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This work presents the development of an uncertainty estimation procedure for an indexed metrology platform. The use of an indexed metrology platform 
in calibration and verification procedures for portable coordinate measuring instruments, enables the evaluation of different working volumes of the 
instrument that rotates with the platform in six rotating positions without moving the gauge from a fixed location, reducing in this way the testing time 
and test setups in comparison with the tests included in the applicable standards. The platform is able to express points in a global reference coordinate 
system located in the lower platform through its mathematical model. Due to the platform model complexity and according to the GUM supplement 1, 
the propagation of distributions using the Monte Carlo method was applied to estimate the platform measurement uncertainty. The different error 
sources affecting the platform uncertainty were first identified. An analysis of the dynamic behavior of the platform by means of a computational and 
experimental modal test was done in this work. The capacitive sensors assembled in the platform determine the position and orientation of the upper 
platform with respect to the lower platform and were selected as input variables of the model with their related errors. The n-homogeneous 
transformation matrices obtained in the simulation as output variables will allow the coordinate reference system change from the upper platform to 
the lower platform. In this way, it is possible to estimate the influence of the indexed metrology platform position and orientation uncertainty in the 
generation of points in a global reference system and as a consequence, its influence in a distance measurement. 

 

1. Introduction 

According to the GUM supplement 1 [1], the measurement uncertainty estimation through distributions propagation using the Monte 
Carlo method gives a guidance for measurement uncertainty expression when the conditions for the GUM uncertainty framework [2] 
are not fulfilled or it is difficult to apply it due to the complexity of the model [3]–[5]. The approach is based on the n-iterations 
repetition of sampling from the probability distribution function of the input variables and the evaluation of the model in each event. 
The following stages are carried out in the uncertainty estimation procedure developed in this work: 

 Selection of the output variable Y 

 Definition of the input variables Xi upon Y depends and their probability distribution functions 

 Development of the mathematical model liking the input variables Xi and the output variable Y  

 Propagation of the input variables probability distribution functions through the model to obtain the output variable 
probability distribution function. 

 Estimation of the output variable Y most probable value, its uncertainty as a standard deviation and the confidence interval. 

Extensive literature in regard to the use of the Monte Carlo method in measurement uncertainty estimation procedures have been 

identified [3], [6], applied to coordinate measuring machines (CMMs) uncertainty analysis [4], [5], [7]–[9] or to articulated arm 

coordinate measuring machines (AACMM) as is Romdhani et al. [10] and in Ostrowska [11]. 

This work focus on the uncertainty estimation of an indexed metrology platform (IMP) using the Monte Carlo method due to the 

complex mathematical model of the platform. The indexed metrology platform is an auxiliary instrument to be used in calibration and 

verification procedures for portable coordinate measuring instruments (PCMMs) to evaluate their volumetric accuracy and repeatability 

[12]. Brau et al. [13] proposed the use of this platform whose main advantage resides in the reduction of the time and physical effort 

required to carry out these type of procedures. This is achieved by fixing the calibrated gauge object and placing the AACMM on the 

IMP’s upper platform throughout the verification procedure, in comparison with the conventional procedures established in the 

standards ASME B89.4.22-2004 standard [14], VDI/VDE 2617-2009 part 9 guideline [15] and ISO/CD 10360 part 12 -2014 draft [16]. 

It is the portable measuring instrument placed on the IMP the one that rotates jointly with the upper platform during the verification 

procedure, enabling a great coverage of the AACMM’s working volume and the definition of a broad number of testing positions but 
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avoiding the movement of the calibrated gauge object during the verification. Moreover, not only testing and set up times are reduced 

with the use of the IMP, but also the space needed in the data capturing process is diminished since the number of physical testing 

positions of the gauge are minimized. Each time the platform rotates to a new position allowing the AACMM to measure the same 

point in the gauge, the values of the AACMM’s encoders change, and therefore a new working volume of the instrument is evaluated. 

The IMP is composed of two hexagonal platforms, one fixed lower platform and a mobile upper platform which rotates around the 

fixed one every 60º allowing the definition of six different positions, see Fig. 1. The mechanical repeatability of the platform is achieved 

by means of kinematic couplings configuration of spheres and cylinders. Three reference spheres located on each platform, allow the 

determination of the reference systems of both platforms and the possibility to express the coordinates of a captured point by the 

AACMM in the fixed lower platform global coordinate system during the verification procedure. By means of a mathematical model 

explained in Brau et al. [13] a homogenous transformation matrix (HTM) is found allowing the change of the coordinate reference 

systems required. The IMP has also a high mechanical position repeatability, being capable of measuring with high precision the 

orientation and position of the upper platform with respect to the lower platform. This feature is accomplished with the use of six 

capacitive sensors with nanometer resolution and measuring range of 100 μm for an output voltage from 10 to -10 V and an operational 

range from 100 to 200 μm with their sensors and targets assembled in the upper and lower platforms respectively. 

 

Fig. 1. Indexed metrology platform 

2. Model input variables definition 

Prior to evaluate the uncertainty of the indexed metrology platform model, it is necessary to define and select the model input variables 
Xi which could affect the output variable Y. In this case, the possible error sources that may influence the uncertainty of the indexed 
metrology platform are the platform calibration uncertainty, the capacitive sensors assembled in the platform, the error of the portable 
measuring equipment that will be used with the platform, the temperature and the dynamic behavior of the platform during the 
measuring process. 

The calibration procedure of the indexed metrology platform uses a geometric mathematical model based on the readings and the 
geometric features of the six capacitive sensors and their corresponding targets. In the calibration process of the platform, the readings 
of the capacitive sensors will be used as measurement values and the results obtained in the measurement with a coordinate measuring 
machine (CMM) will be considered as calibrated values, correcting the capacitive sensor ones. The final target of the indexed metrology 
platform calibration is to determine from the readings of the capacitive sensors a homogeneous transformation matrix that will allow a 
coordinate reference system change from the upper to the lower platform where the global coordinate reference system is located. The 
matrix obtained is a single matrix per point measured during the calibration or verification procedure of the portable coordinate 
measuring instrument. Once all the geometric features of the sensors and the corresponding targets are obtained and expressed in the 
global coordinate reference system, an identification procedure of the optimum geometric features is launched. These parameters will 
be the ones that will minimize the difference between the distance measured with the capacitive sensor and the distance calculated 
through the indexed metrology platform mathematical calibration model. In the platform’s uncertainty estimation procedure developed 
in this work, the calibration uncertainty of the platform has not been included as an input variable but it will be subject of future working 
lines. 

Every portable coordinate measuring instrument like articulated arm coordinate measuring machines or a laser trackers, has an error 
that will influence the results of the measurement. In the case of the articulated arm coordinate measuring machine used in this work, 
model Faro Platinum, the parameters reported by the manufacturer are a volumetric accuracy of  ± 43 μm and a point repeatability of 
30 μm. These parameters will affect the verification procedure using the indexed metrology platform and the generation of the 
homogeneous transformation matrix to change from the portable measuring instrument coordinate reference system to the upper 
platform reference system. This matrix is obtained out of the measurement of the three reference spheres located in the upper platform 
and it is consequently affected by the error of the instrument. Despite this fact, the target of this work was to develop an uncertainty 
estimation model for the indexed metrology platform without considering the portable measuring instrument, and as a consequence, 
the uncertainty of the measuring instrument was not included in the Monte Carlo simulation as an input variable. 

The analysis of the dynamic behavior of the platform and the possible modal deformation of the structure due to the portable 
instrument’s mass, its movement during the measuring process or any external excitation, will be subject of this work and a modal test 
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is carried out in order to foresee performance of the platform. Also the temperature could affect the measurement of the capacitive 
sensors because of the contraction and expansion of the sensor and target in the measurement procedure, influencing therefore the 
uncertainty of the indexed metrology platform. Nevertheless the temperature effect has not been included in this first uncertainty 
estimation of the indexed metrology platform but it will be further developed. The final error source identified that could affect the 
indexed metrology platform uncertainty are the capacitive sensors and the errors that they include in the measuring process, being 
presented a further detailed analysis in this paper. 

2.1. Dynamic performance analysis of the indexed metrology platform and modal test 

In order to characterize the dynamic performance of the indexed metrology platform and intending to reproduce its operating 
conditions, it is carried out in this work a finite element mode analysis of the platform, generating a mathematical model of the structure 
and a further modal test to predict the vibration properties of the structure in the form of its modal properties – natural frequencies and 
mode shapes. In this way, it is possible to analyze the influence of external excitement in the measurements made with the capacitive 
sensors assembled in the indexed metrology platform. The modal test consist on measurements of the vibration behavior of the 
structure, trying to characterize and explain it. The modal test measures both the response and the excitation defining a relation between 
both factors [17]. A very important requirement of the modal test is to ensure that all necessary parameters are measured. We carried 
out a computational modal test with the software Abaqus, generating previously a simplified model of the indexed metrology platform 
with the finite elements method. Afterwards an experimental modal test of the platform is done in order to validate the natural 
frequencies and vibration modes obtained in the computational approach. 
 
2.1.1 Computational modal test of the indexed metrology platform 

As a first step of the computational modal test, it is necessary to make a finite element meshing of the indexed metrology platform 
which is based on a simplified model of the structure. The simplified model is similar in properties to the real model, reduces the 
number of elements and the geometry complexity, minimizing the computational cost derived. The simplification criteria assumed to 
generate the simplified model were to eliminate elements without specific technical requirements and remove elements whose masses 
could be considered as insignificant in comparison with the total mass of the platform or not relevant to the rigidity of the structure. 
The simplified model obtained for the indexed metrology platform versus the real model of the platform could be seen in Fig. 2. 
Additionally, it is necessary to define the materials of the components in the model and their specific use, information that is 
summarized in Table 1. 

 

Fig. 2. Complete CAD model and simplified model of the indexed metrology platform 

Table 1. Bill of materials of the indexed metrology platform simplified model. 

Component Material 

Kinematic coupling spheres F131 steel 

Kinematic coupling cilinders  F115 steel 

Upper and lower platform F114 steel 

Other elements F111 steel 

 

All these materials are thermal treatment steels and they are selected according to the specific requirements of each platform’s 
component. Their main properties to be taken into account for the frequencies and vibration modes calculation are their density, Young 
module and Poisson ratio. 

 Density = 7800 kg/m3
 
 

 Young module = 210000 MPa  

 Poisson ratio = 0.33 
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Once the simplified model is defined, we proceed with the finite element meshing by means of tetrahedral elements. The mesh generates 
260000 elements approximately as it could be observed in Fig. 3 (a) and in Fig. 3 (b) showing a detail of the kinematic couplings 
cylinder – sphere meshing. Afterwards, the suspension and boundary conditions of the structure must be defined, allowing to reproduce 
the operating conditions of the model in an accurate and reliable way. Two tests are carried out according to the suspension conditions 
chosen, the fixed conditions modal test that tries to simulate the real fixing conditions of the structure and the free – free or suspended 
modal test. 

 

Fig. 3. Simplified model meshing of the indexed metrology platform. 

2.1.1.1 Free-free computational modal test results 

This calculation is based on the consideration of an ideal suspended model without interactions with the ambient, obtaining in this way 
the vibration modes and natural frequencies of the structure. The vibration modes obtained in the free-free modal test are listed in the 
Table 2. In Fig. 4 the nine first vibration modes are represented.  

Table 2. Vibration modes in the free-free computational modal test. 

Vibration modes Rad/s Frequency (Hz) 

1 6.3827e+006 1.0158e+006 

2 9.4384e+006 1.5022e+006 

3 1.063e+007 1.6918e+006 

4 1.0983e+007 1.748e+006 

5 1.1248e+007 1.7902e+006 

6 1.2043e+007 1.9166e+006 

7 1.2398e+007 1.9732e+006 

8 1.4485e+007 2.3053e+006 

9 1.4826e+007 2.3596e+006 
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Fig. 4. Vibration modes in the free – free computational modal test 

2.1.1.2 Fixed conditions computational modal test results 

The indexed metrology platform was designed to be used in a fixed location on a flat and horizontal surface which will be considered 
as the real fixed conditions. These fixed boundary conditions will not allow any displacement and rotation of the platform with respect 
to the horizontal surface. The vibration modes obtained in the fixed conditions modal test are included in the Table 3. In Fig. 5 the first 
nine vibration modes are represented.  

Table 3. Vibration modes in the fixed conditions computational modal test. 

Vibration mode Rad/s Frequency (Hz) 

1 9.4304e+006 1.5009e+006 

2 1.0531e+007 1.676e+006 

3 1.0894e+007 1.7338e+006 

4 1.1264e+007 1.7927e+006 

5 1.2249e+007 1.9494e+006 

6 1.3469e+007 2.1436e+006 

7 1.4816e+007 2.3581e+006 

8 1.5422e+007 2.4546e+006 

9 1.5632e+007 2.4879e+006 

 



   

6 
 

 

Fig. 5. Vibration modes in the fixed conditions computational modal test 

As a conclusion of the results obtained in both computational modal tests, it could be remarked that the indexed metrology platform 
behaves as an extremely rigid structure due to the high natural frequencies obtained. These frequencies have values between 1000000 
Hz and 2500000 Hz with both boundary conditions analyzed, free-free and fixed conditions. In the real operating conditions of the 
platform, the normal frequencies affecting the indexed metrology platform measurement should not be higher than 1000 Hz, being 
significantly smaller than the ones obtained in the modal test simulations. Hence, it could be concluded that the modal deformation of 
the platform will not be significant in the measuring process, with special relevance to the capacitive sensor readings. 

2.1.2 Experimental modal test of the indexed metrology platform 

An experimental modal analysis is normally structured in three different phases: pre-processing, measurement and post-processing. 

a) Pre-processing: preparation of the structure for the test, definition of the geometry and the measurement configuration.  
The boundary conditions should be defined according to the ones already settled for the computational modal test in order to be able 
to validate the computational results obtained. In this case and considering the operating conditions of the indexed metrology platform, 
the platform will be tested under real operating conditions with the platform fixed on a horizontal flat surface on the ground of the 
laboratory. Once the testing boundary conditions are defined, it is necessary to determine the structure’s geometrical model, defining 
the mesh so that each node will correspond to a response measuring position. In addition, the number of measuring points, excitations 
points and positions are established, considering the results obtained in the computational modal test. In this case, six excitation points 
are located on the six corners of the platform where the modal deformation shows its higher values in the computational modal test, 
see Fig. 4 and Fig. 5. A triaxial accelerometer model Brüel & Kjaer 4506B with a measurement range up to 3000 Hz is positioned in 
the platform’s corner corresponding to the platform position 1. A modal hammer with metallic tip model Endevco 2302-10 is used for 
the excitation of the structure, being the response captured with the triaxial accelerometer and the signal further treated by the software 
MTC Hammer under Pulse platform version 9.0. Three measurement repetitions per impact point are made to evaluate the dispersion 
of the results. The maximum frequency range of the equipment is 25000 Hz, therefore the vibration modes and frequencies registered 
will be between 0 and 25000 Hz. The impact sequence, excitation and measurement points previously defined and explained for the 
modal test are shown in Fig. 6.  

b) Measurement: acquisition of the raw data that will be used to construct the dynamic model of the structure. A controlled excitation 
force is applied with the hammer and measured together with the resulting responses at the defined points. The measured data will be 
presented in the form of response functions which are ratio series between responses and excitations. In this case, we will use the 
frequency response function (FRF) which describes the response to an arbitrary harmonic excitation. 

c) Post-processing: modal model generation, interpretation and validation. For each model excitation, the structure behavior is 
captured in the established frecuencial range. The frequency response function (FRF) and coherence function are generated. The 
coherence function has values between 0 and 1, being unitary its value in the resonance peaks of the structure shown in the FRF 
function.  
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Fig. 6.  Excitation sequence definition in the platform experimental modal test 

2.1.2.1 Experimental modal test results 

Following the test criteria previously explained, the experimental modal test of the platform is carried out obtaining the vibration modes 
and natural vibration frequencies listed in Table 4. During the test, only three natural vibration frequencies were captured, see Fig. 7 
and Fig. 8. The first two modes are identified at frequencies around 1000 Hz and there is a third vibration mode of the platform close 
to 2000 Hz. 

Table 4. Vibration modes and frequencies in the experimental modal test. 

Vibration mode  Frequency (Hz)  

1  964.5  

2  991.9  

3  1879  

 

 

Fig. 7. Frequency response function (FRF) of the indexed metrology platform experimental modal test 

 

Fig. 8. Vibration modes and frequencies in the platform experimental modal test: mode 1 (964,5 Hz), mode 2 (991,9 Hz) and mode 3 
(1879 Hz) 

According to the results obtained in the experimental modal test, there are clear discrepancies with the results found in the 
computational modal test. In the computational one, the vibration modes appeared at higher frequencies over 1000000 Hz. On the 
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contrary, the experimental modal test shows three vibration modes all of them before the 2000 Hz frecuencial range. There could be 
further modes over the measuring range of the equipment 25000 Hz, which could not be visible in this analysis. Consequently, two 
hypothesis are here presented. The first one lays on the fact that the computational modal test perhaps is not reproducing the real 
operating conditions of the platform, being more rigid that it was expected. Then it would be necessary an adaptation of the model to 
obtain correlations between the real and the simulated model. It appears in this moment the need to observe if the indexed metrology 
platform is vibrating during the modal test as a whole, because the vibration frequencies are related to the total mass of the structure. 
The second hypothesis is based on the consideration that the experimental modal test could be only capturing the vibration modes of 
the upper platform with lower mass and natural frequencies, being not possible therefore to extrapolate the results to the real model of 
the platform. In order to reproduce this second hypothesis, a new computational modal test simulating only the upper platform is carried 
out obtaining frequencies and vibration modes closer to the results of the experimental modal test, as it could be seen in Table 5 and 
Fig. 9. Two vibration modes are identified at 1170,3 Hz and 1184 Hz, being the third mode found at 2211,9 Hz. These results simulating 
only the upper platform allow to validate the results obtained in the experimental modal test included in Table 4 and Fig. 8. 

Table 5. Vibration modes and frequencies in the upper platform computational modal test 

Vibration modes  Frequency (Hz)  

1 1170.3 

2 1184 

3 2211.9 

 

 

Fig. 9. Vibration modes in the upper platform computational modal test: mode 1 (1170.3 Hz), mode 2 (1184 Hz) and mode 3 (2211.9 
Hz) 

As a conclusion of the modal tests done in order to evaluate the dynamic performance of the platform, it could be stated that the modal 
deformation of the platform will not be relevant in the measuring process due to the proved extremely rigid behavior of the structure 
under external excitations. 

2.2. Capacitive Sensor effect in the Monte Carlo simulation 

The last error source considered in the analysis are the capacitive sensors assembled in the indexed metrology platform. The values 
captured with the capacitive sensors will be the inputs Xi of the model. The six capacitive sensors used are model Lion Precision C5-
E. The sensors will be affected by some specific errors that could generate variations in the real sensor measurement, being the most 
relevant ones the sensitivity error, offset error, linearity error and the band error. It is important also to point out the resolution of the 
sensor. In this analysis, there were taken into account the band error and the sensor resolution. The band error accounts for a 
combination of the linearity and sensitivity errors. It is the measurement of the worst case absolute error in the calibrated range and it 
is calculated by comparing the output voltages at specific gaps to their expected value. The worst case error from this comparison is 
listed as the system’s error band and is given by the manufacturer as a percentage of the measurement of the sensor. Assuming a normal 
probability distribution and given a sensor measuring range of 100 µm, it is possible to simulate the band error of the sensor.  

The capacitive sensor resolution indicates the smallest realiable measurement possible and it is a measurement of the noise voltage of 
the probe being bandwith dependent. In the manufacturer calibration report, two resolution values are listed - the peak to peak resolution 
and the RMS resolution. The peak to peak resolution is measured as the maximum peak to peak output voltage occurring over a period 
of time, long enough to include low frequency components with the probe fixed. The RMS resolution is the standard deviation of the 
output voltages sampled over a period of time, long enough to include low frequency components with the probe fixed on a stationary 
target. The value of RMS resolution was the one taken into account to affect the readings of the capacitive sensors.  

Once the main errors affecting the capacitive sensors are described, it is necessary to point out that the band error and RMS resolution 
values included in the calibration report of the manufacturer will the ones affecting the simulated input readings of the capacitive 
sensors in the Monte Carlo simulation. The calibration parameters considered by the manufacturer are listed in Table 6 and the errors 
reported in the calibration procedure of the capacitive sensors are included in Table 7. 
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Table 6. Capacitive sensors calibration parameters (source: Lion Precision) 

Calibration parameters 

Output 10 a -10 VDC 

Near gap 100 µm 

Range 100 µm 

Sensitivity 0.2 V/µm 

Band width 6000 Hz 

Table 7. Capacitive sensors calibration results. Temperature: 24.2ºC. Humidity: 35.5% RH (source: Lion Precision).  

Sensor ID Peak to peak resolution (nm) RMS resolution (nm) Band error (%) Linearity error (%) 

1 59.28 6.85 0.13 0.07 

2 76.95 8.90 0.15 0.08 

3 76.06 8.79 0.13 0.13 

4 55.48 6.41 0.08 0.08 

5 75.09 8.68 0.10 0.10 

6 82.31 9.52 0.16 0.11 

 

The sensors output noise was experimentally characterized by means of continuous captures for each of the six capacitive sensors in 
the six rotating positions of the platform under different test conditions that are following explained. A preload force generated with a 
pneumatic system was used to avoid the upper platform from tipping due to the mass of the AACMM. 

 Test 1: Indexed metrology platform with a pneumatic preload force of 4 bar 

 Test 2: Indexed metrology platform with AACMM assembled in static condition with a pneumatic preload force of 4 bar 

 Test 3: Indexed metrology platform with AACMM assembled in dynamic condition with a pneumatic preload force of 4 bar 

The first test registered the continuous captures of the sensors only applying the preload, without being the measuring instrument 
assembled on the platform. The test 2 focuses on analyzing the effect of the AACMM’s mass on the platform and the measurement 
with the capacitive sensors, meanwhile the test 3 checks how the AACMM’s mass and its movement during the measurement affects 
the measuring results. It was defined a fixed movement sequence of the AACMM measuring three points on a virtual gauge located in 
the working volume of the AACMM. During the 20 seconds test duration, 1000 captures per second were measured obtaining 20000 
readings per sensor and platform position (1-6). The data registered for each sensor were adjusted to a normal probability distribution 
function obtaining the mean and standard deviation parameters represented in Fig. 10, according to the data registered for each sensor 
(1-6) in the test 1 and platform position 1. The mean and standard deviation values obtained are listed in Table 8.  

 

 

Fig. 10. Normal probability distribution function capacitive sensors (1-6) readings in test 1, platform position 1. 
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Table 8. Normal probability distribution parameters for capacitive sensors continuous readings, test 1, platform position 1. 

Sensor ID Mean (µm) Standard deviation (µm) 

1 127.4849 0.0075 

2 156.1722 0.0058 

3 155.4005 0.0093 

4 120.7742 0.0071 

5 143.6332 0.0082 

6 136.3812 0.0106 

 
Comparing the standard deviation values obtained for each sensor with the normal probability distribution adjustment according to the 
experimental continuous test and the RMS resolution values listed in the sensors’ calibration report provided by the manufacturer 
shown in Table 7, it could be concluded that both data sets are comparable, being the values in the same range as it could be observed 
in Fig. 11. 

 

Fig. 11. Sensor noise comparison between calibration report and experimental continuous test 1, platform position 1. 

The nominal values of the capacitive sensors to be considered as inputs for the Monte Carlo simulation that will be affected by the 
sensor noise and the band error given in the calibration report, correspond to the values registered during the measurement of a point 
on a ball bar gauge sphere with an AACMM assembled on the indexed metrology platform considering a fixed platform and ball bar 
gauge position. In this work, the experimental measurement was carried out for a ball bar gauge position with radial disposition to the 
articulated arm coordinate measuring machine represented in Fig. 12. Three platform positions (1/3/6) and three spheres (1/2/5) were 
evaluated, measuring five points per sphere and capturing simultaneously the readings of the capacitive sensors. As an example, it 
could be seen in Table 9 the values obtained with each capacitive sensor during the measurement of the first point of the sphere 1 in 
the platform position 1 for the ball bar gauge position defined. 

Table 9. Capacitive sensors nominal readings 

Sensor ID Nominal sensor reading (µm) 

1 108.5137 

2 125.4271 

3 144.3024 

4 118.7031 

5 148.8462 

6 109.1777 

 

The simulated readings of the six capacitive sensors affected by the band error and noise values that will be the inputs for the Monte 
Carlo simulation model for 100000 iterations are shown in Fig. 13.  



   

11 
 

 

Fig. 12. Ball bar gauge position  

 

 

Fig. 13. Capacitive sensors (1-6) simulated readings from platform position 1, sphere 1, point 1, n-iterations 100000 

3. Model output variable definition 

The output variable Y of the model will be in this case the homogeneous transformation matrix that allow the change from the upper 
platform coordinate reference system RS UpperPlatform to the lower platform or global coordinate reference system RS LowerPlatform by means 
of the mathematical model of the indexed metrology platform [13]. This mathematical model generates a single homogeneous 
transformation matrix per point measured with the measuring instrument assembled on the platform, and will make it possible to 
express a point captured by the instrument in the global coordinate reference system, based on the capacitive sensor readings per point 
measured and the geometric optimized parameters obtained in the calibration of the platform. The homogeneous transformation matrix 
will have translational terms (XYZ) and rotational terms (ABC) which will be considered as the output parameters of the model. 

o X→ Translation along the X axis 
o Y→ Translation along the Y axis 
o Z→ Translation along the Z axis 
o A→ Rotation around the X axis 
o B→ Rotation around the Y axis 
o C→ Rotation around the Z axis 
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Considering the n-iterations to be carried out in the Monte Carlo simulation, the output will be a matrix with dimension nx6 being n 
the numbers of iterations, see equation (1). 
 

൭
𝑥௜ ⋯ 𝐶௜
⋮ ⋱ ⋮
𝑥௡ ⋯ 𝐶௡

൱ (1) 

 

The n-values obtained for each output parameter corresponding to the homogeneous transformation matrix terms could be adjusted to 
a probability distribution function calculating for each parameter a mean value, an uncertainty value and the confidence interval, being 
the input values of the model the simulated readings (L1-L6) for the six capacitive sensors previously explained, as could be seen in 
Fig. 14. 
 

 

Fig. 14. Input variables probability distribution propagation through the indexed metrology platform model and output variable. 

With the n-homogeneous transformation matrices obtained in the simulation that allow the coordinate reference system change from 
the upper platform to the lower platform, and given a point measured with the AACMM on a ball bar gauge sphere from a platform 
position with coordinates (x,y,z) expressed in the AACMM coordinate reference system RSAACMM, it is possible to obtain n-points 
(x,y,z) expressed in the lower platform reference system RSLowerPlat or global reference system RSGlobal.  

In this way, we could estimate the influence of the position and orientation uncertainty of the indexed metrology platform in the 
generation of points in a global reference system. Additionally and taking into account the m-points measured per sphere expressed in 
the AACMM coordinate reference system RSAACMM, we could generate from the n-points obtained for each of the m-points measured 
per sphere and expressed in the global coordinate reference system RSGlobal, the centers of the corresponding n-Gaussian spheres and 
the distances between their centers, being able to estimate as a result the influence of the indexed metrology platform’s uncertainty in 
the measurement of a distance. All these concepts are graphically represented in Fig. 15 showing the uncertainty model of the indexed 
metrology platform. 
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Fig. 15. Indexed metrology platform uncertainty estimation model 

4. Uncertainty estimation results 

The results obtained out of the simulation for n-iterations, show as output variable the n-homogeneous transformation matrices that 
allow the coordinate reference system change from the upper platform to the lower platform through the mathematical model of the 
indexed metrology platform. On these grounds, it is feasible to estimate the indexed metrology platform’s position and orientation 
uncertainty for a given platform position and point measured with the measuring instrument, AACMM in this case. The uncertainty 
values calculated in this work are expanded uncertainty values. 
Taking as a reference the capacitive sensor readings corresponding to the point 1 of the sphere 1 in the ball bar gauge position 
represented in Fig. 12 from the platform position 1 and 10000 iterations, the translational (XYZ) and rotational (ABC) terms of the 
10000 homogeneous transformation matrices are obtained as output parameters of the simulation. The mean, maximum, minimum, 
upper and lower bound of the 95% confidence interval together with the uncertainty as a standard deviation value, are then calculated 
and listed in Table 10. 

Table 10. Indexed metrology platform position and orientation expanded uncertainty XYZ (µm) - ABC (º) in homogeneous 
transformation matrices upper to lower platform, sphere 1, point 1, n-iterations 10000 

RS Global T RS UpperPlat  (Sphere 1 / Point 1 / Platform position 1) 

 Nominal Mean Uncertainty  Maximum Minimum U. bound (95%) L. bound (95%) 

X (mm) -0.13500 -0.13502 0.01996 -0.13494 -0.13510 -0.13498 -0.13506 

Y (mm) 196.61710 196.61707 0.04489 196.61724 196.61691 196.61716 196.61698 

Z (mm) 40.84180 40.84181 0.04965 40.84200 40.84159 40.84190 40.84171 

A (º) 179.99880 179.99879 0.02057 179.99888 179.99871 179.99883 179.99875 

B (º) 0.01940 0.01941 0.01677 0.01948 0.01935 0.01944 0.01938 

C (º) 60.05620 60.05621 0.01159 60.05625 60.05616 60.05623 60.05618 
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Given a point measured on a sphere for fixed positions of the ball bar gauge and the platform, it is possible to analyze the effect of the 
indexed metrology platform’s uncertainty in the generation of the homogeneous transformation matrix through the mathematical model 
of the platform. Fig. 16 shows all the possible values obtained in the Monte Carlo simulation for the translational XYZ and rotational 
terms ABC of the 10000 matrices obtained. In addition Fig. 17 shows the uncertainty ellipsoids for the translational terms XYZ and 
their corresponding projections. 

 

Fig. 16. Simulated homogeneous transformation matrix translational XYZ and rotational ABC terms, n-iterations 10000. 

 

Fig. 17. Uncertainty ellipsoids for the homogeneous transformation matrix translational terms XYZ, n-iterations 10000. 

4.1. Evaluation of the indexed metrology platform uncertainty in the generation of a point expressed in the global coordinate 
reference system. 

Once the n-homogeneous transformation matrices to change from the upper to the lower platform reference systems are obtained in 
the Monte Carlo simulation, it is possible to generate n-points with their coordinates (x,y,z) expressed in the lower platform or global 
reference system, given a point measured in a gauge sphere with the arm for specific positions of the gauge and the indexed metrology 
platform. Hence, the influence of the uncertainty of the indexed metrology platform in the generation of points in the global coordinate 
reference system could be assessed, as it is shown in the uncertainty model explained in Fig. 15. With the n – homogeneous 
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transformation matrices with values listed in Table 10 and given a point measured in the sphere 1 with coordinates (x,y,z) expressed 
in RSAACMM, we could simulate n-points in the global platform reference system RSGlobal corresponding to the point measured in the 
sphere 1. Running 10000 iterations and considering five points measured in the sphere 1 of the ball bar gauge and the indexed metrology 
platform in the position 1, the results obtained in the simulation are the following: 

Table 11. Indexed metrology platform expanded uncertainty in the generation of the point 1 of the sphere 1 in RSGlobal, n-iterations 
10000. 

Point 1 – Sphere 1 (Platform position 1) 

 Nominal Mean Uncertainty (µm) Maximum Minimum L. bound (95%) U. bound (95%) 

X (mm) -57.34600 -57.34600 0.23224 -57.34517 -57.34703 -57.34645 -57.34554 

Y (mm) 687.25450 687.25450 0.26270 687.25552 687.25333 687.25398 687.25501 

Z (mm) 744.99564 744.99564 0.19425 744.99640 744.99492 744.99526 744.99602 

 

Table 12. Indexed metrology platform expanded uncertainty in the generation of the point 2 of the sphere 1 in RSGlobal, n-iterations 
10000. 

Point 2 – Sphere 1 (Platform position 1) 

 Nominal Mean Uncertainty (µm) Maximum Minimum L. bound (95%) U. bound (95%) 

X (mm) -62.03535 -62.03535 0.23086 -62.03438 -62.03627 -62.03580 -62.03489 

Y (mm) 699.27579 699.27579 0.25906 699.27678 699.27469 699.27528 699.27629 

Z (mm) 733.34541 733.34541 0.19850 733.34622 733.34475 733.34502 733.34580 

 

Table 13. Indexed metrology platform expanded uncertainty in the generation of the point 3 of the sphere 1 in RSGlobal, n-iterations 
10000. 

Point 3 – Sphere 1 (Platform position 1) 

 Nominal Mean Uncertainty (µm) Maximum Minimum L. bound (95%) U. bound (95%) 

X (mm) -68.32018 -68.32018 0.22942 -68.31929 -68.32109 -68.32063 -68.31973 

Y (mm) 684.46708 684.46707 0.25985 684.46807 684.46609 684.46657 684.46758 

Z (mm) 736.63710 736.63711 0.19406 736.63784 736.63625 736.63673 736.63749 

 

Table 14. Indexed metrology platform expanded uncertainty in the generation of the point 4 of the sphere 1 in RSGlobal, n-iterations 
10000. 

Point 4 – Sphere 1 (Platform position 1) 

 Nominal Mean Uncertainty (µm) Maximum Minimum L. bound (95%) U. bound (95%) 

X (mm) -53.63718 -53.63718 0.22671 -53.63630 -53.63801 -53.63762 -53.63674 

Y (mm) 676.14141 676.14141 0.25829 676.14248 676.14051 676.14090 676.14192 

Z (mm) 735.19406 735.19406 0.19052 735.19476 735.19328 735.19369 735.19443 

 

Table 15. Indexed metrology platform expanded uncertainty in the generation of the point 5 of the sphere 1 in RSGlobal, n-iterations 
10000. 

Point 5 – Sphere 1 (Platform position 1) 

 Nominal Mean Uncertainty (µm) Maximum Minimum L. bound (95%) U. bound (95%) 

X (mm) -45.98916 -45.98916 0.23146 -45.98831 -45.99008 -45.98961 -45.98870 

Y (mm) 693.07839 693.07855 0.26153 693.07959 693.07743 693.07803 693.07906 

Z (mm) 735.16236 735.16224 0.19956 735.16299 735.16153 735.16185 735.16263 

 

Fig. 18 (a) shows the tridimensional ellipsoid for the 10000 possible values for the point 1 of the sphere 1 obtained in the Monte Carlo 
simulation and Fig. 18 (b) represents the 10000 possible values for the coordinates (x,y,z) of the same point 1 of the sphere 1. 
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Fig. 18. Possible values of the point 1 – sphere 1 coordinates XYZ expressed in the global coordinate reference system, n-iterations 
10000. 

In addition and taking into account the five points measured on each sphere being expressed their coordinates in the arm’s reference 
coordinate system, it is possible to generate out of the 10000 points obtained in the simulation for each of the five points measured per 
sphere, the centers of the 10000 Gaussian spheres expressed in the global coordinate reference system as shown in Fig. 19. 

 

Fig. 19. Possible values of the center coordinates XYZ of the n-spheres 1 expressed in the global coordinate reference system, n-
iterations 10000. 

4.2. Evaluation of the indexed metrology platform uncertainty in the measurement of different positions of the sphere gauge 

The same Monte Carlo simulation procedure done for the sphere 1 was replicated for the spheres 2 and 5 of the ball bar gauge measuring 
five points on each sphere. In this way, n-homogeneous transformation matrices to change from the upper to the lower coordinate 
reference system and the n- corresponding points with coordinates expressed in the global reference system, were obtained for each of 
the five points measured on each sphere. 

We analyzed in the simulation the variation of the uncertainty of the platform, depending on the sphere measured according to their 
position in the ball bar gauge shown in Fig. 12, for the same ball bar position and platform position 1. This variation could be due to 
several reasons, being one of them the change of the arm angular encoder’s readings depending on the distance and the position of the 
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sphere with respect to the arm. In this work, the simulation was done for 10000 iterations for the spheres 1, 2 and 5 with the uncertainty 
comparative results listed in Table 16 and Fig. 20 for the coordinates (x,y,z) of the 10000 points obtained in the global platform 
reference system for the five points measured on each sphere. 

Table 16. Comparison of indexed metrology platform expanded uncertainties per sphere measured (1, 2, 5), n-iterations 10000. 

  Uncertainty (µm) 

  Sphere 1 Sphere 2 Sphere 5 

Point 1 

X (mm) 0.232241 0.241225 0.269990 

Y (mm) 0.262705 0.265127 0.266787 

Z (mm) 0.194251 0.225467 0.315529 

Point 2 

X (mm) 0.230860 0.239216 0.270039 

Y (mm) 0.259056 0.263258 0.266019 

Z (mm) 0.198503 0.230363 0.319403 

Point 3 

X (mm) 0.229417 0.241851 0.272184 

Y (mm) 0.259851 0.265617 0.268567 

Z (mm) 0.194056 0.225515 0.315342 

Point 4 

X (mm) 0.226707 0.238836 0.267329 

Y (mm) 0.258289 0.262216 0.268738 

Z (mm) 0.190516 0.221844 0.316312 

Point 5 

X (mm) 0.231457 0.241063 0.271587 

Y (mm) 0.261532 0.263736 0.266704 

Z (mm) 0.199563 0.228499 0.319692 

Sphere diameter  0.33016 0.34805 0.33449 

 

 

 

Fig. 20. Indexed metrology platform expanded uncertainty in the measurement of different positions of the sphere gauge, n-iterations 
10000. 

In the former Table 16 and Fig. 20 it could be observed that the uncertainty has lower values for all the coordinates and points measured 
in the case of the sphere 1, being the sphere 5 the one with the highest uncertainty values. This fact could be due to the position of the 
spheres in the ball bar gauge with respect to the arm, see Fig. 12. The sphere 5 is located in the furthest position and therefore the 
variations in the orientation of the platform’s reference system due to the uncertainty of the platform could affect more. The 10000 
possible values of the sphere 2 and sphere 5 centers expressed in the global reference system RSGlobal could be seen in Fig. 21. 
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Fig. 21. Possible values of the center coordinates XYZ of the n-spheres 2 and 5 expressed in the global coordinate reference system, 
n-iterations 10000. 

4.3. Evaluation of the indexed metrology platform uncertainty in a distance measurement  

The concept is based on the evaluation of a distance error as the deviation between the euclidean distance calculated between the 
centers of two spheres in the ball bar gauge and the calibrated distance. The target is to analyze by means of the Monte Carlo simulation 
how the uncertainty of the indexed metrology platform affects the measurement of a distance with the measuring instrument, articulated 
arm coordinate measuring machine in this case. The distance deviation is calculated according to the equation (2), being Li the length 
between centers of the measured spheres and LCal the calibrated length. 

 

Di = Li – LCal (2) 

 
After obtaining the 10000 simulated centers for each of the spheres 1, 2 and 5, it is possible to calculate the distance between their 
centers for the 10000 spheres generated, observing how the uncertainty of the indexed metrology platform affects in the measurement 
of these distances. Thus two nominal calibrated distances are established, the distance between the centers of the spheres 1 and 2 named 
as d12 and a longer distance d15 between the centers of the spheres 1 and 5. The nominal distance values obtained from the calibrated 
sphere centers included in the calibration report of the ball bar gauge are listed in Table 17. 

Table 17. Calibrated lengths definition in the ball bar gauge 

 d12 (Sphere 1 - 2) d15 (Sphere 1 - 5) 

Calibrated length (mm) 100.80247 399.96137 

 

As a final result of this evaluation, five parameters are calculated: the mean, maximum and minimum distance error, the standard 
deviation and the range of distance deviations with the results included in the Table 18. These parameters were used to evaluate the 
influence of the indexed metrology platform’s uncertainty in a distance measurement with the measuring instrument. 

Table 18. Indexed metrology platform expanded uncertainty and error parameters in a distance measurement, n-iterations 10000 

 d12 (Sphere 1 - 2) d15 (Sphere 1 - 5) 

Mean distance error (mm) 0.058721 0.063400 

Maximum distance error (mm) 0.059636 0.064404 

Minimum distance error (mm) 0.057635 0.062562 

Distance error range  (mm) 0.002001 0.001842 

Standard deviation (mm) 0.000245 0.000242 

 
It was observed that the mean distance error is bigger in the case of the longer distance d15 with a value of 0.0634 mm versus the value 
obtained in the shorter distance d12, 0.0587 mm. The range is slightly lower 0.0018 mm in the longer distance evaluation, with a value 
of 0.0020 mm for the d12 distance. The standard deviation values obtained are similar for both distances. 
 

4.4. Evaluation of the indexed metrology platform uncertainty influence in the measurement from different platform positions 

Finally and in order to analyze the influence of the different rotating positions of the platform in its uncertainty estimation procedure, 
simulations for the platform positions 3 and 6 were carried out under the same premises considered in the case of the platform position 
1 previously explained. The sphere 1 was taken as a reference, measuring five points per sphere and running 10000 iterations in the 
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simulation. In the following Table 19, it is shown a comparative summary of the uncertainties obtained for the XYZ coordinates of 
each of the 10000 points generated for the five points measured in the sphere 1 with the AACMM measuring from the platform positions 
1, 3 and 6. In addition, it is also included the uncertainty obtained in the spheres diameter calculation for the three positions of the 
platform evaluated. 

Table 19. Comparison of indexed metrology platform expanded uncertainties in the sphere 1 measurement from different platform 
positions (1, 3, 6), n-iterations 10000. 

  Uncertainty (µm) 

Platform position 1 3 6 

Point 1 

X (mm) 0.237251 0.336581 0.321769 

Y (mm) 0.275764 0.191801 0.189172 

Z (mm) 0.201466 0.208158 0.171014 

Point 2 

X (mm) 0.220530 0.336820 0.314770 

Y (mm) 0.262204 0.192493 0.185209 

Z (mm) 0.199191 0.212803 0.172280 

Point 3 

X (mm) 0.238617 0.330789 0.309839 

Y (mm) 0.272784 0.192055 0.189935 

Z (mm) 0.200863 0.210502 0.173191 

Point 4 

X (mm) 0.232483 0.332145 0.313143 

Y (mm) 0.270231 0.187238 0.188535 

Z (mm) 0.200888 0.203918 0.167066 

Point 5 

X (mm) 0.227324 0.333095 0.316487 

Y (mm) 0.265404 0.189137 0.188833 

Z (mm) 0.204541 0.207487 0.170702 

Sphere diameter  0.342780 0.347125 0.343805 

 

It could be observed in Table 19 and Fig. 22 several platform’s behaviors depending of the point coordinate analyzed. For all the five 
points per sphere, the uncertainty is higher in the X coordinate for the platform position 3. In the case of the Y coordinate, the uncertainty 
values are always higher for the platform position 1 and for the Z coordinates, the uncertainty is slightly higher for the platform position 
3. Neither the five points simulated show bigger uncertainty values for a specific platform position in the three coordinates XYZ, nor 
any of the platform positions have higher uncertainty values than the others in a representative way. As a conclusion no error trend per 
platform position could be inferred. 

 

Fig. 22. Indexed metrology platform expanded uncertainty per platform position (1, 3, 6), n-iterations 10000. 

In regard to the influence of the number of iterations in the indexed metrology platform’s uncertainty calculation with the Monte Carlo 
method, we run simulations for 10, 100, 1000 and 10000 iterations, fixing finally the trials in 10000 because the variation in the mean 
value of the output variables was very small between 1000 and 10000 iterations. As an example, the evolution of the X coordinate 
mean value (mm) for the point 1 measured on the sphere 1 from the platform position 1, during several Monte Carlo simulations with 
10, 100, 1000 and 10000 iterations is represented in Fig. 23. The nominal value measured with the AACMM from the platform position 
1 of the X coordinate of the point of the sphere 1 mentioned is -57.3459 mm. It is important to point out that the variation in the mean 
values of the output variable is small, as it is the variation in the readings of the capacitive sensors which are the input variables of the 
model. 
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Fig. 23. Iteration number influence in simulation of output parameter X coordinate (mm) of point 1, sphere 1. 

5. Conclusions 

The indexed metrology platform, as an auxiliary instrument to be used in calibration and verification procedures for portable coordinate 
measuring instruments, should not influence the measurement results of these procedures. For this reason, it is important to estimate 
its measurement uncertainty in order to be able to validate the use of the platform in these procedures. This work has developed an 
uncertainty estimation procedure for the indexed metrology platform based on the Monte Carlo method simulation, identifying as a 
first step the main error sources that could affect measurement results of the platform. The main error sources found were the calibration 
uncertainty of the platform, the error of the portable measuring instrument, the capacitive sensors’ errors, the possible modal 
deformation of the platform and the temperature. 

In order to characterize the dynamic performance of the indexed metrology platform, it was carried out in this work a finite element 
mode analysis of the platform, generating a mathematical model of the structure and a further modal test to predict the vibration 
properties of the structure in the form of its modal properties. The computational modal test showed that the platform behaved as an 
extremely rigid solid with vibration frequencies in the range from 1000000 Hz to 2500000 Hz independently of the boundary conditions 
settled. The experimental modal test carried out in the laboratory with three excitation sequences trying to reproduce the results obtained 
in the computational modal test, captured only three vibration modes. The first two modes were found in frequencies close to 1000 Hz 
and a third one in frequencies around 2000 Hz, not validating the results that were obtained in the computational modal test. The reason 
was that the vibration modes corresponded only to the upper platform with lower mass, fact that could be proved repeating the 
computational modal test only for the upper platform with three vibration modes reached in this case between 1100 and 2200 Hz, 
analogues to the ones in the experimental modal test. As the whole platform behaved as a rigid solid according to the results obtained 
in the computational modal test, it was decided to remove this error source in the uncertainty calculation of the platform. 

Then the platform expanded uncertainty estimation through the Monte Carlo simulation was carried out. First, it was decided to analyze 
the influence of the capacitive sensors assembled in the platform as input variables of the model, including the band errors and the 
sensor noise values given by the manufacturer in the calibration report. Given a point measured with the AACMM, the readings of the 
six capacitive sensors and n-iterations, the output variables of the model will be in this case the n-homogeneous transformation matrices 
that allow the change from the upper platform coordinate reference system to the lower platform coordinate reference system and the 
n-points expressed in the lower platform coordinate reference system, being able to estimate in this way the influence of the position 
and orientation uncertainty of the indexed metrology platform in the generation of points in a global reference system. Additionally 
and taking into account the m-points measured per sphere expressed in the AACMM coordinate reference system, we could generate 
from the n-points obtained for each of the m-points measured per sphere and expressed in the global coordinate reference system, the 
centers of the corresponding n-Gaussian spheres and the distances between their centers, estimating then the influence of the uncertainty 
of the indexed metrology platform in the measurement of a distance. 

Taking as a reference the platform position 1, a fixed ball bar gauge position and the first point measured, the uncertainty obtained for 
the sphere 1 in the X coordinate was 0.23224 µm, 0.26270 µm in the Y coordinate and 0.19425 mm in the Z coordinate. For the sphere 
2, the uncertainty values were 0.24122 µm for the X coordinate, 0.26512 µm for the Y coordinate and 0.22546 µm in Z. Finally in the 
sphere 5, the values were 0.26999 µm, 0.26678 µm and 0.31552 µm for the X, Y and Z coordinates. It could be concluded that despite 
the uncertainties are in the same range for all the spheres measured, there are differences in the calculated values depending on the 
influence of the platform uncertainty because of the variations in the platform’s reference coordinate system. 

Additionally, there were analyzed the platform uncertainties depending on the position of the platform selected, running the Monte 
Carlo simulation for the platform positions 1, 3 and 6. For all the points measured in the sphere 1, the uncertainty is bigger in the X 
coordinate for the platform position 3. In the case of the Y coordinate, the values obtained are always higher for the platform position 
1 and the uncertainty is slightly higher in the Z coordinate for the platform position 3. Neither the five points simulated showed bigger 
uncertainty values for a specific platform’s position in the three coordinates XYZ, nor do any of the platform’s positions have higher 
uncertainty values than the others in a representative way. Therefore no error trend per position of the platform could be concluded. 
The uncertainty of the indexed metrology platform in a distance measurement was also evaluated, with mean error and uncertainty 
values of 0.058721 ± 0.000245 mm for short distances (100 mm) and 0.063400 ± 0.000242 mm for distances defined as long ones (400 
mm). Finally, it is important to point out that an increase in the number of iterations in the Monte Carlo simulation, makes the mean 
value of the output simulated parameters go closer to the nominal parameter value. In this case, the maximum number of iterations was 
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10000, because the difference between the mean output parameter values obtained for 1000 and 10000 trials, showed variations of 0.01 
µm, value which could be considered small enough to decide not to increase the number of iterations. 
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