subloop 1 subloop 2 subloop 3

global unloadingglobal loading

subloop 1 subloop 2 subloop 3

global unloadingglobal loading

Figure 8: NiTi strip subjected to loading program 1: (a) snapshots of reversible volume fraction ηrev illustrating the
phase transformation evolution, and (b) snapshots of irreversible volume fraction ηir illustrating the TRIP evolution.
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Figure 9: NiTi strip subjected to loading program 1: structural stress–elongation (σ̄–ε̄) response.

martensite domain. The reconfiguration of the fronts between criss-cross mode and sharp interfaces441

has been also observed in experimental and previous modeling studies, e.g., [36, 70, 71]. It is worth442

remarking that the distribution of the irreversible volume fraction ηir within the entire strip at the443

end of the global unloading remains consistent with that at the end of the global loading, while its444

magnitude increases uniformly.445

Upon inspecting the return-point memory in Fig. 9, a slight difference can be noticed concerning446

the level of the global stress plateau before and after a subloop path. This difference stems from the447

thermal effects. Specifically, compared to the NiTi wire, a more pronounced temperature variation448

is produced across the specimen during the forward transformation (for instance, of about 10 K449

immediately before subloop 1), resulting in a more visible thermal hardening that sustains a higher450

stress for the propagation of the front. Within the subloop path, the transformation latent heat is451

initially absorbed during the backward transformation (self-cooling) and is subsequently released452

when the forward transformation resumes (self-heating). Accordingly, as the front reaches the pris-453

tine material, the temperature variation across the specimen is reduced compared to the state before454

the subloop (for instance, of about 5 K immediately after subloop 1). Thereby, thermal hardening455

diminishes, necessitating a lower stress for interface propagation. Note also that as a result of the456

cyclic transformation of the material points, and thus the accumulation of irreversible martensite,457

a smaller martensite volume fraction is transformed during the subloop reloading compared to the458

state before the subloop, and this contributes to the reduction of the latent heat generation [20].459

We now proceed with the analysis of the NiTi strip under two additional loading programs, one460

consisting of nested subloops with decreasing strain amplitudes, i.e., subloops are applied in a reverse461

order compared to loading program 1, and the other consisting of three equally-spaced distinct462

subloops with a constant strain amplitude, see Fig. 3(b,c). The corresponding results are shown in463

Figs. 10, 11 and 12. The comparison of the snapshots of the reversible volume fraction ηrev in the two464

additional cases to those of loading program 1 reveals noticeable morphological differences, which are465

beyond the differences arising solely from the loading-dependent transformation evolution pathways.466
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subloop 1 subloop 2 subloop 3
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Figure 10: NiTi strip subjected to loading program 2: (a) snapshots of reversible volume fraction ηrev illustrating the
phase transformation evolution, and (b) snapshots of irreversible volume fraction ηir illustrating the TRIP evolution.
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Figure 11: NiTi strip subjected to loading program 3: (a) snapshots of reversible volume fraction ηrev illustrating the
phase transformation evolution, and (b) snapshots of irreversible volume fraction ηir illustrating the TRIP evolution.
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Figure 12: Structural stress–elongation (σ̄–ε̄) response of NiTi strip subjected to (a) loading program 2 and (b)
loading program 3.

The differences mainly concern the varying number of martensite domains formed during the global467

loading stage and the activation pattern of the fronts within the subloops. More specifically, unlike468

loading program 1, loading programs 2 and 3 exhibit only two martensite domains during the global469

loading. In loading program 2, all four fronts remain consistently active within all subloops, resulting470

in a clear demonstration of the hierarchical return-point memory in the stress–elongation response,471

as shown in Fig. 12(a). In loading program 3, however, while the involvement of the fronts near the472

boundaries is eye-catching within subloop 1, overall, the interior fronts are prominently active. In473

this case, the front sweeping zones in the subloops do not interact with each other (as can be also474

recognized from the snapshots of ηir in Fig. 11), and the resulting subloops are independent, see475

Fig. 12(b). During the global unloading, all cases show a similar transformation evolution pattern476

characterized by two active fronts retracting in a criss-cross manner..477

We conclude this discussion by addressing TRIP accumulation within the strip in relation to478

the loading program. Similar to the martensitic transformation, TRIP exhibits characteristics that479

are specific to the applied loading program. Given that loading programs 1 and 2 have a reverse480

arrangement of the subloops but are otherwise identical, one would intuitively expect that the481

resulting TRIP accumulations, in terms of both the pattern and the intensity, would be the same482

after applying all the three subloops. A comparison of the snapshots of the irreversible volume483

fraction ηir (Figs. 8 and 10) indeed confirms that TRIP hotspots in these two cases are located in484

nearly the same regions, with two hotspots near the boundaries and two within the interior of the485

strip, corresponding to the regions with the highest activity of the fronts. Yet, minor discrepancies486

can be observed, particularly concerning the intensity of TRIP within the hotspot regions. On the487

other hand, loading program 3 demonstrates a rather distinct TRIP accumulation characterized by488

several regions with mild intensity within the interior and localized hotspots near the boundaries.489

As previously noted, this particular TRIP distribution results from the lack of interaction among490

the fronts sweeping zones of the independent subloops. As a summary of this discussion, Fig 13491

compares the distribution of ηir along the entire length of the strip for various loading programs.492
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Figure 13: Distribution of the irreversible volume fraction ηir along the entire length of the strip (taken in the
reference configuration) at the end of the global loading stage. The graphs correspond to the midsection of the strip,
as indicated by the white dashed curve overlaid on the snapshot.

4. Conclusion

The phenomenon of return-point memory that appears during the subloop deformation of pseu-493

doelastic SMA is an outcome of the interaction between the structural instabilities of phase trans-494

formation and the degradation of functional properties. It seems that this crucial aspect has been495

generally overlooked in existing modeling approaches. The goal of our study is to demonstrate this496

structure–material interaction by modeling the phenomenon of return-point memory. To achieve497

this, we have developed a gradient-enhanced model of pseudoelasticity. The developed model rep-498

resents an advancement over previous versions [39–41], extending the constitutive description to499

incorporate pseudoelasticity degradation. The capabilities of the model in reproducing the essen-500

tial aspects of pseudoelasticity degradation have been shown for NiTi under cyclic uniaxial tension.501

We examine an illustrative example of a NiTi wire subjected to nearly isothermal uniaxial tension502

with nested subloops. The obtained results clearly correlate with the experimental observations of503

Tobushi et al. [24], especially regarding the hierarchical return-point memory. The accumulation504

of TRIP and its distribution during subloop deformation underline the intertwined evolution of505

inhomogeneous phase transformation and cyclic degradation.506

The study is then extended to a more involved scenario of a NiTi strip, where a detailed analysis507

is performed by examining three different loading programs. The impact of the loading program on508

the evolution of phase transformation and TRIP has been highlighted through the activation pat-509

tern of phase transformation fronts within the subloops, and its implications on the phenomenon510

of return-point memory have been pointed out. In addition, the results hint at the visible con-511

tribution of the thermomechanical coupling effects within the subloops, stemming from the self-512

cooling/heating process of the transforming material.513
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Appendix A. A simplified 1D demonstration of the model

In this appendix, we derive the governing equation of the transformation stress for a simplified525

isothermal 1D model. In 1D setting, the model features four variables, namely the total strain526

ε = ∇u, the reversible volume fraction ηrev, the irreversible volume fraction ηir and the permanent527

strain εp. The Helmholtz free energy is thus expressed as follows528

ϕ(ε, εp, ηrev, ηir) = ϕchem(ηrev, ηir) + ϕel(ε, ε
p, ηrev) + ϕint(η

rev) + ϕdeg(ηrev, ηir) + I(ηrev), (A.1)

where the indicator function I pertains to the inequality constraints on the reversible volume fraction529

ηrev (I = 0 if 0 < ηrev < 1 − ηir and I = ∞ otherwise). Note that the gradient energy associated530

with the austenite–martensite diffuse interface, ϕgrad, is disregarded here.531

The elastic strain energy ϕel is formulated as532

ϕel(ε, ε
p, ηrev) =

1

2
E(ε− εt − εp)2, εt = ηrevϵT, (A.2)

where E is the Young’s modulus (for simplicity, E is assumed constant and independent of η) and533

the constant ϵT is the maximum transformation strain. The remaining components of the free534

energy, as well as the dissipation potential, are identical to those of the general 3D model, see535

Eqs. (14), (16), (18) and Eq. (23). Moreover, the evolution equations for the permanent strain εp536

and the irreversible volume fraction ηir are postulated as (cf. Eqs. (5)–(7))537

ηir = hsat
ir (1 − exp(−Cpη

acc)), εp = ϵsatp (1 − exp(−Cpη
acc)). (A.3)

For a given total strain ε, the volume fraction ηrev can be determined by minimizing the local538

potential π = ∆ϕ + ∆D, see Eq. (24). It is immediate to see that the local potential π is non-539

smooth, due to the presence of the rate-independent dissipation ∆D and the indicator function I.540

In line with [40], the minimization of π with respect to ηrev is written as a differential inclusion,541

given by542

fηrev ∈ ∂ηrevD̄(ηrev, ηacc) (A.4)

where D̄ = ∆D + I encompasses the non-smooth components of π and fηrev is the thermodynamic543

driving force associated with ηrev and is expressed as544

fηrev = −
(

∂ϕ

∂ηrev
+

∂ϕ

∂εp
∂εp

∂ηrev
+

∂ϕ

∂ηir
∂ηir

∂ηrev

)
. (A.5)
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During the forward/backward transformation, i.e., when the bound constraints are inactive, the545

inclusion (A.4) yields546

fηrev = ±fc, (A.6)

and gives the following equation for the transformation stress σt
± (σt

+ for the forward transformation547

and σt
− for the backward transformation),548

σt
± =

∆ϕ0k1 ± fc + Hintη
rev + Adegk2 + Hdegη

revk3
k4

, (A.7)

where fc is defined in Eq. (20) and ki are expressed as549

k1 = 1 +
∂ηir

∂ηrev
, k2 = ηir + ηrev

∂ηir

∂ηrev
, k3 = ηir +

1

2
ηrev

∂ηir

∂ηrev
, k4 = ϵT +

∂εp

∂ηrev
. (A.8)

It is important to highlight that the necessary condition for the minimum of π with respect550

to ηrev, which leads to the transformation criteria (A.7), is not computed in a standard manner.551

This stems from the state-dependence of the dissipation potential D, i.e., the dependence of fc on552

the accumulated volume fraction ηacc, see Eq. (20). Having the minimization problem formulated553

in rates (not shown here), it becomes apparent that fc is treated as a constant when evaluating554

the necessary condition for the rate η̇rev. In the incremental setting, to maintain consistency with555

the rate-problem, the increment of the martensite volume fraction, ∆ηrev, present in the current556

unknown ηrev = ∆ηrev+ηrevn is distinguished from the increment upon which the evolution equation557

for fc rely. Despite the two increments coincide, the latter is considered as constant when evaluating558

the necessary condition. Accordingly, the minimization problem does posses the structure of a559

quasi-optimization problem and not a genuine optimization problem. To avoid the complexity in560

the model presentation, this issue is not elaborated here. It should be remarked that upon assuming561

the same increment ∆ηrev for the current unknown ηrev and fc, resulting in a non-constant fc in562

the calculation of the necessary condition, extra differentiation terms arise in the transformation563

criteria (A.7). However, our auxiliary simulations showed that these extra terms only marginally564

contribute to the results.565
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