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1. Introduction

Upward propagation of flame fronts in tubes filled with very
lean reactive mixtures is a problem of both fundamental and ap-
plied interest which has been extensively studied. On the basis of
a comprehensive analysis of previous work, Coward and Jones [1]
proposed that a standard flammability tube can be used to charac-
terize the flammability of gas mixtures. This is a vertical tube
51 mm in diameter and 1.8 m long with an open lower end and a
closed upper end, which is filled with the mixture to be tested. This
mixture is ignited near the lower end of the tube, and it is said to
be flammable if a flame ensues and propagates all the way to the
upper end. Levy [2] noted that buoyancy plays a dominant role
in the propagation of the flame front near the flammability limit.
This author observed that, when the Lewis number of the fuel is
not far from unity, as in mixtures of methane/air or propane/air,
the flame front consists of a spherical cap followed by a long skirt,
and that its velocity is close to the velocity of a bubble rising in the
tube [3]. The dependence of the flammability limit on the diameter
of the tube was studied by Babkin et al. [4]. In agreement with
some previous results but contrary to the results of Coward and
Jones, these authors found that the minimum fuel concentration
for which a flame front can propagate increases with the diameter
of the tube. Lewis and von Elbe [5], Jarosinski et al. [6] and Hertz-
berg [7] pointed out that the stretch of the flame due to its curva-
ture and to the strain rate of the flow it induces in the tube may
cause the extinction observed at the flammability limit. Von Lavan-
te and Strehlow [8] approximately computed the flow of the fresh
gas above the flame front. They found that the stretch is due
mainly to the strain rate of the flow; that it is of the order of the
inverse of the residence time of the gas across a planar flame prop-
agating in the mixture; and that it is maximum at the tip of the
flame front, where extinction begins at the flammability limit.
The flow on both sides of an axisymmetric steadily rising flame
front was further investigated by Higuera [9], with emphasis on
the structure of the vortical flow downstream of the flame front
and the generation of vorticity at the flame. The results accurately
determine the shape and stretch of the flame and point out a
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possible instability of the vortical flow. Shoshin et al. [10] recently
investigated the effect of preferential diffusion, which can increase
the final combustion temperature of stretched flames when the Le-
wis number of the deficient reactant is smaller than unity. These
authors, however, conclude that preferential diffusion cannot al-
ways explain the observed behavior of methane/air and propane/
air flame fronts at their flammability limits. Shoshin and Jarosinski
[11] and Shoshin et al. [12] proposed that heat losses from the
flame due to the effect of radiation in a low velocity region that ap-
pears below very lean flames may explain the observed extinction.

Radiation losses in near limit flames propagating upward in a
tube are further investigated in this paper. Numerical computa-
tions and order-of-magnitude estimations are used to show that
the effect of these losses is very much enhanced by the conditions
of the flow below the flame front. For very lean mixtures, this flow
features a region of low velocity relative to the flame, whose radial
extent scales with the diameter of the tube and whose length may
be even larger. Heat conduction is important in this region, despite
its large size, leading to a conduction heat flux from the reaction
region of the flame to the burnt gas that is sufficiently strong to
cause extinction of the flame in conditions typical of the standard
flammability tube. This singular feature of the flow disappears, and
radiation losses cease to play a role, when the equivalence ratio is
slightly increased. The effect of the radiation losses also decreases
with the radius of the tube. The reaction region at the tip of a very
lean flame in a narrow tube is thick and tends to be located in a re-
gion of reverse (upward) flow, which may cause flame failure with-
out radiation losses. Kinetic effects are important at the
flammability limit. However, since analysis of these effects is be-
yond the scope of the present work, the combustion is modeled
by means of a global irreversible Arrhenius reaction. This drastic
simplification prevents any accurate analysis of flame extinction
but, by keeping the computations affordable, it allows to clarify
the mechanism by which low gas velocities and radiation losses
act upon the flame.

2. Formulation

Consider an axisymmetric flame front rising at constant speed
in a very long vertical tube of radius R� whose wall is kept at a con-
stant temperature Tu, as in the sketch of Fig. 1. The tube is open to
the atmospheric pressure at its lower end and closed at its upper
end, and it is filled with a very lean fuel-air mixture of density
Fig. 1. Definition sketch. R� ¼ 25:5 mm for the standard flammability tube.
qu, temperature Tu, and fuel mass fraction Yu. A perfect gas with
constant specific heats and mean molecular mass is assumed.
Compressibility effects are left out by setting the pressure equal
to a constant in the equation of state. The gas viscosity and thermal
conductivity, l and k, and the diffusivities of the fuel and the reac-
tion products, Di with i ¼ CH4;CO2;H2O in the case of a methane
flame, are taken to be powers of the temperature, of the form
l=lu ¼ k=ku ¼ qDi=quDiu ¼ ðT=TuÞj, so that the Prandtl and Lewis
numbers, Pr ¼ lcp=k and Lei ¼ k=qcpDi respectively, are constant.
Hereafter a subscript u denotes conditions in the fresh mixture.
In what follows, j ¼ 0:75 and Pr ¼ Lei ¼ 1 unless otherwise is
noted. While more accurate molecular transport models are avail-
able for lean methane/air mixtures, such as the model developed
by Smooke and Giovangigli [13], the simple power law model will
suffice for the purposes of this work.

Combustion in the flame is modeled using a single irreversible
Arrhenius reaction, CH4 þ 2O2 ! CO2 þ 2H2O for methane/air,
with frequency factor B and activation temperature Ta, so that
the mass of fuel consumed per unit volume of gas and unit time
is w ¼ qBYF expð�Ta=TÞ, where q and T are the local gas density
and temperature, and YF is the fuel mass fraction. Admittedly, a
single-step chemistry is a poor model of the real kinetics. It cannot
account for kinetic effects on flame extinction and does not allow
to accurately determine the flammability limit. However, it is still
useful to analyze the effects of gravity and thermal expansion, as
well as the effects of preferential diffusion and radiation losses,
which are the subject of this paper and seem to play an important
role for near limit flames in the standard flammability tube.

The adiabatic flame temperature is Tb ¼ Tu þ qYu=cp, where q is
the heat released per unit mass of fuel consumed. The dimension-
less parameter c ¼ Tb � Tuð Þ=Tu measures the thermal expansion of
the gas in the flame, and the Zeldovich number b ¼ Ta Tb � Tuð Þ=T2

b

measures the temperature sensitivity of the chemical reaction. The
equivalence ratio is / ¼ 17:39Yu=ð1� YuÞ for methane/air mix-
tures. Well-known asymptotic analysis [14] shows that, in the lim-
it b!1, the velocity and thickness of a planar adiabatic flame are

UL ¼
2DbBð Þ1=2LeF

b cþ 1ð Þ exp � b
2

cþ 1
c

� �
and dL ¼

ku

quULcp
; ð1Þ

where Db ¼ DFðTbÞ and LeF are the diffusivity and the Lewis number
of the fuel.

The values of the frequency factor and the activation tempera-
ture are chosen for the single-step chemistry to give planar flame
velocities in agreement with experimental results in the range of
equivalence ratios of interest. For this purpose, a reference case
is considered (magnitudes denoted with a subscript r) where
Tu ¼ 300 K and Yur ¼ 0:03, so that /r ¼ 0:538; Tbr ¼ 1500 K and
cr ¼ 4 (using cp ¼ 1287 J/kg K), and the planar flame velocity is
ULr ¼ 4:63 cm/s according to Ref. [15]. For each value of the activa-
tion temperature Ta, the frequency factor B is chosen for the
asymptotic formula (1) to reproduce this velocity in the reference
case. The value Ta ¼ 18;750 K, for which br ¼ 10, is then deter-
mined for the flame velocity computed numerically with the sin-
gle-step chemistry to fit the experimental results of Yamaoka
and Tsuji [16] for very lean mixtures, corrected to zero stretch by
Wang et al. [17]. This value of the activation temperature is in line
with the results of Westbrook and Dryer [18]. Figure 2 shows the
computed flame velocity (solid), the velocity given by the asymp-
totic formula (1) (dashed) and the experimental velocity (triangles)
as functions of the equivalence ratio. Also shown in this figure are
the planar flame velocities determined by Wang et al. [17] from
their microgravity experiments (circles) and the fits obtained with
the single-step chemistry for Ta ¼ 37;500 K and 52,500 K (lower
and upper dotted curves), though these values will not be used
in what follows.



Fig. 2. Velocity of the planar flame as a function of the equivalence ratio. Triangles:
experimental results of Yamaoka and Tsuji [16] corrected as in Ref. [17]. Solid:
numerical results for single-step chemistry with Ta ¼ 18;750 K. Dashed: asymp-
totic flame velocity (1) for this activation temperature. Circles: experimental results
determined by Wang et al. [17] from their microgravity experiments. Dotted:
numerical results for single step chemistry with Ta ¼ 37;500 K (lower curve) and
Ta ¼ 52;500 K (upper curve).
Radiation from the reaction products CO2 and H2O is taken into
account assuming that the gas is optically thin and the wall of the
tube is transparent or non-reflecting. The energy lost by radiation
per unit volume of gas and unit time is then L ¼ 4rKPT4 � A, where
r is the Stefan-Boltzmann constant, KP is the Planck mean absorp-
tion coefficient, and A is the energy absorbed by the gas from the
surrounding medium or the wall at temperature Tu; see, e.g., Ref.
[19]. The coarse approximation A ¼ 4rKPT4

u, leading to L ¼ 4rKP

T4 � T4
u

� �
, will be used, which is admissible when Tu is small com-

pared to the temperature of the radiating gas. The Planck mean
absorption coefficient is written in the form KP ¼ PCO2 KCO2 þ
PH2OKH2O, where PCO2 and PH2O are the partial pressures of CO2

and H2O, and KCO2 and KH2O are functions of the gas temperature
computed and tabulated by Ju et al. [20] using the statistical nar-
row band model; see also Fiveland [21] and Soufiani and Taine
[22]. For the reference case, KP is of the order of 1 m�1 in the burnt
gas, where PCO2 � 0:054P; PH2O � 0:108P, and P � 105 Pa is the

total pressure of the gas. The absorption length K�1
P is thus large

compared to the radius of the tube (R� ¼ 25:5 mm for the standard
flammability tube), which justifies the assumption of an optically
thin gas.

An additional approximation will be used to simplify the com-
putation of the radiation losses. Since the diffusivities of CO2 and
H2O are not very different from each other, the approximation
LeCO2 ¼ LeH2O is made. This gives PH2O ¼ 2PCO2 , because the two spe-
cies are produced and transported in the same conditions. Further-
more, since the mass fractions of these species are small for the
lean mixtures considered, the approximation PCO2=P � YCO2=44

� �
=

0:23=32þ 0:77=28ð Þ ¼ 0:655YP can be used, where YP is the mass
fraction of CO2. Thus, summarizing and using the equation of state

of the gas, L ¼ 2:62rRgqYPT KCO2 þ 2KH2O
� �

T4 � T4
u

� �
, where Rg is

the constant of the air. To assess the effect of this approximation,
computations have been carried out in which the mass fractions
of CO2 and H2O are separately computed by solving the conserva-
tion equations for these species (analogous to Eq. (7) below) with
LeCO2 ¼ 1:39 and LeH2O ¼ 0:83. Some results are shown by dotted
curves in Fig. 9 below. As can be seen, the approximation has only
a small effect on the results. The factor T KCO2 þ 2KH2O

� �
depends

only weakly on the temperature and decreases when the temper-
ature increases. Since most of the radiation losses occur from the
hot burnt gas below the flame, where YP and T4 � T4

u are largest,
this factor is replaced by a constant equal to its value 0.25 K/
Pa m at T ¼ 1300 K. Again, additional computations in which the
temperature variation of T KCO2 þ 2KH2O

� �
is retained show that this

approximation has no important effect on the results.
In most cases of interest, the wall of the tube is not transparent

to the visible and infrared radiation emitted by the burnt gas. The
wall absorbs and reflects this radiation partially (for Plexiglas, Pyr-
ex or quartz tubes) or totally (for black or metallic tubes), and thus
plays a role in the radiation exchange. The effect depends on the
wall thickness and the optical and thermal properties of the tube
material, and its analysis is beyond the scope of this work. The sim-
ple model of an optically thin gas enclosed by a transparent or non-
reflecting wall is intended to give qualitative results only. Its use
relies on the following estimations.

First, a coarse, conservative estimate of the temperature in-
crease of the wall in a region of characteristic size R� around the
flame tip due to the absorbed radiation, DTwr say, can be worked
out assuming that all the radiation emitted by the burnt gas in this
region, of order LR�3 with L evaluated at temperature Tb, is ab-
sorbed by the wall, and leaving out heat losses from the outer sur-
face of the tube. In a reference frame moving with the flame front,
in which the wall is seen to move downward with a velocity U0

(see Fig. 1), an order-of-magnitude energy balance for the heated
layer of the wall reads qscsU0R�bDTwr � LR�3, where qs and cs are
the density and specific heat of the tube material and b is the thick-
ness of the heated layer; b �minðdw;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksR

�=qscsU0

p
Þ, with dw

denoting the thickness of the wall and ks its thermal conductivity.
Thus DTwr=Tu � ðrKPT4

bR�2Þ=ðqscsU0bTuÞ, which should be small for
the cold wall condition used in this work to be realistic. For a stan-
dard tube (R� ¼ 25:5 mm) with the thermal properties of Plexiglas,
taking U0 ¼ 21 cm/s (see Section 3 below) and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksR

�=qscsU0

p
¼

0:11 mm, the estimate gives DTwr=Tu � 1:5� 10�2 in the condi-
tions of the reference case mentioned above. Similarly,
DTwr=Tu � 5:6� 10�3 for a quartz tube, and 3:84� 10�4 for an alu-
minum tube (with dw larger than about 3 mm). The estimate of
DTwr is for a region of characteristic size R� moving with the
flame tip. The radiation-induced wall temperature increase may
be larger than DTwr far downstream of the flame tip, but this is
not expected to significantly affect the propagation of the flame.
Radiative heating of the wall far upstream of the flame tip is
assumed to be small because the angle subtended by the burnt
gas is then small.

Second, the reflection of gas-emitted radiation in the tube wall
increases the intensity of the radiation in the tube and thus leads to
an increase of gas absorption (A above) and a decrease of the net
radiation losses, L. However, analysis of a hot isothermal gas en-
closed by a cold wall [19] suggests that, for the optically thin gas
envisaged here, the relative decrease of radiation losses due to
multiple reflections is of order KPR�=ð1� qwÞ, where qw is the
reflectivity of the wall. Since KPR� is small, the decrease of the radi-
ation losses is significant only for a nearly perfectly reflecting wall,
with qw close to unity. The effect approximately amounts to reduc-
ing the Planck mean absorption coefficient.

Dimensionless variables are now introduced. The values of the
planarflamevelocityandthicknessgivenbytheasymptoticformulae
(1) forthereferencecase,namelyULr ¼ 4:63 cm/sanddLr ¼ 0:43 mm,
will be used as units of velocity and length. When Yu is changed keep-
ing Tu constant, the parameters c; b and UL change as

c
cr
¼ Yu

Yur
; b

br
¼ c

cr

crþ1
cþ1

� �2
;

Uf ¼ UL
ULr
¼ cþ1

crþ1

� �ðjþ3Þ=2 cr
c exp � b

2
cþ1
crþ1 1� cr

c

� �h i
;

9>=
>; ð2Þ



which give a c proportional to Yu; a b that decreases when Yu in-
creases in the range of values of interest (above c ¼ 1); and a Uf that
increases rapidly with Yu. In addition, the density is scaled with qu,
the mass fractions of all the species are scaled with Yu, and the
dimensionless temperature h ¼ T � Tuð Þ= Tb � Tuð Þ is used. In terms
of these variables, the governing equations and boundary condi-
tions in the reference frame moving with the flame front, in which
the solution is stationary, are

$ � qvð Þ ¼ 0; ð3Þ
qv � $v ¼ �$pþ qGiþ $ � s0; ð4Þ
qv � $h ¼ $ k$hð Þ þW � L; ð5Þ

qv � $YF ¼
1

LeF
$ k$YFð Þ �W ; ð6Þ

qv � $YP ¼
1

LeP
$ k$YPð Þ þ 11

4
W; ð7Þ

W ¼
b2U2

f

2ðcþ 1Þj�1LeF

qYF exp bðcþ 1Þ h� 1
1þ ch

	 

; ð8Þ

L ¼ qRYP 1þ chð Þ4 � 1
h i

; ð9Þ

q 1þ chð Þ ¼ 1; k ¼ 1þ chð Þj; ð10Þ

r ¼ R : v ¼ U0i; h ¼ @YF

@r
¼ @YP

@r
¼ 0; ð11Þ

x! �1 : v ¼ U0i; h ¼ 0; YF ¼ 1; YP ¼ 0; ð12Þ

x!1 :
@v
@x
¼ @h
@x
¼ @YF

@x
¼ @YP

@x
¼ 0; ð13Þ

where dimensionless variables are denoted with the same symbols
used before for their dimensional counterparts. Here r is the dimen-
sionless distance from the axis of the tube and x is the dimension-
less distance along the axis measured downward from an origin
which is defined by the condition that h0 ¼ hð0;0Þ have a chosen
constant value, typically 0.7 or 0.8; i is a unit vector pointing down-
ward; and U0 is the dimensionless velocity of the flame front rela-
tive to the tube, which is to be found as part of the solution. Eqs.
(3) and (4) are the continuity and momentum equations, where
G ¼ gdLr=U2

Lr is the dimensionless acceleration of gravity,

s0 ¼ k $v þ $vð ÞT
h i

is the non-spherical part of the viscous stress

tensor, and p is the pressure of the gas augmented with the spher-
ical part of the viscous stress tensor, both scaled with quU2

Lr . Eqs.
(5)–(7) are the energy, fuel, and product (CO2) conservation equa-
tions, with the reaction and radiation terms given by Eqs. (8) and
(9). Eqs. (10) are the equation of state and the equation giving the
power law temperature dependence of the dimensionless viscosity,
conductivity and mass diffusivities. The boundary conditions (11)–
(13), express that the wall of the tube and the fresh gas are seen to
move downward with velocity U0 in the reference frame tied to the
flame front. Here R ¼ R�=dLr is the dimensionless radius of the tube.

The dimensionless parameters appearing in (3)–(13) are

c ¼ Tb�Tu
Tu

; b ¼ Ta Tb�Tuð Þ
T2

b
; Uf ¼ UL

ULr
;

G ¼ gdLr
ULr
; R ¼ R�

dLr
; LeF ; LeP ; Pr; j;

R ¼ 2:62 rRg T3
udLr Yur

cpcr ULr
T KCO2 þ 2KH2O
� �� �

1300 K:

9>>>>>=
>>>>>;

ð14Þ

The first three parameters are given by (2) in terms of cr , br and
Yu=Yur . Parameter Uf is artificial. It appears due to the use of ULr

and dLr as velocity and length scales instead of the values UL and
dL given by (1) for the current composition of the fresh gas. The
magnitudes ULr and dLr of the reference case are used for conve-
nience, to facilitate comparison of results for mixtures with differ-
ent fuel mass fractions in the same tube and setup. Since these
magnitudes appear in most of the dimensionless parameters, all
these parameters would change when Yu is changed, should UL

and dL have been used in their definitions. Values of the dimension-
less parameters used in the computations of the following section
are cr ¼ 4;br ¼ 10; LeP ¼ Pr ¼ 1 and j ¼ 0:75, as mentioned above;
LeF ¼ 0:8, 1 and 1.2; G ¼ 2 corresponding to normal gravity;
R ¼ 60 corresponding approximately to the standard flammability
tube; and R � 2� 10�5.

The numerical method used to solve (3)–(13) is similar to the
method used in Ref. [9]. The stream function/vorticity formulation
equivalent to (3) and (4) is used together with a pseudo-transient
iteration which amounts to adding time derivatives to Eqs. (5)–(7)
and the vorticity equation that results from (4). The equations are
then rewritten in terms of the new independent variables ðn; rÞ,
where n ¼ xþ mRð Þ= hðrÞ þ mRð Þ, m is an adjustable constant,
hð0Þ ¼ 0, and the function hðrÞ and the constant U0 in (11) and
(12) are iteratively chosen to ensure that hðn ¼ 1; rÞ ¼ h0 in a region
around the axis of the tube. The equations are discretized using
second order finite differences in a rectangular, nonuniform grid
covering the domain 0; n1½ � � 0;R½ � and finer around n ¼ 1. Typical
values of the numerical parameters are m ¼ 1 and n1 ¼ 3—6.
Numerical tests show that grid independence is obtained with
360� 120 grid points.

3. Results and discussion

In agreement with experimental results and previous numerical
computations [9,10], the flame fronts computed for very lean mix-
tures consist of a round cap followed by a long skirt; see, e.g. Figs. 3,
6 and 7 below. The shape of the cap is similar to that of a bubble
rising in the tube, and its velocity U0 is nearly independent of
the equivalence ratio and close to the velocity of a bubble given
by the Davies and Taylor formula [3],

UDT ¼ 0:467
c

cþ 1
GR

� �1=2

ð15Þ

in our dimensionless variables. Eq. (15) gives UDT ¼ 4:58 (which
amounts to 21 cm/s) for c ¼ 4;G ¼ 2 and R ¼ 60. Since UDT is scaled
with ULr , this relatively large value implies that the tip of the flame
front is confined to a neighborhood of the stagnation point of the
equivalent bubble flow, and the rest of the flame front lies near
the streamline through this point. Also, insofar as the dimensionless
burning velocity of the flame is of the order of Uf in Eq. (2), the
length of the skirt scaled with the radius of the tube is large of
the order of UDT=Uf .

3.1. Results without radiation losses

Consider first a flame front propagating upward in the absence
of radiation losses (R ¼ 0). Figure 3 shows the reaction region,
some isotherms, and some streamlines of the flow relative to the
flame for LeF ¼ 1;R ¼ 60, and equivalence ratios / = 0.344, 0.504,
0.538 and 0.581, which correspond to Uf = 0.07, 0.7, 1 and 1.5. Fig-
ure 4(a) summarizes some properties of the flame at its tip. Mea-
suring vertical distances from the point where the reaction rate
attains its maximum on the symmetry axis, xW where W ¼Wmax

say, this figure shows, as functions of /, the distances from this
point to the points where W ¼ 0:1Wmax on either side of the max-
imum (solid lines), the distance to the point where h ¼ 0:1
(dashed), and the distance to the point where v ¼ 0 (dotted) when
such point, which marks the upper boundary of a recirculation re-
gion, exists (in Fig. 3(a) and (b), for example). Results are shown for
R ¼ 60 and LeF = 0.8, 1 and 1.2, increasing as indicated by the ar-
rows. Figure 4(b), to be commented below, shows similar results
when radiation losses are taken into account with R ¼ 2� 10�5.
The distance between the two solid curves in Fig. 4 is a measure



Fig. 3. Contours of constant reaction rate (W, solid, red), isotherms (dashed, green) and streamlines of the flow relative to the flame front (solid with arrows, blue) for
/ ¼ 0:344 (a), 0.504 (b), 0.538 (c) and 0.581 (d), in the absence of radiation losses (R ¼ 0). Other parameters have their reference values mentioned below Eq. (14). In
particular, G ¼ 2;R ¼ 60 and LeF ¼ Pr ¼ 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Properties of the flame along the axis of the tube as functions of the equivalence ratio. Shown are the distances from the point where W attains its maximum (Wmax) to
the points where W ¼ 0:1Wmax on both sides of the maximum (dx	0:1wmax , solid red), to the point where h ¼ 0:1 (dxh¼0:1, dashed, green), and to the stagnation point where
v ¼ 0 (dxu¼0, dotted, blue), for LeF ¼ 0:8, 1 and 1.2, increasing as indicated by the arrows. R ¼ 0 in (a) and 2� 10�5 in (b). Other parameters have their reference values. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
of the thickness of the reaction region, and the distance between
the lower solid curve and the dashed curve is a measure of the
thickness of the whole flame at the tip. When LeF ¼ 0:8, the flame
transitions from bubble-shaped to tulip-shaped at the right-hand
side end of the curves, for / � 0:573. Similar transitions occur for
LeF ¼ 1 and 1.2 at higher values of /, not shown in the figure.

As can be seen in Figs. 3 and 4(a), the following sequence of
events occurs when the flame is weakened by decreasing the
equivalence ratio. The downward velocity of the burnt gas relative
to the flame front decreases around the axis of the tube (the spac-
ing of the streamlines increases); a recirculation region appears be-
low the flame front; the reaction region of the flame thickens and
approaches the recirculation region; the reaction region enters the
recirculation region; the numerical method ceases to converge to a
stationary solution. When the Lewis number of the fuel is larger
than unity, the strain rate of the flow ahead of the flame weakens
it at the tip (see, e.g. Williams [14]) and the sequence of events oc-
curs earlier, for larger values of the equivalence ratio than when
LeF ¼ 1. Similarly, the strain rate strengthens the flame and post-
pones the sequence of events to smaller values of the equivalence
ratio when LeF < 1.

The structure of the flame changes significantly when most of
the chemical reaction occurs in the recirculation region. The con-
vection, conduction and reaction terms of the energy equation
(5) along the axis of the tube are shown in Fig. 5 for / ¼ 0:406
and 0.504. Convection is not important in the reaction region when
/ ¼ 0:504, in which case the gas moves downward across the
flame, but it is of the same order as the conduction and reaction
terms when / ¼ 0:406, and even larger than the reaction term
when / ¼ 0:344 (not displayed), in which cases the gas flows
upward in the reaction region. This flow tends to confine the fuel
that enters the recirculation region from above by diffusion across
the dividing streamline bounding this region.

The increasing relative importance of convection when /
decreases can be explained using simple order-of-magnitude
estimates. The Zeldovich number b is fairly large, implying that



Fig. 5. Convection (dashed, red), conduction (solid, green) and reaction (dotted,
blue) terms of the energy equation (5) along the axis of the tube for / ¼ 0:406 and
0.504, increasing as indicated by the arrows. Here R ¼ 0 and other parameters have
their reference values. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
the dimensionless fuel mass fraction and the temperature variation
are small in the reaction region, YF ;1� hð Þ ¼ Oðb�1Þ. The balance
of conduction and chemical reaction, $ � k$hð Þ �W , reads
kbb

�1=d2 �Wc , as for a planar unstretched flame [14]. Here d is
the characteristic thickness of the reaction region, kb ¼ ðcþ 1Þj,
and Wc ¼ bU2

f =ðcþ 1Þj, from (8) with YF ¼ Oðb�1Þ. The upward
velocity of the gas in the reaction region is induced by the viscous
shear stress at the dividing streamline, and depends on the condi-
tions of the flow in the whole recirculation region. Denoting by uc

the order of this velocity, the ratio of convection to conduction
terms of the energy equation in the reaction region is

O qv � $h½ �
O $ � k$hð Þ½ � �

qbucd
kb
� qbuc

bkbWcð Þ1=2 ;

where qb ¼ 1=ðcþ 1Þ and the estimate of d above [d � kb=bWcð Þ1=2]
has been used. This ratio increases when Wc is decreased by
Fig. 6. Contours of constant reaction rate (solid, red), isotherms (dashed, green) and strea
(a), 0.474 (b), 0.538 (c) and 0.581 (d). Here R ¼ 30, R ¼ 0, other parameters have their ref
reader is referred to the web version of this article.)
decreasing /, which suggests that convection would eventually
overcome conduction. However, a convection–reaction balance
does not make sense when the reaction occurs in the region of re-
verse flow, because this flow does not bring any fuel to the reaction
region. Therefore a stationary flame is expected to fail at its tip
when the ratio of convection to conduction reaches a certain limit
value of order unity, which amounts to Uflim � uc=bðcþ 1Þ when
the estimate of Wc above is used (but see comments below for
LeF P 1).

This coarse estimation depends on the characteristic velocity of
the gas uc , which in turns depends on a number of factors. When
the flow in the recirculation region is stationary, as in the compu-
tations of this paper, the balance of viscous shear stresses at the
two sides of the dividing streamline (accounting for the increased
viscosity of the burnt gas) suggests that the velocity in the bulk of
the recirculation region should scale as ud ¼ ðGRÞ1=2

=ðcþ 1Þj,
though the numerical results show that the actual velocity is some-
what smaller than this ud. If the thickness of the reaction region is
small compared to the radial extent of the recirculation region,
d
 R, then the reaction region is near the upper stagnation
point of the recirculating flow and the estimate uc ¼ udd=R is
appropriate, which gives Uflim � ðG=RÞ1=4

=bðcþ 1Þ1=2. If the condi-
tion d
 R is not satisfied, as in the results for R ¼ 30 displayed
in Fig. 6(a), then uc ¼ ud is appropriate, which gives
Uflim � ðGRÞ1=2

= bðcþ 1Þ1þj. As can be seen, the two estimates of
uc predict opposite trends for the limit value of Uf (hence /lim) as
a function of the radius of the tube. The first prediction is analo-
gous to the results derived on the assumption that flame stretch
due to the strain rate of the fresh gas flow causes extinction at
the flammability limit (e.g., Buckmaster and Mikolaitis [23]). The
second prediction is similar to the prediction put forward by
Levy [2].

A region of distributed reaction exists away from the tip of near
limit flames when LeF P 1; see, e.g., Fig. 3(a). In these cases, recir-
culation of the hot gas suffices to maintain the distributed chemi-
cal reaction in a certain range of equivalence ratios before the
flame fails, The reaction term may become small compared to
the convection and conduction terms of the energy equation at
the flame tip. leading to the non-monotonic curves in Fig. 4(a).
The maximum value of W occurs at the tip when LeF ¼ 1 and away
from the tip when LeF > 1.
mlines of the flow relative to the flame front (solid with arrows, blue) for / ¼ 0:421
erence values. (For interpretation of the references to color in this figure legend, the



Fig. 7. Contours of constant reaction rate (solid, red), isotherms (dashed, green) and
streamlines of the flow relative to the flame front (solid with arrows, blue) for
flames with radiation losses (R ¼ 2� 10�5). Upper row: limit flames for (a):
LeF ¼ 0:8 (/lim � 0:450), (b): LeF ¼ 1 (/lim � 0:513), and (c): LeF ¼ 1:2 (/lim � 0:556).
Lower row: flames for / ¼ 0:581 and LeF ¼ 0:8 (d), 1 (e), and 1.2 (f). Other
parameters have their reference values. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Convection (dashed, red), conduction (solid, green) and radiation losses
(dotted, blue) terms of the energy equation (5) in the burnt gas along the axis of the
tube for / ¼ 0:513, 0.527 and 0.581, increasing as indicated by the arrows. Other
parameters have their reference values. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Values at the axis of the tube of the reaction rate integrated across the flame,R1
�1 W dx, (solid, red) and the scaled conduction flux toward the burnt gas,
�bk@h=@x evaluated at the point where W ¼ 0:01Wmax pass the maximum (dashed,
green), as functions of the equivalence ratio for LeF ¼ 0:8, 1 and 1.2, increasing as
indicated by the arrows. Other parameters have their reference values. Dotted
curves show results for LeF ¼ 1 with the mass fractions of CO2 and H2O entering the
expression of the Planck mean absorption coefficient computed separately with
LeCO2 ¼ 1:39 and LeH2 O ¼ 0:83, as explained in Section 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
In any case, the results in Fig. 4(a) show that, in the absence of
radiation losses, a flame exists for values of the equivalence ratio
well below the experimental minimum measured in a standard
flammability tube. On the other hand, analogous computations
for R ¼ 30 (a 26 mm diameter tube) fail to converge for
/lim � 0:421 when LeF ¼ 1, which is not far from the flammability
limit measured by Shoshin et al. [10] in a 24 mm diameter tube;
/STJ � 0:486. This suggests that the results without radiation losses
could be relevant for narrow tubes. The limit flame found in these
computations for R ¼ 30 is shown in Fig. 6(a).
3.2. Effect of the radiation losses

Figure 4(b) shows the same flame properties as Fig. 4(a) dis-
cussed above when radiation losses are taken into account with
R ¼ 2� 10�5. As can be seen, radiation losses cause flame extinc-
tion at a value of / that increases with the Lewis number of the fuel
(from /lim � 0:450 for LeF ¼ 0:8, to /lim � 0:513 for LeF ¼ 1, and to
/lim � 0:556 for LeF ¼ 1:2) and is in the range of experimental val-
ues for lean limit methane/air flames measured in the standard
flammability tube (/exp ¼ 0:507—0:517; see, e.g. Ref. [12]). Figure 7
shows the appearance of the limit flame fronts and the flow fields
for the three values of LeF , and compares them with less lean flame
fronts with / ¼ 0:581. Comparison of Figs. 7(e) and 3(d) shows that
radiation losses have very little effect on the flame away from the
flammability limit. However, the effect of radiation losses increases
rapidly when the limit is approached. When LeF ¼ 1:2, Fig. 7(c),
radiation-induced extinction occurs before the flame front can ap-
proach the recirculation region. In this case the tip of the flame is
already weakened by the strain rate of the fresh gas flow, and radi-
ation causes extinction with only a moderate decrease of the



equivalence ratio. When LeF ¼ 0:8, Fig. 7(a), the tip of the limit
flame is around the dividing streamline. Now the strain rate of
the fresh gas flow strengthens the flame, opposing the effect of
radiation losses and postponing extinction to a smaller value of
the equivalence ratio.

The important effect of radiation losses revealed by these com-
putations is surprising, given the small value of R. The direct effect
of the losses in the transport region of the flame leads to temper-
ature variations of order Rðcþ 1Þ3þj at most, and radiation losses
would induce a dimensionless conduction flux of this same order
immediately behind the flame, should the dimensionless mass flux
qu be of order unity downstream of the flame, as it is for a planar
unstretched flame; see Williams [14] and Joulin and Clavin [24].
These perturbations are small compared to b�1 and therefore have
little effect on the flame. This is in line with the results in Fig. 7(d)–
(f) for / ¼ 0:581. However, the decrease of the downward velocity
of the gas and the eventual appearance of recirculation when the
flammability limit is approached drastically enhances the effect
of radiation losses.

Figure 8 shows the evolution along the axis of the tube of the
convection (dotted), conduction (dashed) and radiation (solid)
terms of the energy equation (5) in the burnt gas behind the flame
for three values of the equivalence ratio. Conduction in the burnt
gas is important and nearly balances radiation losses for the near
limit flame with / ¼ 0:513 (shown in Fig. 7(b)), but it is less impor-
tant when / ¼ 0:581 (flame shown in Fig. 7(e)), for which a con-
vection–radiation balance is approached. The order of the
radiation-induced temperature variation in the low velocity region
of characteristic size R behind the near limit flame is
Dh � Rðcþ 1Þ3�jR2, from the conduction–radiation balance
kDh=R2 � qRðcþ 1Þ4 with q � 1=ðcþ 1Þ and k � ðcþ 1Þj. The ef-
fect of this temperature variation on the reaction region of the
flame is measured by the conduction flux it induces scaled with
the inverse of the Zeldovich number (Williams [14], Joulin and Cla-
vin [24]); bkbDh=R � bRðcþ 1Þ3R, which is a quantity of order unity
for R ¼ 60 and typical values of the parameters involved.

To back up these estimates, Fig. 9 shows the values at the flame
tip (r ¼ 0) of the dimensionless heat released by the chemical reac-
tion,

R1
�1 W dx (solid), and the scaled conduction flux immediately

behind the flame, �bk@h=@x (dashed), as functions of / for
R ¼ 60;R ¼ 2� 10�5, and LeF ¼ 0:8, 1 and 1.2. This figure confirms
that heat conduction toward the burnt gas due to radiation losses
increases to significant values only in the vicinity of extinction. Di-
rect radiation losses from the flame are small in any case.

Similar computations carried out for narrower tubes show that
the effect of radiation losses decreases with R, in line with the esti-
mations above. Thus, extinction occurs for /lim � 0:448 when
R ¼ 30 and LeF ¼ 1, and the velocity of the gas is upward in the
reaction region of the limit flame, which resembles the structure
discussed in Section 3.1. This value of the limit equivalence ratio
is to be compared to the value 0.421 computed in the absence of
radiation losses, and to the value /STJ ¼ 0:486 measured by Shoshin
et al. [10] in a 24 mm diameter tube (R ¼ 27:9).

4. Conclusions

The effect of radiation losses on very lean methane/air flames
propagating upward in a vertical tube has been analyzed numeri-
cally using a simple model that comprises an optically thin gas
and a single overall chemical reaction. Numerical results for the
conditions of the standard flammability tube show that a region
of low gas velocity relative to the flame, of characteristic size of
the order of the radius of the tube, develops in the burnt gas when
the equivalence ratio is decreased. Heat conduction is important in
this region, despite its large size, and, in the presence of radiation
losses, leads to a conduction heat flux from the flame to the burnt
gas that causes extinction of the flame tip at a value of the equiv-
alence ratio of the order of the experimental flammability limit.
The velocity of the burnt gas increases, and radiation losses cease
to play a significant role, when the equivalence ratio is increased.

The effect of the radiation losses decreases with the radius of
the tube. Numerical results in the absence of radiation losses pre-
dict that a flame fails to propagate only when it is immersed in a
region of reverse (upward) flow of the burnt gas that upsets the
conduction–reaction balance in the flame reaction region. In
the standard flammability tube, this would happen at values of
the equivalence ratio well below the measured flammability limit.
However, limit equivalence ratios computed without radiation
losses for tubes narrower than the standard tube are in reasonable
agreement with the flammability limit measured by Shoshin et al.
[10] in a 24 mm diameter tube.
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