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Abstract 10 

Managing sewer monitoring data poses challenges, often revealing quality issues. This study explores the feasibility of 

employing crowdsourcing methods, akin to artificial artificial intelligence, on sewer flow monitoring data. We devised a data 

annotation project, relying on the expertise of 12 sewer researchers to retrieve artificial anomalies introduced to the data. While 

recognizing limitations in annotation skills, we compiled time series from 7 locations and implemented visualizations for 

improved interpretation. Evaluation using the F1 criterion yielded mediocre scores (0.625±0.226), highlighting challenges in 15 

interpreting noisy raw data and varying analyst mental models. Despite the potential for data-driven modeling in urban drainage 

research, our results suggest challenges in obtaining annotations through crowdsourcing. Further work should focus on 

standards for data annotations, community efforts in data labelling, and identifying role model utilities providing open access 

to routine wastewater datasets. 

1 Introduction 20 

Advances in sensor technology and data transmission enable cost-effective and flexible process monitoring in drainage systems 

(Ruggraber et al., 2023; Kerkez et al., 2016; Blumensaat et al., 2017). Power supply and battery limitations in the past can be 

overcome with autonomous sensors utilizing energy harvesting technology (Mathis et al., 2022; Blumensaat et al., 2017), 

resulting in ubiquitous monitoring (Blumensaat et al., 2023). However, it is well known that quality control of monitoring 

stations is challenging (Brito et al., 2021) and data streams from a plethora of sensors requires automated approaches to 25 

efficiently validate real-time measurement data and identify anomalies or dubious data points (DWA-M 181, Becouze-Lareure 

et al., 2012; Mourad and Bertrand-Krajewski, 2002). 

 

However, challenges arise when inspecting multiple signal types in real-time and employing computationally intensive 

analysis methods. Machine learning (ML) methods have been suggested as promising solutions (Aggarwal, 2017; 30 
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Branisavljević et al., 2011). Unfortunately, despite the buzz and hype around machine learning, they are not a universal 

solution. Two recent studies investigated advanced ML methods to effectively detect anomalies in sewer sensor data and 

concluded that i) much simpler methods performed equally or better than advanced methods and ii) that the degree of curating 

and preprocessing that data, including expert knowledge from engineers was important for a good performance (Trinnex, 

2023). This supports the findings of (Russo et al., 2020) who concluded that, especially in data-driven modelling in the 35 

environmental field, access to expert-based data annotation is critical. 

 

Unlike in domains with abundant everyday-type of data, such as images of cats, dogs and trees, etc., which can be annotated 

by non-experts, annotating wastewater monitoring data faces four specific challenges. First, open experimental datasets from 

sewers are largely lacking (Nedergaard Pedersen et al., 2021; Blumensaat et al., 2023) and, more importantly, there are only 40 

very few experts on sewer monitoring data which would be capable to annotate monitoring data. Third, wastewater 

professionals know that it is challenging to differentiate between process anomalies due to measurement malfunctions and real 

effects due to the stochastic nature of wastewater production, e.g. substantial industrial discharges that occur irregularly. 

Fourth, our flow meters and water level sensors are comparably imprecise and more often than not affected by factors like 

humidity, temperature changes, fouling and shifts in setpoints. This often leads to noisy signals which makes anomaly detection 45 

more challenging, especially for crowdsourcing methods. 

 

Errors in annotated datasets for training and testing are difficult to avoid completely and the errors in crowdsourcing 

annotations can vary depending on several factors, such as the quality of the crowd workers, the clarity of the annotation task 

instructions, and the level of agreement among the crowd workers themselves. However, with proper quality control measures 50 

such as multiple annotators and consensus-based approaches, crowdsourcing annotations can achieve a reasonable level of 

accuracy comparable to or even surpassing that of expert annotations (Wang et al., 2020; Tang and Lease, 2011). The accuracy 

can also be improved, especially for popular datasets, through iterative refinement processes and the use of statistical 

techniques to identify and mitigate potential biases or errors in the crowd-contributed annotations. 

 55 

Researchers examined popular open source datasets from the past two decades in computer vision, natural language processing, 

sentiment analysis, and audio processing (Northcutt et al., 2021). They found labelling errors of 3.4% on average, ranging 

from 0.15 to 10.12% for the individual datasets. They also conclude that even these small mislabellings make benchmark 

results from the test sets unstable and the popular “gorilla” incident drastically demonstrated how biases from the datasets can 

manifest in ML systems and have unintended consequences (Charte et al., 2019). For sewer datasets, given the problems 60 

mentioned above, we would probably expect even higher error rates. Unfortunately, studies on this topic are completely lacking 

and, to the best of our knowledge, errors we could expect in annotated sewer datasets are unknown. 
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In this paper we therefore investigate for the first time the applicability of crowdsourcing methods for annotating sewer water 

levels and flows. Specifically, we 12 experts manually identified and annotated synthetic anomalies in 7 time series of 65 

wastewater flows. We used a special annotation tool, which was capable of displaying multiple times series and visualizing 

upstream-downstream comparisons of multiple signals (Fig. 2). Although the study has a lot of limitations, we learned several 

key lessons, which will be very useful for future trials to annotate wastewater flow data. 

2. Methods 

2.1 Selection of experts on UWO wastewater flow data 70 

We invited 12 experts, with different level of experience with flow monitoring data to incorporate domain expertise by 

consulting wastewater management professionals or subject matter experts. Their knowledge can help define specific anomaly 

scenarios and guide the creation of synthetic data that accurately represents real-world wastewater flow behavior. 

 

The researchers involved in the project possessed significant knowledge and experience in sewer research, enabling them to 75 

accurately identify frozen water level sensors through flat time series and detect abnormal fluctuations in the data. The aim 

was to achieve high-quality annotations by leveraging their collective expertise. 

2.2 Modelling anomalies in wastewater flow data 

To generate synthetic flow data containing anomalies, we followed a five-step process. In the first step, we determined the 

characteristics and properties of the synthetic wastewater flow data that we intended to create. This involved identifying factors 80 

such as flow rates, temporal resolution, patterns, and specific anomalies to be simulated. The second step involved generating 

the base wastewater flow data. This was achieved by employing statistical models, mathematical equations, or simulations that 

replicated real-world wastewater flow patterns. Factors such as diurnal variations, seasonal variations, and other relevant 

patterns observed in real data were considered. A total of seven time series were compiled for the subsequent annotation task. 

In the third step, synthetic anomalies were introduced into the base wastewater flow data. We defined the types of anomalies 85 

we wanted to simulate within the synthetic data. These anomalies could include sudden spikes, drops, irregular patterns, or 

any other deviations from normal flow behavior. We applied appropriate algorithms or methods to introduce these anomalies 

into the base wastewater flow data. 
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Figure 1: Overview of the types of virtual anomalies that were introduced on to the time series. 

 

Table 1 presents an overview of the characteristics of each anomaly found in the synthetic flow data, including parameters 

such as magnitude, duration, and frequency. These parameters play a crucial role in determining the severity and occurrence 

of the synthetic anomalies within the generated data. 95 

 

To ensure the usefulness and reliability of the created and labelled dataset, visible quality assurance tests were conducted. 

These tests aimed to assess the dataset's quality and appropriateness based on summary statistics. Various statistical measures 

and metrics were employed to evaluate the datasets properties, such as mean, median, standard deviation, range, and other 

relevant statistical summaries. 100 

 

Table 1: Virtual anomalies and their characteristics and parameterization. 

Type Parameters Value  Uncertainty/Distribution 

Sudden Drop drop 50% 10-190; U(10,190) 

Freeze  duration 60h 30-80; N(60, 20) 

  stop 0  

Slow Drop     

Drift steepness 10%  

  duration  N(50, 100) 

Noisier  N(0.1, 0.5) 

  sign +, -  
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2.3 A custom annotation tool 105 

After evaluating existing annotation tools, it was determined that none of them adequately met our requirements. As a result, 

we developed our own annotation tool based on the ADASen framework (Russo et al. 2020). This custom tool was specifically 

designed to accommodate the unique characteristics of our dataset, which involved multiple time series and the need to 

visualize sewer-specific information. The developed annotation tool incorporated features that allowed for efficient annotation 

and analysis of the data. It provided the capability to handle multiple time series simultaneously, enabling labellers to annotate 110 

anomalies across different variables or parameters. Additionally, the tool included specialized functionalities that facilitated 

the plotting and visualization of sewer-specific information, enhancing the labelling process by providing context and relevant 

domain-specific insights. 

 

By creating a custom annotation tool tailored to our specific needs, we aimed to optimize the annotation workflow and 115 

improve the accuracy and efficiency of the labellers. This tool not only addressed the limitations of existing annotation tools 

but also provided enhanced functionality to effectively handle the complexities and nuances of our dataset, ensuring the 

quality and relevance of the resulting annotations. 

 

 120 

Figure 2 Screenshot of the annotation tool. 
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To facilitate the annotation process and enable seamless data sharing among team members, the scripts used in datValX pipline 

(Disch et al. 2023) were modified, and custom Python scripts were developed. These scripts allowed researchers to input their 

annotated data into a centralized database. 125 

2.4 Annotation procedure 

The selected group of labellers was briefed about the experimental procedure, including instructions on how to use the labelling 

tool effectively. It should be noted that the labels generated during the first session were not used for the subsequent analysis, 

which led to minor modifications in the tool. Labellers were given an opportunity to become familiar with the labelling tool in 

a practice session. Their labels from this session were not included in the final analysis but aimed to ensure their comfort with 130 

the tool and its functionalities. Labellers were provided with information about the dataset, including a map of the catchment 

area illustrating major flow paths and upstream-downstream relations. This briefing aimed to enhance their understanding of 

the dataset and the contextual factors that could influence anomaly identification. Following the briefing and tool 

familiarization, the labelling environment was set up for the labellers. Each labeller had access to the dataset and the labelling 

tool, enabling them to work independently. 135 

 

Labellers individually reviewed the dataset and marked instances they deemed to be anomalies using the provided labelling 

tool. They relied on their own judgment and expertise to identify and annotate anomalies based on the information presented. 

 

After the labelling process, a de-briefing meeting was conducted to analyze and interpret the collected data. The identified 140 

anomalies from each labeller were discussed, providing an opportunity for clarification, consensus building, and addressing 

any uncertainties or discrepancies. 

2.5 Performance evaluation 

To evaluate the quality of the annotations, the F1 criterion, commonly employed in previous studies, was utilized. The F1 

criterion combines precision (hit rate) and recall (accuracy), providing a comprehensive assessment of the analyst's 145 

performance in terms of annotation quality (Disch et al., in prep.). 

 

 

 

Precision is the ratio of correctly identified positive instances (true positives) to the total number of instances identified as 150 

positive (true positives + false positives). It quantifies the accuracy of positive predictions. 
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Recall, also known as sensitivity or true positive rate, is the ratio of correctly identified positive instances (true positives) to 

the total number of actual positive instances (true positives + false negatives). It measures the ability to capture all relevant 

positive instances. 

The F1 score combines precision and recall into a single value, providing a harmonic mean that accounts for both measures. 155 

It ranges from 0 to 1, with 1 indicating perfect precision and recall, while 0 represents the worst performance. 

 

2.6 Application to a model 

The differently labelled datasets obtained from the annotation process were utilized to train a simple random forest model. 

This step aimed to investigate the impact of variations in the training dataset on the performance of the model. The labelled 160 

dataset, comprising instances with annotated anomalies, was used as the training dataset for the random forest model. The 

model was trained using this dataset to learn the patterns and characteristics of the labelled anomalies. 

To evaluate the performance and generalization ability of the trained model, the synthetic dataset, which contained artificially 

generated flow data with known anomalies, was used as the test dataset. The purpose of using the synthetic dataset as the test 

dataset was to assess how well the model could re-detect the synthetic anomalies. 165 

 

In this project, a Random Forest (RF) model was employed to analyze the training dataset with the goal of predicting labels 

for the given data. RF, an ensemble machine learning algorithm, was used to create a collection of decision trees during the 

training phase. Each decision tree was constructed using random subsets of both the data and features, and their individual 

predictions were aggregated to form a more accurate and robust prediction for the target labels. This approach was chosen for 170 

its versatility, ability to handle various types of data, and resistance to overfitting. Following the training process, the model's 

performance was likely evaluated using appropriate metrics on a separate test dataset to assess its predictive accuracy and 

generalization capabilities. 

3 Material: Wastewater flow data from the Urban Water Observatory 

This case study highlights data obtained from the Urban Water Observatory, an ongoing initiative aimed at monitoring in-175 

sewer processes in the municipality of Fehraltorf, situated near Zurich in Switzerland. More information about the Urban 

Water Observatory can be found at the website www.eawag.ch/uwo. The study specifically focuses on analyzing in-sewer 

flow rates, which were recorded over a period of 2 years with a temporal resolution of 5 minutes. 

 

Although the identification of anomalies in the data relies on visual inspection, the study found that these anomalies exhibit 180 

distinct characteristics and are easily distinguishable from normal data points, even for individuals without expertise in the 

field. This implies that the anomalies possess clear and distinguishable patterns within the observed domains. For researchers 

http://www.eawag.ch/uwo
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seeking access to the complete dataset, it is recommended to refer to the ERIC/open platform (ERIC-open, 2023). The full 

dataset, including all relevant information, is made available under the UWO project1 and the reproducibility platform 

RENKUlab2. 185 

4 Results 

Figure 5 showcases the labelling effort of an example labeller. The labels assigned by the labeller are depicted in red, while 

the synthetic anomalies are highlighted in green. The visualization provides a clear representation of the annotated anomalies 

and their locations within the dataset. This visualization aids the alignment and a visual assessment of the labeller accuracy in 

identifying and marking anomalies within the dataset. 190 

 

 

 

Figure 3 Example of data in blue, the synthetic labels in green and the labelling of an expert in red. 

 195 

Table 6 presents the results of the conducted experiment. The median F1 score, a metric measuring the model's overall 

performance in terms of precision and recall, was found to be 0.625. The lowest F1 score observed was 0.07, indicating 

instances where the model's performance was relatively poor. 

 

 200 

 

                                                           
1 https://doi.org/10.25678/000C5K 
2 https://gitlab.renkulab.io/andy.disch/datvalx-annotation-challenge 
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Table 2 Virtual anomalies and their characteristics and parameterization. 

Expert F1 score RF score 

1 0.08 0.07 

2 0.74 0.1 

3 0.67 0.1 

4 0.66 0.08 

5 0.65 0.09 

6 0.62 0.09 

7 0.56 0.09 

8 0.48 0.08 

9 0.63 0.09 

10 0.38 0.09 

11 0.63 0.08 

12 0.07 0.07 

Median 0.625±0.226 0.09±0.01 

 

 

Furthermore, the results in the last column in Table 2 indicate that the application of the RF model did not significantly improve 205 

its performance, regardless of the quality of the labelling. This suggests that the model's performance was not significantly  

influenced by the specific labelling approach or the quality of the labelled dataset. These findings suggest that alternative 

approaches or modifications to the model may be necessary to achieve notable improvements in performance. 

 

During the debriefing session, multiple differences in the application of the annotation tool were discussed among the labellers. 210 

These differences could include variations in annotation techniques, interpretation of anomalies, or discrepancies in labelling 

specific instances. One illustrative aspect highlighting these differences is presented in Figure 5. 

 

However, it was noted during the discussion that the absence of a comprehensive catalogue or guideline hindered the objective 

assessment of these divergent issues. Without a standardized framework or reference, it becomes challenging to objectively 215 

evaluate and compare the variations in the application of the annotation tool. To address this limitation, there is a clear need 

for additional guidance and a well-defined catalogue that outlines specific annotation guidelines, best practices, and expected 

interpretations of anomalies. Providing such guidance would facilitate a more consistent and reliable application of the 

annotation tool among labellers, enabling better comparison and evaluation of the labelled data. 
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 220 

Figure 4 Example for imprecise start and end definition of anomalies. 

5 Discussion 

In this section, we discuss the various challenges we encountered when labelling a consistent dataset for urban drainage data. 

Firstly, the challenges related to tool handling were apparent. The choice and functionality of the labelling tool played a crucial 

role in ensuring consistent and accurate labelling. In some instances, the tools used lacked certain features or had limitations 225 

that hindered the labelling process. Addressing these issues by refining existing tools or developing new ones specifically 

tailored to the dataset's requirements would greatly enhance the efficiency and effectiveness of the labelling process. 

 

Another significant difficulty arose from the precise definition of anomalies. Labellers faced ambiguity regarding when to start 

and label zones as anomalous. This uncertainty stemmed from the absence of clear guidelines on whether anomalies should be 230 

labelled a couple of points before the first abnormal point or precisely at that point. Additionally, labellers exhibited variations 

in their understanding of what constitutes an anomaly. To mitigate these challenges, providing labellers with more 

comprehensive and detailed briefings that emphasize the start and end points of anomalies would be beneficial in achieving 

more consistent labelling results. 

 235 

Fatigue also emerged as a notable obstacle during the labelling process. The daytime and duration of labelling sessions 

influenced labellers' ability to maintain a high level of accuracy and consistency. As fatigue set in, labellers' concentration and 

attention to detail might have waned, leading to potential inconsistencies in labelling. To address this issue, implementing 

appropriate breaks, managing workload distribution, and ensuring labellers have sufficient rest periods would help mitigate 

the impact of fatigue and maintain the quality and consistency of the labelled dataset. 240 
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Lastly, a key challenge was the need for prior knowledge about the expected behaviour of the sensors in the system. 

Understanding how the sensors should behave under normal operating conditions is crucial for identifying anomalies 

accurately. Lack of comprehensive information and guidance regarding sensor behaviour can introduce biases and 

inconsistencies in the labelling process. Providing labellers with detailed information on the expected sensor behaviour, along 245 

with examples of normal and abnormal patterns, would improve their understanding and enhance the consistency of the 

labelling process. 

6 Conclusions 

In conclusion, the production of a useful labelled data set for urban drainage data presents significant challenges that need to 

be addressed. Firstly, the inherent noise within urban drainage data poses a major obstacle. The complex and dynamic nature 250 

of urban environments introduces various sources of interference and inaccuracies, making it difficult to obtain clean and 

reliable data. Efforts should be directed towards developing robust data collection and pre-processing techniques to mitigate 

the impact of noise and enhance the quality of the labelled data set. 

 

Another crucial challenge stems from the differences in mental models among stakeholders involved in urban drainage 255 

systems. These differences encompass variations in system understanding and anomaly definition, which can lead to 

inconsistencies in labelling data. Overcoming this challenge requires fostering effective communication and collaboration 

between experts from different domains. Establishing a common understanding and consensus on key concepts and definitions 

will help improve the accuracy and consistency of the labelled data set. 

 260 

Furthermore, the limitations of available tools for data labelling contribute to the challenges faced in producing a useful labelled 

data set. Existing tools may lack the necessary features and functionalities to handle the complexities specific to urban drainage 

data. It is essential to invest in the development of advanced tools tailored to the unique requirements of urban drainage data 

labelling. These tools should incorporate intelligent algorithms, data validation mechanisms, and user-friendly interfaces to 

streamline the labelling process and maximize the utility of the labelled data set. 265 

 

Addressing these challenges is critical for advancing research and practical applications in the field of urban drainage. By 

improving the quality of labelled data sets, we can enhance the accuracy and reliability of analytical models, decision support 

systems, and predictive algorithms used in urban drainage management. Efforts should be made to foster interdisciplinary 

collaborations, refine data collection methodologies, and develop specialized tools to overcome the obstacles faced in 270 

producing a useful labelled data set for urban drainage data. Only by surmounting these challenges can we pave the way for 

automated data quality control and successful machine learning applications in the field of urban drainage. 
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