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A. Morales Gallegos1, R. Torres-Córdoba1, E. Magid2, E. A. Martı́nez-Garcı́a1 *

1Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico
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Abstract

Flexible reconfiguration in robotics pertains to a robotic system’s capacity to dynamically
adjust its configuration to meet diverse tasks, environmental demands, or operational spec-
ifications. This involves the deliberate design of robots with the capability to modify their
physical structures, including joint arrangements, links, or components, to efficiently execute
a spectrum of tasks. This study introduces the analysis and design of a modular mechanism
aimed at morphological reconfiguration in robotic platforms. This adaptability enhances the
versatility of robots, enabling them to adeptly handle a variety of tasks in diverse scenarios.
The proposed mechanisms and technologies encompass modular designs, adjustable joints,
and the capability to seamlessly switch between different end-effectors. The system com-
prises three gear systems and a joint featuring a convex-toothed sphere. These gears facilitate
rotation along pitch and yaw axes, while an internal gear system, utilizing a planetary mech-
anism, propels a prismatic piston via a screw mechanism. The mathematical modeling, em-
ploying Lagrangian mechanics, illustrates globalized dynamics. Control models, grounded in
a spherical coordinate model, are scrutinized by deducing the Jacobian matrix. Demonstrating
diverse robotic platform configurations, this work exemplifies the concept of flexible recon-
figuration, wherein robots adeptly manage varied and dynamic tasks without necessitating
manual adjustments or reprogramming. Emphasizing the modeling and numerical simula-
tions of motion analysis, this paper delves into the design of a joint mechanism contributing
to the dynamic adaptability and reconfigurability of robots across various tasks.

Keywords: reconfigurability, robot modeling, mechanism dynamics, model-based control

1 Introduction
Robotic platforms are extensively utilized across various industries, ranging from manufacturing
and entertainment to home services, transportation, construction, education, scientific research,
surveillance, security, manufacturing, and search and rescue operations. Over time, the adoption
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of robotic applications has experienced exponential growth. However, the efficacy of these plat-
forms hinges on their ability to adapt to the specific tasks required in a given environment. For
instance, robotic arms are meticulously designed for tasks such as assembly, selection, inspec-
tion, manufacturing, and material manipulation. These tasks necessitate platform models with
varying morphological designs, tailored to the specific workspace and application requirements.
Traditional robotic platforms, with fixed morphologies, may excel in performing specific tasks but
could be poorly suited for a broader range of applications within the same environment.

On the contrary, directing research and development efforts towards physically reconfigurable
robotic platforms can yield significant advantages. These platforms boast the capability to morph
or adjust their physical structures to suit a broader range of tasks within a single environment.
Such flexibility empowers them to capitalize on commercial opportunities more efficiently, as
they can be customized to fulfill diverse tasks without requiring distinct specialized platforms.
As a result, physically reconfigurable robotic platforms emerge as a more versatile solution for
tackling a spectrum of tasks across different environments, ultimately enhancing their commercial
viability and practicality. To enable a robot to change functionality with good performance in its
programmed mission, the reconfiguration function must be practical and/or semi-automatic in the
new task. Robotic reconfiguration, as a new physical capability, provides significant benefits in
many daily activities of society. The applications of reconfigurable robots need to be sophisticated
through engineering techniques to make them incredibly diverse. Advances in robotic engineering
tend towards the modularization, reconfiguration, and self-reconfiguration of robots[3], allowing
the extension of different physical and functional parts of the robot [1]. Robotics has permeated
numerous sectors, with industry standing prominently among them. In industrial landscapes, the
incorporation of modularized robotic platforms offers a myriad of advantages, from cost-saving
measures to space optimization. By employing fewer robotic platforms, daily tasks can be exe-
cuted more efficiently. Yet, the implications of robotic reconfiguration extend far beyond industrial
confines. The integration of reconfigurable robots holds the promise of transformative changes in
both individual lives and societal paradigms.

This research is dedicated to crafting and modeling a highly adaptable module poised to con-
figure and reconfigure robotic platforms with a spectrum of morphologies and functionalities. It
highlights different assembly morphologies for robotic platforms, offering an array of potential
reconfigurations spanning walking, rolling, and robotic arms. The primary objective is to seam-
lessly integrate modularity within robotic platforms, streamlining reconfiguration processes and
synchronized control to amplify their capabilities. This entails a meticulous design and model-
ing approach, culminating in a modular mechanism capable of dynamically reshaping complex
robotic structures when interconnected and replicated. Such a mechanism is imbued with syn-
chronization functions and locomotion control algorithms to ensure suitable performance across
diverse configurations. Moreover, the study embarks on designing a mechanized system featuring
both rotary and prismatic articulations, augmented with redundant sensory capabilities for precise
and responsive actuation. This involves an exhaustive exploration of motion dynamics and con-
trol algorithms, complemented by the development of observability models tailored to the modular
robotic architecture. Additionally, the research entails formulating controller schemes tailored to
accommodate the intricacies of diverse robotic reconfigurations, further enriching the platform’s
adaptability and versatility. Through the development of a modularized robotic mechanism and
its mechanical pluralization, a realm of robotic reconfiguration unfolds, broadening the spectrum
of tasks achievable by a robotic platform.

In Section 2, we review research akin to our project, delving into recent works on related
themes and delineating a robust conceptual framework. Transitioning to Section 3, we showcase
the CAD software design of the modular mechanism, while Section 4 offers comprehensive in-
sights into its instrumentation. Section 5 outlines the modeling of motion geometry for the module
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mechanisms, alongside dynamic and kinematic models. Chapter 6 introduces the local position
and velocity models, along with sophisticated global control models. Simultaneously, Section 7
explores diverse sample configurations and their functional reconfiguration. In Section 8 discusses
some analysis about the results. Finally, section 9 encapsulates the conclusions derived from this
comprehensive study.

2 Related Work
This section discusses some essential concepts and offers a comprehensive review of contem-
porary literature that supports the ongoing endeavor. Investigation into the reconfiguration and
modularization of robotic structures encompasses a broad range of intricate subjects that have
been consistently pursued over the years. Modularization, as a fundamental principle, streamlines
construction optimization by integrating functional components designed for diverse elements.

Research efforts aimed at engineering precisely tailored models to improve stability, particu-
larly in navigating challenging and uneven terrains encountered by quadruped robots, have been
extensively explored. In the study conducted by Kula et al. [4], a comprehensive investigation
delves into the realm of reconfigurable limbs for walking robots. The research examines the me-
chanical synthesis required to redefine walking cycloids, resulting in insights and showcasing the
ability to optimize walking trajectories. This optimization renders the robots highly adaptable to
diverse terrains, thereby significantly enhancing their overall performance. Techniques aimed at
achieving robotic modularization and reconfiguration to enhance navigation across diverse multi-
obstacle environments and terrains are pertinent in the field of reconfigurable robotics. The work
[6] introduced the design and motion planning of a metamorphic reconfiguration walking robot
and categorize walking robots into distinct types based on their structure, each offering unique
movement characteristics. Furthermore, robotic reconfiguration emphasizes adaptable configura-
tions to optimize performance tailored to specific tasks, such as adjusting the degrees of freedom
within a structure. As demonstrated by the work [1], the proposed robot was reconfigured for
machining tasks with varying numbers of axes, achieved through module reassembly and joint
locking. In another context, modular configurability, which allows for multiple degrees of free-
dom in movement, represents specific instances of functional self-reconfigurability. The work [2]
focused on the design and locomotive control of a morphologically variable parallel sub-actuated
wing, emphasizing the need for optimal performance across different flight phases. Neverthe-
less, robots constructed using origami approaches leverage folding and unfolding mechanisms for
self-assembly and movement. This results in lightweight, cost-effective solutions that are adapt-
able to diverse applications. For instance, the work reported by [8] proposed the creation of a
reconfigurable robot utilizing origami techniques, which showed significant advantages including
compact size, reduced manufacturing complexity, and the utilization of easily foldable materials.
Previous research has yielded modular self-assembling robotic structures. For instance, inspired
by social insects like ants and swarm robotics involved simple robotic structures interconnecting to
form complex structures [9]. Furthermore, mudular self-assembling approaches [10], and refined
for compactness [11]. The study by [12] presented a self-assembling and self-repairing robotic
structure, demonstrating concurrent self-repair and assembly during assigned tasks. Furthermore,
the principles of modularization and reconfiguration in robotics are also applied to agricultural
tasks, where robotic machinery is utilized for a multitude of purposes. The work by [13] pre-
sented a conceptual modularized robotic platform capable of monitoring, harvesting, and fumiga-
tion in agriculture. To tackle the challenge of rewiring during modular addition and removal, the
study by [14] introduced a reconfigurable modular humanoid architecture. This architecture in-
corporated actuators specifically engineered for mechanical and electrical compatibility between
modules. Real-time communication interfaces between modules facilitating autonomous collec-
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tive integration. Environmental interaction considerations are key application domains for robotic
modularization and reconfiguration. The work [15] designed a modular robotic platform for life
support applications, emphasizing flexible indoor movement within confined spaces. Similarly,
[16] optimized the movement of a reconfigurable robot for pavement and sidewalk cleaning, with
a turning mechanism for maneuverability in confined spaces while avoiding collisions. The chal-
lenge of terrain-dependent movement for reconfigurable robots is addressed by [17], utilizing se-
mantic segmentation for object perception. Besides, the study by [18] introduced a reconfigurable
quadruped/biped robot for aiding the elderly and disabled, capable of adjusting its walking form
for stability and user safety based on the terrain. The topology of a reconfigurable modular robot
significantly influences its performance. The study [19] determined optimal geometry to enhance
performance, while the work [20] suggested a modeling method for kinematic analysis based on
module coordinate systems, facilitating comprehensive characterization of module interactions.

The distinctive analysis of related work in Table 1 summarizes how our study findings compare
with existing research.

Table 1: Comparison of key aspects between this study and related research.

Key features Related This study distinctions
work

Motion geometry optimization [4] Dynamic-based motion control of
for enhancing performance. [16][19] modules multi-function robots.
Metamorphic walking, adaptive [6][14] Adaptable modules to craft structures.
locomotion and reconfigurable [18]
adaptable modules.
Adjusting structural DOFs. [1] Module’s functions reconfiguration.
Modular wing configurability. [2] Crafting adaptable modules.
Reconfigurable origami robotics. [8] Assembling adaptable modules.
Self-assembling/repairing structure. [12] Enabling module’s functions.
Agriculture modular robotics. [13] Multi-function adaptable modules.
Modular robot for flexible [15] To craft adaptable modules
capabilities. for morphological configurations.
Robot reconfiguration for diverse [17] [3] Crafting modules for multiple
terrain-dependant navigation. robotic tasks.
Kinematic analysis for [20] Euler-Lagrange analysis.
modular robotics.

Despite substantial progress in robotic reconfiguration, the vast scope of potential applications
for modularization and reconfiguration necessitates continued exploration and refinement. This
work specifically focuses on enhancing the mechanical design of the actuator responsible for
providing movement to the robotic platform, aiming to expand degrees of freedom and achieve a
broader range of motion.

3 Modular mechanism design
In this section, the proposed physical system design of the modular mechanism is presented,
depicted in a CAD model. The proposed module mechanism includes three gear systems that,
together, provide both rotational and prismatic movement. These gear systems offer 6 degrees
of freedom (DOF) concerning the workspace, and in conjunction with its exterior design, allow
for modularity. This work utilizes the rotation mechanisms yaw and pitch as illustrated in Figure
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1, along with the spherical joint shown in Figure 2, and the prismatic movement mechanism in
Figure 3. The central issue of this joint mechanisms consists of a toothed sphere or ball joint, with
the orthogonal crossing of connected elements to control the degrees of freedom using a spherical
coordinate approach.

3.1 Rotary motion mechanisms
The rotational movements of the module, according to the inertial system in Figure 2, are provided
by the pitch mechanism (Figure 1b) and the yaw mechanism (Figure 1a), which offer rotation in
pitch, yaw, and combined movements that also include roll.

According to the yaw mechanism shown in Figure 1a, we have, in the first place, the straight
gear e20 transmitting the driving motion. This motion reaches the worm gear, consisting of g21
and e22, which serves the same purpose as in the case of the pitch system: to increase power and
stabilize the load applied to the module. The cylindrical gear e24 essentially functions as the final
transmitter of the yaw rotation.

(a) Yaw mechanism. (b) Pitch mechanism.

Figure 1: Mecanismos yaw y pitch

In addition, the pitch mechanism (Figure 1b) tha ussually deals against gravity forces, initiates
the driving motion at the straight gear e1, which is powered by an electric motor. Subsequently,
the motion is transmitted to the worm gear, commonly referred to as a worm, consisting of g2 and
e3, which increases power and stabilizes the load posture. The helical gear e3 has, on one side, a
system of cylindrical planetary gears ∆4 with a sun, three planets, and a straight ring gear, and on
the other side, a pair of output cylindrical gears e5 and e6. The planetary system called ∆4 provides
high torque to the system. Gears e5 and e6 also provide additional torque and function as the final
transmitters of the pitch rotation. Further analytical discussion of this notation is provided in more
detail later in Definition 1.

Furthermore, the pitch and yaw mechanisms serve to transfer their respective movements to
the spherical joint, as depicted in Figure 2, thereby effectuating the output motion of the module.
To ensure the proper transmission of movement, both the toothed sphere and the final gears of
the yaw and pitch mechanisms were designed with identical modules. This design consideration
facilitates seamless movement transfer.

5



As a consequence of the resulting torque and power generated within the pitch and yaw mech-
anisms, there is an amplification of torque at the spherical joint. This increased torque is essential
for enabling the module to support the interconnection of other modules and accessories effec-
tively.

Figure 2 illustrates the arrangement of the gear systems in conjunction with the spherical joint,
providing a visual representation of their integration.

Figure 2: Semi-spherical joint connected to the yaw and pitch mechanisms.

3.2 Prismatic motion mechanism
The spherical joint, integral to the system’s functionality, is manipulated via angular coordinates
applied to its peripheral surface. Its design incorporates a hollow structure to house a third gear
system, as illustrated in Figure 3b. This thoughtful arrangement serves to streamline the trans-
mission of motion to a linked component featuring a screw mechanism. This screw mechanism,
depicted in Figure 3a, enables the module’s prismatic movement, allowing for controlled linear
motion along a defined axis. This integration of components not only enhances the versatility of
the module but also ensures precise and efficient movement, contributing to the overall effective-
ness of the system.

The gear system in question is characterized by its intricate planetary configuration, which
consists of two distinct subsystems operating in parallel. At the core of the primary system lies
the sun gear denoted as es30, serving as the primary driving cylindrical gear. Working in tandem
with this sun gear are four cylindrical planets, labeled as ep31, ep32, ep33, and ep34.

Adjacent to this primary system lies a secondary planetary arrangement, featuring its own sun
gear, es35, and an additional set of four planets: ep36, ep37, ep38, and ep39. The intricate interplay
of these gears and planets is depicted in Figure 4a.

Encompassing both planetary systems is a single crown gear, captured in the illustration pre-
sented in Figure 4b. This crown gear acts as a pivotal component in the overall mechanism,
facilitating smooth and efficient motion transmission between the various gears.

The stacking of these planetary systems one atop the other, as showcased in Figure 4c, serves
a dual purpose. Not only does it enable a substantial reduction in rotational speed, but it also
significantly amplifies the torque output within a confined spatial footprint.
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(a) Screw piston prismatic link. (b) Primatic screw piston section view.

Figure 3: Different views of the prismatic mechanism.

This thoughtful configuration underscores the attention to detail in the design process, aimed
at improving both power transmission efficiency and space utilization. By integrating these plan-
etary systems, the mechanism achieves improved performance and functionality, making it an
indispensable component in the larger modular system.

Encircling the intricate arrangement of planetary gears lies the crown gear, serving as the
pivotal component in transmitting motion to the prismatic axis of the screw-type piston. When the
prismatic mechanism is set into motion, the rotational movement of the crown gear initiates the
extension of the axis.

As the crown gear rotates, its engagement with the planetary gears facilitates the smooth trans-
mission of motion along the prismatic axis. This dynamics ensures precise and controlled exten-
sion of the axis, enabling the module to execute its intended function effectively.

The coordinated movement between the crown gear and the planetary gears illustrates the pro-
posed engineering behind the mechanism’s design. By integrating these components, the system
achieves motion transmission, contributing to its overall reliability and performance.

Figure 5b provides a comprehensive visual depiction showcasing both the interior and exterior
views of the module. The interior image offers a detailed glimpse into the intricate mechanisms
and components nestled within the module’s structure, highlighting the complexity of its design
and functionality. Meanwhile, the exterior view offers a broader perspective, revealing the mod-
ule’s overall form and configuration in its entirety.

Through these images, the readers gain valuable insights into the module’s inner workings
and external appearance, further showing its capabilities and potential applications. This compre-
hensive representation serves to enhance understanding and appreciation of the module’s design
and construction, underscoring its significance within the broader context of modular robotics
approach of this study.
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(a) Perpespective view. (b) top view. (c) Dual planetary gearing.

Figure 4: Prismatic mechanism based on a dual cascade planetary gearing system.

(a) Joint’s inner mechanisms. (b) External appearance.

Figure 5: Inner and external joint’s views.

4 Module instrumentation
Each mechanism, including pitch, yaw, and prismatic motion, is driven by its dedicated motor,
ensuring asynchronous actuation. These motors serve as the driving force behind the module’s
various movements, providing the propulsion for each mechanism’s function. To exert fine control
over the speed of these motors, the Pulse Width Modulation (PWM) method is employed.

Through PWM, the system achieves unparalleled control over the motors’ rotational speed by
adjusting the width of the electrical pulses supplied to them. This approach allows for seamless
modulation of motor speed, enabling smooth and accurate adjustments tailored to the specific
requirements of each task. By leveraging PWM for speed control, the modular system attains
enhanced efficiency and responsiveness across all mechanisms. This approach to motor control
not only improves performance but also ensures robust execution of tasks in diverse environments,
underlining the system’s versatility and reliability.

Within each of the pitch, yaw, and prismatic gear systems, specialized motors are employed,
each equipped with an encoder boasting a high resolution pulses per revolution. This high-
resolution encoder plays a pivotal role in the system, enabling precise measurements crucial for
accurately determining both position and velocity. The angular position model, derived from these
measurements, serves as a cornerstone in the system’s physical sensing. This model provides in-
sights into the exact orientation and movement of the mechanisms, forming the basis for informed
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decision-making and control strategies. Through the integration of these high-resolution encoders
and analytical position models, the system attains accuracy and reliability in its motion control
capabilities. This issue ensures operation and precise execution of tasks across diverse scenarios,
for suitable performance and functionality.

The model for sensing the motor’s angle is articulated in terms of a digital pulse train, as
depicted by Equation (1):

φ(η) =
2π

R
ηt (1)

In this context, φ symbolizes the position angle in radians, ηt represents the instantaneous digital
pulses (dimensionless), and R denotes the angular resolution coefficient measured in pulses per
revolution. This model allows us to precisely determine the angle of the motor based on the pulse
count received.

Furthermore, leveraging this angular model and its derivative, we can calculate the angular
velocity. To initiate this process, we employ the Taylor series:

φ2 ≈
φ

0!
(t2 − t1)

0 +
φ̇

1!
(t2 − t1)

1 +
φ̈

2!
(t2 − t1)

2 + ... (2)

By truncating at the second term or first derivative, the following expression captures the effect of
two pulse readings at times t1 and t2.

φ̇(t,η) =
φ(η2)−φ(η1)

t2 − t1
, (3)

Substituting (1) into (3), we obtain:

φ̇(η) =

2π

R
η2 −

2π

R
η1

t2 − t1
, (4)

upon factoring, we obtain:

φ̇(η) =
2π

R

(
η2 −η1

t2 − t1

)
=

2π

R

(
∆η

∆t

)
. (5)

Furthermore, the model for linear displacement, which plays a crucial role in our analysis,

s(η) =
2πr
R

η . (6)

Hence, by differentiating to determine linear velocity using the Taylor series, (2):

ds
dt

(η) = v(η) =
s(η2)− s(η1)

t2 − t1
. (7)

In this context, v denotes velocity, measured in meters per second (m/s), while t signifies time,
expressed in seconds (s).

Upon substituting (6) into (7), we arrive at:

v(η) =

2πr
R

η2 −
2πr
R

η1

t2 − t1
, (8)

and after factorizing :

v(η) =
2πr
R

(
η2 −η1

t2 − t1

)
=

2πr
R

(
∆η

∆t

)
. (9)
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A nine-axis Inertial Measurement Unit (IMU) equipped with RS485 communication is em-
ployed to precisely measure orientation, velocity, and gravitational force parameters. This IMU
provides data from an accelerometer, gyroscope, and magnetometer into a cohesive output, pro-
viding insights into the module’s dynamics.

Positioned at the termination point of the module’s output link, as depicted in Figure 6, the
IMU plays a pivotal role in determining angular and linear positions, as well as angular and linear
velocities. Leveraging equations 1, 6, 4, and 8, respectively, the IMU facilitates accurate and
real-time tracking of the module’s motion parameters.

In combination, a planetary mechanism is utilized to model the output angle, allowing for the
precise determination of linear displacement in conjunction with the encoder. Let φa represent
the angle of the planetary system’s ring gear, thereby inferring the displacement of the piston and
enabling comprehensive analysis of the module’s movements and dynamics.

sp =
L
2

(
φa +

∫∫
t
âyawdt2

)
, (10)

where the screw linear advance parameter is

L =
N
n
. (11)

In this context, L stands for the advance in meters (m), N signifies the number of parallel
strings, and n denotes the number of strings per linear metric unit.

Figure 6: Strategic positioning of the geometric measurement model with the 9-axis IMU.

The connections of the three DC motors with encoders and the IMU are routed to an Arduino
MEGA microcontroller. However, the rotational movement of the toothed sphere, coupled with
the placement of the IMU and one of the DC motors inside it, raises concerns about cable en-
tanglement. To effectively address this challenge, a rotary electrical connector is employed (rec).
Positioned at the base of the sphere, as depicted in Figure 7, this connector comprises a fixed side
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and a rotating side. The fixed side is housed within the toothed sphere, while the rotating side
facilitates connections to both the exterior of the sphere and the microcontroller. This approach
ensures communication while accommodating the dynamic movement of the mechanism.

Figure 7: Location of the rotary electrical connector to the interior motor of the spherical joint.

At the module output, sensing of three dynamic variables along the pitch, yaw, and roll axes
is crucial. These variables encompass position angle, velocity, and acceleration, measured respec-
tively by an inclinometer, a gyroscope, and an accelerometer. The general models for the Euler
angles of the link are as follows:

φt =

[
φ̂i +

∫
t

ˆ̇
φgdt +

∫∫
t

âa

dt
dt2
]

1
3
, (12)

as well as Eulerian angular velocities:

φ̇t =

[
d
dt

φ̂i + φ̇g +
∫

t

â
dt

dt
]

1
3
, (13)

and the comprehensive inertial model of angular accelerations:

φ̈t =

[
d2

dt2 φ̂i +
d
dt

ˆ̇
φg +

âa

dt

]
1
3
. (14)

In this context, φt , φ̇t and φ̈t represent the estimator models, whereas φ̂ , ˆ̇
φ , and ˆ̈

φ denote the
direct sensor measurements.

5 Modular mechanism dynamics
In this section, we derive the dynamic modeling of the mechanisms within the modular device.
We analyze the kinetic and potential energies obtained from the kinematic models, employing an
Euler-Lagrange approach to develop the dynamic model.

Following the symbolic notation of mechanisms as introduced in the Mechanics course, for
the purpose of this project, we establish the following definitions:

Definition 1 (Mechanism Notation). Let ei represent a gear, gi a worm screw, and ∆i a planetary
gear, interconnected in various ways: perpendicular, parallel, via belt, and serially.

Thus, from Definition 1, we derive the representation of the pitch mechanism, outlined in the
following Definition 2.
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Definition 2 (Pitch Mechanism). Let e0 denote the pinion of the actuator or global driving gear,
meshed perpendicularly with e1. Subsequently, with an axis collinear to g2 and this to e3. Then e3
connected perpendicularly to ∆4 and this connected again perpendicularly to e5. Finally, e5 is in
serial connection to e6.

Similarly, for the yaw rotation mechanism, its mechanical connection is described using the
following notation provided by Definition 3,

Definition 3 (Yaw Mechanism). Let e19 represent the pinion of the actuator (global driving gear)
connected perpendicularly to e20. Subsequently, e20 is connected in parallel to g21, which trans-
mits to e22. Then, e22 is serially connected to e23, and finally, it is connected in parallel to e24.

Essentially, considering the interconnection of mechanical elements formalizes the prismatic
displacement mechanism described by the notation in Definition 4.

Definition 4 (Prismatic Mechanism). Let e29 represent the actuator pinion or global driving gear,
connected in parallel to ∆30, which is also parallel to ∆35.

Hence, Definitions 1, 2, 3, and 4, which delineate the physical systems, serve as the corner-
stone for deriving the kinematic models in subsequent sections.

5.1 Kinematic Model
In this context, all mechanisms are established as underactuated systems, typically controlled
by a single variable that operates independently, often facilitated by a global driving gear e0(φ0).
Kinematic model of the pitch mechanism is deduced starting from (15) and resulting in expression
(20), based on Figure 1.

φ1 =

(
−r0

r1

)
φ0, (15)

and the connection of e1 on a parallel face with g2, both aligned along a collinear axis, signifies a
gear transmission by parallel faces and a collinear axis. This configuration indicates that:

φ2 = φ1. (16)

The coupling of g2 and e3 represents a worm gear connection, wherein:

φ3 =

(
−n2

n3

)
φ2 =

(
r0n2

r1n3

)
φ0. (17)

Similarly, the collinear parallel axis connection between e3 and the planetary gearing system
∆4 (e3 in parallel to ∆4, denotes a direct parallel alignment of axes:

φ4 =

(
4r2

s4
(rs4 + ra4)2

)
φ3 =

(
4r2

s4r0n2

(rs4 + ra4)2r1n3

)
φ0, (18)

and subsequently, the parallel connection between ∆4 and e5 is assumed,

φ5 = φ4. (19)

Finally, building upon Definitions 1 and 4, the series connection e5 - e6 is elucidated by Propo-
sition 1.

12



Proposition 1 (Pitch Rotation Gear). Leveraging the deductions from earlier motion transmis-
sions, we derive the rotary model of φ6. This model is subject to a mechanical advantage term
intrinsic to the prior connection of mechanical elements, as depicted below:

φ6 =−r5

r6
φ5 =−

(
4r2

s4r0r5n2

(rs4 + ra4)2r1r6n3

)
φ0. (20)

Such that ri and ni are defined by Definition 5.

Definition 5 (Gear-Worm Screw parameters). Let ri denote the radii [m] of the respective ei, and
ni represent the number of threads of gi connected to the threads ni+1 of ei+1.

The kinematic model of the yaw mechanism begins (21) and results in Proposition (2). Firstly,
there is a perpendicular connection between the driving gear e19 and gear e20 given by:

φ20 =

(
−r19

r20

)
φ19, (21)

and followed by a parallel, colinear shaft connection between gear e20 and worm gear g21, where:

φ21 = φ20. (22)

Next, from Definition 5, the worm gear connection between g21 and e22 is given by:

φ22 =

(
n21

n22

)
φ21 =

(
−r19n21

r20n22

)
φ19. (23)

The series connection between gears e22 and e23 is expressed as follows:

φ23 =

(
−r22

r23

)
φ22 =

(
r19r22n21

r20r23n22

)
φ19, (24)

and there’s the parallel collinear axis connection between e23 and e24,

φ24 = φ23, (25)

where the latter is given by Proposition 2.

Proposition 2 (Yaw Rotation Gear). Given the previous algebraic deductions, the kinematic ro-
tary transmission model for gear φ24 is obtained, expressed as follows:

φ24 =

(
−r22

r23

)
φ22 =

(
r19r22n21

r20r23n22

)
φ19. (26)

In this context, ri signifies the radii [m] of the corresponding ei, while n21 represents the number
of teeth on gear g21 engaged with the teeth n22 of gear e22.

In the context of the kinematic model of the prismatic mechanism, the input φ29 transmits
motion to the planetary system ∆30. The planetary system ∆30 is characterized by transmitting
output motion via a carrier. The velocity at the output (carrier) of ∆30 in such a planetary system
is derived from the following motion relationship:

vs =
pc

ps
vc. (27)
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In this equation, vs represents the speed of the sun gear, pc denotes the perimeter of the carrier,
and ps stands for the perimeter of the sun gear. Consequently, the tangential velocity of the sun
gear progresses at a rate of Pc

Ps
times the tangential velocity along the circumferential path of

the carrier. Here, Pc and Ps signify the perimeters of the carrier and the sun gear, respectively.
Knowing that vs = rsωs and vc = rcωc, we can substitute these expressions into (27),

rsωs =
2πrc

2πrs
rcωc, (28)

where rc =
ra−rs

2 + rs. Hence

rsωs =

(
ra−rs

2 + rs

rs

)(
ra − rs

2
+ rs

)
ωc =

(rs + ra)
2

4rs
ωc, (29)

and solving for ωc, where ωc = φc30 and ωs = φs30 = φ29, we find:

φc30 =
4r2

s

(rs + ra)
2 φ29. (30)

Hence, the output model on the carrier of the second planetary system is as follows:

φc35 =
4r2

s

(rs + ra)
2 φc30. (31)

Substituting (30), we have the following proposition:

Proposition 3 (Prismatic Rotation Gear). Based on previous algebraic deductions, the rotation
model φ35 preceded by the two cascaded planetary gears is proposed, such that its kinematic
model is expressed as:

φc35 =

(
4r2

s

(rs + ra)
2

)(
4r2

s

(rs + ra)
2 φ29

)
=

16r4
s

(rs + ra)
4 φ29 (32)

Where ra represents the radius of the planetary system’s ring. The displacement dT 35 of the screw-
type prismatic link is determined by:

dT 36 = Lφc35 (33)

Where L = N p, where N represents the number of strings and p denotes the pitch or advance-
ment parameter, 1

n . Thus,

dT 36 = L

(
16r4

s

(rs + ra)
4 φ29

)
(34)

5.2 Dynamic Model
By formulating the Lagrangian operators consistent with the motion geometry outlined by the
preceding kinematic models, our objective is to derive the dynamic model for each component of
the pitch mechanism. Given that energy transmission takes place through a tooth of each gear,
whose height varies periodically, we arrive at the following energy equation for each individual
gear:

L0 =
1
2

I0φ̇
2
0 −m0gr0 sin(φ0), (35)
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L1 =
1
2

I1φ̇
2
1 −m1gr1 sin(φ1), (36)

L2 =
1
2

I2φ̇
2
2 −m2gr2 sin(φ2), (37)

L3 =
1
2

I3φ̇
2
3 −m3gr3 sin(φ3), (38)

L4 =
1
2

I4φ̇
2
4 −m4gr4 sin(φ4), (39)

L5 =
1
2

I5φ̇
2
5 −m5gr5 sin(φ5), (40)

L6 =
1
2

I6φ̇
2
6 −m6gr6 sin(φ6). (41)

Hereafter, we may define the Langrangian vector L⃗ = (L0, . . . ,L6)
⊤ to be used by following

Definition 6.

Definition 6 (Energy Model of the Pitch Mechanism). Let Li denote the Lagrangian operator
for each element constituting the pitch mechanism. This operator accounts for both the rota-
tional kinetic energy and the potential energy transmitted by a tooth of the preceding gear to the
subsequent gear. The set of energy differentials is defined as:

L⃗ =
1
2



I0 0 0 0 0 0 0
0 I1 0 0 0 0 0
0 0 I2 0 0 0 0
0 0 0 I3 0 0 0
0 0 0 0 I4 0 0
0 0 0 0 0 I5 0
0 0 0 0 0 0 I6





φ̇0
φ̇1
φ̇2
φ̇3
φ̇4
φ̇5
φ̇6



2

−



m0gr0 0 0 0 0 0 0
0 m1gr1 0 0 0 0 0
0 0 m2gr2 0 0 0 0
0 0 0 m3gr3 0 0 0
0 0 0 0 m4gr4 0 0
0 0 0 0 0 m5gr5 0
0 0 0 0 0 0 m6gr6





sin(φ0)
sin(φ1)
sin(φ2)
sin(φ3)
sin(φ4)
sin(φ5)
sin(φ6)


,

(42)

where Ii is the moment of inertia, φi and φ̇i represent the rotation angle and velocity, respectively,
mi is the mass of the gear, and g denotes gravitational force. Alternatively, the abbreviated form
of the preceding Lagrangian vector in this definition is established as follows:

L⃗ = Mφ̇
2 −Gg(Φ). (43)

For the sake of clarity, when solving each mechanical element separately using the Lagrangian
equations as outlined in Definition 6, let’s address the Euler-Lagrange differential equation accord-
ing to the following expressions:

∂L⃗

∂Φ
=

d
dt

(
∂L⃗

∂ Φ̇i

)
. (44)
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In the case of all elements ei undergoing rotational motion, we calculate the torques exerted
on each element individually, considering their respective rotational dynamics and interactions
within the system. This comprehensive analysis allows us to discern and quantify the rotational
forces acting on each element, providing valuable insights into the system’s overall mechanical
behavior. For the global conductor pinion, the dynamic expression is

τ0 =
du
dt

(
I0φ̇0

)
+m0gr0 cos(φ0) = I0φ̈ +m0gr0 cos(φ0). (45)

Subsequently, for gear e1,

τ1 =
du
dt

(
I1φ̇1

)
+m1gr1 cos(φ1) = I1φ̈ +m1gr1 cos(φ1), (46)

when we substitute φ1 from equation (15), we obtain the following:

τ1 = I1

(
−r0

r1

)
φ̈0 +m1gr1 cos

(
−r0

r1
φ0

)
. (47)

Likewise,

τ2 =
du
dt

(
I2φ̇2

)
+m2gr2 cos(φ2) = I2φ̈2 +m2gr2 cos(φ2), (48)

when we substitute φ2 from equation (16), we obtain the following:

τ2 = I2

(
−r0

r1

)
φ̈0 +m2gr2 cos

(
−r0

r1
φ0

)
. (49)

Similarly,

τ3 =
du
dt

(
I3φ̇3

)
− (−m3gr3 cos(φ3)) = I3φ̈3 +m3gr3 cos(φ3), (50)

where upon substituting φ3 from equation (17), we obtain the following:

τ3 = I3

(
r0n2

r1n3

)
φ̈0 +m3gr3 cos

(
r0n2

r1n3
φ0

)
. (51)

Subsequently,

τ4 =
du
dt

(
I4φ̇4

)
− (−m4gr4 cos(φ4)) = I4φ̈4 +m4gr4 cos(φ4), (52)

and substituting φ4 into equation (18), we get the following:

τ4 = I4

(
4r2

s4r0n2

(rs4 + ra4)2r1n3

)
φ̈0 +m4gr4 cos

(
4r2

s4r0n2

(rs4 + ra4)2r1n3
φ0

)
. (53)

Thus, for τ5,

τ5 =
du
dt

(
2
2

I5φ̇5

)
− (−m5gr5 cos(φ5)) = I5φ̈5 +m5gr5 cos(φ5), (54)

and substituting φ5 into equation (19), we obtain the following:

τ5 = I5

(
4r2

s4r0n2

(rs4 + ra4)2r1n3

)
φ̈0 +m5gr5 cos

(
4r2

s4r0n2

(rs4 + ra4)2r1n3
φ0

)
. (55)
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Finally, for τ6,

τ6 =
du
dt

(
2
2

I6φ̇6

)
− (−m6gr6 cos(φ6)) = I6φ̈6 +m6gr6 cos(φ6), (56)

when we substitute φ6 into equation (20), we obtain the following:

τ6 = I6

(
−

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3

)
φ̈0 +m6gr6 cos

(
−

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3
φ0

)
. (57)

Theorem 1 (Pitch mechanism torque). The differential equation governing the total system of the
pitch mechanism results in a second-order nonlinear differential equation, for which finding an
analytical solution is nontrivial. Hence, the following law of dynamics for the mechanical system
establishes τ

(
φ̈0,φ0

)
for all simultaneous elements of the pitch controlled by the same independent

control variables. It is expressed as follows:



τ0
τ1
τ2
τ3
τ4
τ5
τ6


=



I0
−I1

r0
r1

−I2
r0
r1

I3
r0n2
r1n3

4I4
r2

s4r0n2
(rs4+ra4)2r1n3

4I5
r2

s4r0n2
(rs4+ra4)2r1n3

−4I6
r2
s4r0r5n2

(rs4+ra4)2r1r6n3


φ̈0 +



m0r0 cos(φ0)
m1r1 cos(− r0

r1
φ0)

m2r2 cos(− r0
r1

φ0)

m3r3 cos(− r0n2
r1n3

φ0)

m4r4 cos(K∆4
r0n2
r1n3

φ0)

m5r5 cos(K∆4
r0n2
r1n3

φ0)

m6r6 cos(K∆4
r0r5n2
r1r6n3

φ0)


g. (58)

Similarly

K∆4 =
r2

s4
(rs4 + ra4)2 (59)

Where K∆4 is the mechanical advantage given by the relationship between rs and ra.

Formulating the Lagrangian operators according to the motion geometry established by the
kinematic models of the yaw mechanism, we derive the following Definition 7.

Definition 7 (Yaw mechanism energy model). Let Li represent the Lagrangian operator for each
element comprising the yaw mechanism. This operator considers both the rotational kinetic en-
ergy and the potential energy transmitted by a tooth of the preceding gear to the subsequent gear.
The set of energy differentials is defined as:

L19 =
1
2

I19φ̇
2
19 −m19gr19 sin(φ19) (60)

L20 =
1
2

I20φ̇
2
20 −m20gr20 sin(φ20) (61)

L21 =
1
2

I21φ̇
2
21 −m21gr21 sin(φ21) (62)

L22 =
1
2

I22φ̇
2
21 −m22gr22 sin(φ22) (63)

L23 =
1
2

I23φ̇
2
23 −m23gr23 sin(φ23) (64)

L24 =
1
2

I24φ̇
2
24 −m24gr24 sin(φ24) (65)
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By applying the same analytical method used in the previous analysis of the pitch mechanisms,
and subsequently solving the Lagrangian equations, we obtain the torques for each element.

τ19 =
d
dt

(
I19φ̇19

)
+m19gr19 cos(φ19) = I19φ̈19 +m19gr19 cos(φ19). (66)

Likewise,

τ20 =
d
dt

(
I20φ̇20

)
+m20gr20 cos(φ20) = I20φ̈20 +m20gr20 cos(φ20), (67)

when substituting φ20 into equation (21), we obtain:

τ20 = I20

(
−r19

r20

)
φ̈19 +m20gr20 cos

(
−r19

r20
φ19

)
. (68)

Moreover,

τ21 =
d
dt

(
I21φ̇21

)
+m21gr21 cos(φ21) = I21φ̈21 +m21gr21 cos(φ21), (69)

and substituting φ21 into equation (22),

τ21 = I21

(
−r19

r20

)
φ̈19 +m21gr21 cos

(
−r19

r20
φ19

)
. (70)

Furthermore,

τ22 =
d
dt

(
I22φ̇22

)
− (−m22gr22 cos(φ22)) = I22φ̈22 +m22gr22 cos(φ22), (71)

when substituting φ22 into equation (23),

τ22 = I22

(
−r19n21

r20n22

)
φ̈19 +m22gr22 cos

(
−r19n21

r20n22
φ19

)
. (72)

τ23 =
d
dt

(
I23φ̇23

)
− (−m23gr23 cos(φ23)) = I23φ̈23 +m23gr23 cos(φ23), (73)

when we substitute φ23 into equation (24),

τ23 = I23

(
r19r22n21

r20r23n22

)
φ̈19 +m23gr23 cos

(
r19r22n21

r20r23n22
φ19

)
. (74)

Finally,

τ24 =
d
dt

(
I24φ̇24

)
− (−m24gr24 cos(φ24)) = I24φ̈24 +m24gr24 cos(φ24), (75)

and substituting φ24 into equation (26) to obtain

τ24 = I24

(
r19r22n21

r20r23n22

)
φ̈19 +m24gr24 cos

(
r19r22n21

r20r23n22
φ19

)
. (76)
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Theorem 2 (Yaw mechanism torque). The differential equation describing the total system of the
yaw mechanism results in a second-order nonlinear differential equation, for which finding an
analytical solution is nontrivial. Hence, the following law of dynamics for the mechanical system
establishes τ

(
φ̈0,φ0

)
for all simultaneous elements of the yaw controlled by the same independent

control variables, and it is expressed as follows:


τ19
τ20
τ21
τ22
τ23
τ24

=



I19

I20

(
− r19

r20

)
I21

(
− r19

r20

)
I22

(
− r19n21

r20n22

)
I23

(
r19r22n21
r20r23n22

)
I24

(
r19r22n21
r20r23n22

)


φ̈19 +



m19r19 cos(φ19)

m20r20 cos
(
− r19

r20
φ19

)
m21r21 cos

(
− r19

r20
φ19

)
m22r22 cos

(
− r19n21

r20n22
φ19

)
m23r23 cos

(
r19r22n21
r20r23n22

φ19

)
m24r24 cos

(
r19r22n21
r20r23n22

φ19

)


g. (77)

Definition 8 (Prismatic Mechanism Energy Model). Let L29 denote the Lagrangian operator for
each element of the prismatic mechanism, accounting for its rotational kinetic energy, as well as
the potential energy transmitted from one gear tooth to the subsequent gear. The kinetic models
are defined as:

L29 =
1
2

I29φ̇
2
29 −m29gr29 sin(φ29) (78)

Lc30 =
1
2

Ic30φ̇
2
c30 −mc30grc30 sin(φc30) (79)

Lc35 =
1
2

Ic35φ̇
2
c35 −mc35grc35 sin(φc35) (80)

LT 36 =
1
2

mT 36ḋ2
T 36 −mT 36gdT 36 (81)

Upon solving the previously presented equations, we derive the torque values for each indi-
vidual element:

τ29 =
du
dt

(
I29φ̇29

)
+m29gr29 cos(φ29) = I29φ̈29 +m29gr29 cos(φ29), (82)

as well as

τc30 =
du
dt

(
Ic30φ̇c30

)
− (−mc30grc30 cos(φc30)) = Ic30φ̈c30 +mc30grc30 cos(φc30), (83)

upon substituting φc30 into equation (30), we derive the following expression:

τc30 = Ic30
4r2

s

(rs + ra)
2 φ̈29 +mc30grc30 cos

(
4r2

s

(rs + ra)
2 φ29

)
. (84)

Subsequently,

τc35 =
du
dt

(
Ic35φ̇c35

)
− (−mc35grc35 cos(φc35)) = Ic35φ̈c35 +mc35grc35cos(φc35) , (85)

where by substituting φ35 into equation (32), we derive the following:

τc35 = Ic35
16r4

s

(rs + ra)
4 φ̈c29 +mc35grc35cos

(
16r4

s

(rs + ra)
4 φ29

)
. (86)

Finally,

fT 36 = mT 36d̈T 36 −mT 36g = mT 36L

(
16r4

s

(rs + ra)
4

)
φ̈29 −mT 36g (87)
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Theorem 3 (Torques and force of the prismatic mechanism). The differential equation governing
the entire prismatic mechanism system leads to a second-order nonlinear differential equation,
the analytical solution of which presents a nontrivial challenge. Consequently, the following law
of mechanical system dynamics defines τ

(
φ̈0,φ0

)
for all simultaneously pitch-controlled elements

using the same independent control variables, as expressed below:


τ29
τc30
τc35
fT 36

=


I29

Ic30

(
4r2

s
(rs+ra)

2

)
Ic35

(
16r4

s
(rs+ra)

4

)
0

 φ̈29 +


m29r29 cos(φ29)

mc30rc30 cos
(

4r2
s

(rs+ra)
2 φ29

)
mc35rc35 cos

(
16r4

s
(rs+ra)

4 φ29

)
mT 36L

(
16r4

s
(rs+ra)

4 φ29

)

g. (88)

6 Control module model
In this section, we present a kinematic control model for the module, employing variational meth-
ods to regulate the motion of coordinates with respect to all independent control variables (angu-
lar). From this framework, laws governing the control of joint variables are derived.

The position model deals with the coordinates of the module’s link within the workspace. Its
representation relies on the instantaneous variation of joint variables: yaw, pitch, and elongation.
Referring to the reference system illustrated in Figure 5b, the pitch angle corresponds to rota-
tion around the x-axis, while yaw variation of the module is linked to rotation around the z-axis.
Additionally, the prismatic elongation of the module’s link is denoted by dt . Through analytical
deduction of the system’s geometry, Definition 9 is established using spherical coordinates.

Definition 9. (Position Model) Let x, y, and z represent the coordinates in the workspace, and let
A be the projection of dt onto the xy plane. The following spherical model relies on the three joint
variables θ0, θ1, and dt , such that

x = Acos(θ0) = dT 36 cos(θ0)cos(θ1), (89)

likewise,
y = Asin(θ0) = dT 36 sin(θ0)cos(θ1), (90)

and
z = dT 36 sin(θ1)). (91)

Here, the term A = dT 36 cos(θ1) denotes the projection in meters.

Derived from Definition 9, Proposition 4 intricately formulates the module’s position model,
leveraging the nuanced functional attributes of the gears.

Proposition 4. (Intrinsic Variables Model) The coordinates in the workspace are directly dictated
by the intrinsic variables of the modular mechanism, establishing a fundamental relationship
between the system’s internal parameters and its spatial positioning.

θ0 = φ24 =

(
r19r22n21

r20r23n22

)
φ19, (92)

θ1 = φ6 =−
(

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3

)
φ0 (93)
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and

dT 36 = L

(
16r4

s

(rs + ra)
4

)
φ29 (94)

Hence, upon substituting θ0, θ1, and dT 36 into the previously formulated equations, we obtain the
following expressions:

x = Acos(θ0) = L

(
16r4

s

(rs + ra)
4 φ29

)
cos
(

r19r22n21

r20r23n22
φ19

)
cos
(
−

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3
φ0

)
, (95)

likewise,

y = Asin(θ0) = L

(
16r4

s

(rs + ra)
4 φ29

)
sin
(

r19r22n21

r20r23n22
φ19

)
cos
(
−

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3
φ0

)
, (96)

and

z = dT 36 sin(θ1) = L

(
16r4

s

(rs + ra)
4 φ29

)
sin
(
−

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3
φ0

)
. (97)

Let p ∈ R3 be defined as p = (x,y,z)T , and let ṗ = (ẋ, ẏ, ż)T represent the vector of Cartesian
velocities tangent to the module’s link. Define Φ= (θ0,θ1,dt)

T such that the angular velocities are
denoted by Φ̇ = (θ̇0, θ̇1, ḋt)

T . Based on the XYZ position model, the Jacobian matrix describing
the evolution of all coordinates with respect to all independent control variables simultaneously is
deduced as follows:

Jt =

−dT 36 sin(θ0)cos(θ1) dT 36 cos(θ0)cos(θ1) cos(θ0)cos(θ1)
dT 36 cos(θ0)cos(θ1) −dT 36 sin(θ0)sin(θ1) sin(θ0)cos(θ1)

0 dT 36 cos(θ1) sin(θ1)

 . (98)

It is characterized by its non-singular and invertible nature, this square matrix is also non-stationary.

Proposition 5. (Kinematic Law) The relationship between Cartesian velocities and joint variables
is expressed as a time-varying linear system. The gain for multiple outputs relative to multiple
inputs is applicable in the direct solution model.ẋ

ẏ
ż

= Jt

 θ̇0
θ̇1
˙dT 36

 . (99)

Likewise, the inverse model  θ̇0
θ̇1

ḋT 36

= J−1
t ·

ẋ
ẏ
ż

 (100)

and defining the vector of module’s joint variables as Θ̇=
(
θ̇0, θ̇1, ḋT 36

)T , and the vector of Carte-
sian variables in the workspace as ṗ = (ẋ, ẏ, ż)T .

6.1 Kinematic Control Law
Based on Proposition 5, which encapsulates the direct and inverse kinematic laws of the proposed
module in a single equation, the direct solution in terms of its first-order derivative is:
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ṗ = Jt · Θ̇. (101)

Expressing it as a first-order linear differential equation, we can solve it using the method of
separation of variables and derivatives with respect to dt, as follows:

dp
dt

= Jt ·
dΘ

dt
, (102)

when integrating with respect to both differentials,∫ pt+1

pt
dP = J ·

∫
Θt+1

Θt

dΘ, (103)

This leads to a recursive expression. Drawing from Proposition 5 as a foundational element,
Theorem 4 is articulated as follows.

Theorem 4. (Kinematic control law) The theorem articulates the control law, which governs both
the degrees of freedom and the control joint variables, as established by

pt+1 −pt = J · (Θt+1 −Θt) . (104)

Where, (I) below, denotes the initial position control law employing the joint variables as input
references, with the direct kinematic controller being

(i)
pt+1 = pt +J

(
Θ

re f − Θ̂t

)
, (105)

and (II) signifies the control law for the joint variables, where Cartesian position serves as
the global reference for the prismatic link, and the inverse kinematic controller is employed.

(ii)
Θt+1 = Θt +J−1

(
pre f − p̂t

)
. (106)

By iteratively employing both expressions, feedback errors are progressively diminished through
successive approximations.

pt+1 = pt +Jt · (Θt+1 −Θt) (107)

Θt+1 = Θt +J−1
t ·
(

pref −pt

)
. (108)

Thus, the Jacobian J(Θt+1) will be continuously updated in each subsequent iteration until
the desired Cartesian reference position satisfies the condition ||pre f − p̂t ||< ε .

7 Robotic Reconfigurations

7.1 Two-wheel reconfiguration
A 2W2D robot, short for a two-wheel two-drive robot, is characterized by its configuration featur-
ing 2 wheels and 2 drive units. This configuration enables each wheel to operate independently,
granting the robot a high degree of maneuverability and versatility. As illustrated in Figure 8,
each module comprising the vehicle is equipped with two distinct wheels, allowing for agile and
dynamic movement across various terrains and environments. The instantaneous velocity of the
mobile robot is calculated based on the rotational speeds of its individual wheels. Specifically,

22



the velocity of the right wheel (VR) and the velocity of the left wheel (VL) are determined by the
product of the wheel radius (r) and the respective angular velocities (φ̇R and φ̇L). This relationship
encapsulates how the robot’s motion is directly influenced by the rotation of its wheels, crucial for
navigation and control in diverse operational scenarios.

v =
1
2
(vR + vL) (109)

Where VR represents the velocity of the right wheel, determined by r · φ̇R, and VL denotes the
velocity of the left wheel, expressed as r · φ̇L. This yields the velocity in terms of the wheels’
rotation:

v =
r
2

φ̇R +
r
2

φ̇L (110)

and the vehicular robot’s angular velocity is given by:

ω =
2r
b

(
φ̇R − φ̇L

)
=

2r
b

φ̇R −
2r
b

φ̇L (111)

where b is the distance between the left wheel and the right wheel, as depicted in Figure 8.

Figure 8: Configuración de robot vehı́cular

In the 2W2D configuration, both the pitch mechanism and the prismatic mechanism are dis-
abled, leaving only the yaw mechanism enabled. Thus, according to Proposition 4, the following
recoinfiguration conditions established:

θ̇1 =−
(

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3

)
φ̇0, ∀ φ̇0 = 0 ∴ θ̇1 = 0,

ḋT 36 = L

(
16r4

s

(rs + ra)
4

)
φ̇29, ∀ φ̇29 = 0 ∴ ḋT 36 = 0

and θ̇0 is redefined as

κR,L =

(
r19r22n21

r20r23n22

)
. (112)
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From this analysis, we derive the matrix-based model of direct kinematics,(
v
ω

)
︸ ︷︷ ︸

u̇

=

( r
2

r
2

2r
b

−2r
b

)
︸ ︷︷ ︸

K

(
κRφ̇19R
κLφ̇19L

)
︸ ︷︷ ︸

Θ̇

, (113)

Hence, the first-order derivative model of direct kinematics is:

u̇ = K · Θ̇ (114)

Expressing it as a first-order linear differential equation, we can solve it using the method of
separation of variables and derivatives with respect to dt and by integrating with respect to both
differentials, the control law is established as

Θt+1 = Θt +K−1 (ure f −ut
)
, (115)

and
ut+1 = ut +K(Θt+1 −Θ) . (116)

7.2 SCARA reconfiguration
The positional model of the SCARA configuration, which represents its spatial coordinates, is piv-
otal for understanding its positioning within the workspace and subsequently deducing its higher-
order derivatives. These expressions serve as fundamental equations that characterize the relation-

Figure 9: Free body diagram of a SCARA platform using modular joints and links.

ship between the SCARA robot’s joint variables and its position in the Cartesian space. Through
these analytical equations the robot’s movements are controlled ensuring precise positioning.

x = l1 cos(φ0 +φ1)+ l2 cos(φ0 +φ1 +φ2) , (117)

y = l1 sin(φ0 +φ1)+ l2 sin(φ0 +φ1 +φ2) , (118)
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z = d3. (119)

In previous Figure 9, we observe φ0, φ1, φ2, and d3, all of which are directly controlled by
the intrinsic variables of the modular mechanism. In this specific SCARA configuration, both
pitch and prismatic movements are disabled for φ0,1,2, while for d3, pitch and yaw movements
are disabled. Hence, we initially consider the intrinsic variables of the module for φ0,1,2 with the
following reconfiguration conditions,

θ̇1 =−
(

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3

)
φ̇0, ∀ φ̇0 = 0 ∴ θ̇1 = 0,

and

ḋT 36 = L

(
16r4

s

(rs + ra)
4

)
φ̇29, ∀ φ̇29 = 0 ∴ ḋT 36 = 0.

And once again, θ̇0 is redefined as

κ0,1,2 =

(
r19r22n21

r20r23n22

)
, (120)

while for ḋ3, we consider the intrinsic variables as follows:

θ̇0 =

(
r19r22n21

r20r23n22

)
˙φ19, ∀ φ̇19 = 0 ∴ θ̇0 = 0,

θ̇1 =−
(

4r2
s4r0r5n2

(rs4 + ra4)2r1r6n3

)
φ̇0, ∀ φ̇0 = 0 ∴ θ̇1 = 0,

and

ḋ3 = ḋT 36d3 = L

(
16r4

s

(rs + ra)
4

)
φ̇29d3.

In this way, the matrix model of direct kinematics is represented by:

ẋ
ẏ
ż


︸ ︷︷ ︸

u̇

=

−l1 sin(κ0 +κ1)− l2 sin(κ0 +κ1 +κ2) −l1 sin(κ0 +κ1)− l2 sin(κ0 +κ1 +κ2) −l2 sin(κ0 +κ1 +κ2) 0
l1 cos(κ0 +κ1)+ l2 cos(κ0 +κ1 +κ2) l1 cos(κ1 +κ2)+ l2 cos(κ0 +κ1 +κ2) l2 cos(κ0 +κ1 +κ2) 0

0 0 0 1


︸ ︷︷ ︸

K


κ̇0φ190
κ̇1φ191
κ̇2φ192

ḋT 36d3φ293


︸ ︷︷ ︸

Θ

(121)

Therefore, the direct kinematics model, expressed as first-order derivatives, is

u̇ = K · Θ̇ (122)

This can be formulated as a first-order linear differential equation, which is solved using the
method of separating variables and derivatives with respect to dt, and upon integrating with respect
to both differentials, the control law is established as

Θt+1 = Θ+K−1 (ure f −ut
)
, (123)

and
ut+1 = ut +K(Θt+1 −Θ) . (124)
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7.3 Configuration of multi-link manipulator
In this section, we unveil a conceptual crafting approach along with a positional model tailored
for a robotic multi-link configuration. Emphasizing the significance of crafting reconfigurability
on manipulators, Figure 10 illustrates this model, highlighting the modular mechanism, alongside
its free body diagram delineating spatial coordinates.

Figure 10: Multi-link robot manipulator and free body diagram.

The following expressions represent the position model with respect to the coordinates of the
workspace of the manipulator configuration:

x = (l1 +d2 +d3 cosφ3 sinφ2)cosφ1, (125)

as well as
y = (l1 +d2 +d3 sinφ3)sinφ1, (126)

and
z = d0 +(l1 +d2 +d3 cosφ2 cosd3)sinφ1. (127)

The coefficients corresponding to each intrinsic variable undergo redefinition. In this structural
scenario, there are no configuration restrictions, necessitating that all degrees of freedom within
each module remain enabled.

κ0,4,6 =

(
16r4

s

(rs + ra)
4

)
; κ1,3 =

(
r19r22n21

r20r23n22

)
; κ2,5 =−

(
4r2

s4r0r5n2

(rs4 + ra4)2r1r6n3

)
. (128)

When substituting the intrinsic variables in the models of spherical coordinates, we have:

ẋ =
(
l1 +κ4φ̇294 +κ6φ̇296 cosκ5φ̇05 sinκ3φ̇193

)
cosκ2φ̇02 (129)

ẏ =
(
l1 + k4φ̇294 +κ6φ̇296 sinκ5φ̇05

)
sinκ2φ̇02 (130)

ż = κ0φ̇290 +
(
l1 +κ4φ̇294 +κ6φ̇296 cosκ3φ̇193 cosκ6φ̇296

)
sinκ2φ̇02 (131)

8 Discussion Results
The outcomes obtained in this study are crucially discussed, highlighting the significance of the
module’s application in assembling various robotic platforms. Through a meticulous examination
of the configurations of the gear mechanisms and the subsequent mathematical derivations, the
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relevance of the results becomes apparent. Visual representations in the form of graphs provide a
clear illustration of the angular position of each gear within the pitch mechanism, as outlined by
equations 15 to 20 in Definition 2, showcased in Figure 11. Notably, by enveloping the kinematic
models of the gears within a sinusoidal function, a discernible reduction in the movement of gears
e4,5 and e6 relative to gears e1−3 is observed, underscoring the practical implications of the find-
ings for optimizing robotic mechanisms and enhancing their operational efficiency. Similarly, the

Figure 11: Angular positions of the gears within the pitch mechanism.

angular positions of the gears within the yaw mechanism, crucial for the module’s functionality, as
delineated by equations 22 to 26 in Definition 3, are vividly illustrated in Figure 12. This depiction
is pivotal for understanding the operational dynamics of the robotic module. Notably, a significant
reduction in speed is discerned among gears e22,23,24 compared to gears e20,21, underscoring the
module’s ability to control and modulate motion effectively.

In terms of the motion dynamics of the planetary gears constituting the prismatic mechanism,
as defined in Definition 4 and derived from equations 30 and 32, the contents of this analysis
hold significant relevance. The data series within this mechanism exhibit notable overlap, a phe-
nomenon arising from the inherent parallelism of the mechanical connection between the two
planetary gears, as vividly illustrated in Figure 13. Understanding this overlap is crucial as it un-
derscores the intricate mechanical structure of the module and its implications for motion control
and stability.
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Figure 12: Angular positions of the gears in the yaw mechanism.

Figure 13: Angular positions of the gears in the prismatic mechanism.

Concerning the dynamic capability of the pitch mechanism as detailed in Definition 6, with
specific emphasis on Theorem 1, torque values were systematically generated by conducting an-
gular position sweeps and varying angular accelerations. This experimental procedure, illustrated
in Figure 14, is crucial for evaluating the mechanism’s ability to handle dynamic loads effectively,
highlighting its operational robustness and performance reliability.

Similarly, the examination of the dynamic capabilities of the yaw mechanism, as defined in
Definition 7 and elaborated in Theorem 1, involved mapping torque values across angular position
sweeps and a range of angular accelerations, a critical analysis depicted in Figure 14.

Furthermore, an equivalent investigation was conducted to assess the dynamic potential of
the prismatic mechanism, outlined in Definition 8. Utilizing Theorem 3, a thorough exploration
of torque values was meticulously charted through angular position sweeps and various angular
accelerations, an essential aspect of the discussion portrayed in Figure 14. These analyses are vital
as they offer valuable insights into the mechanisms’ ability to effectively handle dynamic loads,
highlighting their operational robustness and performance reliability.
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9 Conclusion
The primary goal of this research was to create a modular system enabling the assembly of diverse
robotic platforms, flexible in configuration to enhance their functional capabilities. The design of
multiple components was executed at the CAD level. This approach facilitated the generation of
various module prototypes, streamlining modifications and expediting the physical system mod-
eling process until achieving an optimal module with the desired functions. Regarding the design
of the three mechanisms composing the module, coherence was found between the mechanical
advantages of these mechanisms and the necessary parameters in the workspace.

Sensor models were incorporated to measure dynamic variables such as position, velocity, and
acceleration, integrating them into the kinematic and dynamic equations of the three mechanisms.
Although the study’s primary focus was on the dynamic modeling of mechanisms, it was necessary
to develop a physical model as a starting point for deducing kinematic, kinetic, and dynamic
models. The models were validated in C++, chosen for its rapid control capability and high
numerical precision. Overall, all numerical calculations were executed in short times.

Despite the widespread adoption of other controllers in modern control theory, this project
opted to establish control models based on the physics of the modular mechanism. The advantage
of this approach lies in the natural deduction of physical parameters, such as inertia, mass, and
gravity, as opposed to requiring trial-and-error parameters adjustment.

The development of a modular system capable of assembling diverse robotic platforms offers
future researchers and engineers the advantage of rapid prototyping and customization. This mod-
ularity can streamline the design and development process for a wide range of robotic applications,
from industrial automation to mobile robotics. Moreover, by executing component designs at the
CAD level and streamlining the prototyping process, future projects can benefit from reduced
design iteration times. This efficiency allows for quicker exploration of design alternatives and
optimization of functional capabilities. In addition, leveraging double planetary gear systems, as
identified in the project, can provide future robotic platforms with increased stability and torque
amplification. This advantage is particularly beneficial for applications requiring precise control
and manipulation tasks, such as robotic arms or articulated mechanisms. The validation of kine-
matic, kinetic, and dynamic models in C++ provides an approach in predicting system behavior,
facilitating the development of control algorithms and trajectory planning methods. The deduc-
tion of theorems describing the matrices of instantaneous torques for each mechanism offers a
principled approach to control system design. Opting for control models based on the physics of
the modular mechanism provides a distinct advantage in deducing physical parameters such as
inertia, mass, and gravity.

The conclusions drawn from this project suggest several key trends shaping the technological
and scientific development within the field of robotics. First, the ongoing evolution of modu-
lar robotics platforms is poised to persist, enabling the assembly of diverse robotic systems with
enhanced flexibility and adaptability. This trend will likely drive future research towards refin-
ing modularity to accommodate a wider array of applications. Second, there is a noticeable shift
towards integrating advanced control and sensing techniques into robotic systems, signifying a
move towards more autonomous and capable robots. This trajectory will likely lead to the explo-
ration of new sensor technologies and control algorithms to further enhance robot performance
and autonomy. Third, the streamlining of design iterations, as demonstrated in this project, is an-
ticipated to become increasingly prevalent, driving the development of more efficient design tools
and methodologies for rapid prototyping and optimization. Additionally, the pursuit of stability
and precision in robotic design, particularly through mechanisms like double planetary gear sys-
tems, is expected to persist, fostering innovations in motion control and stability augmentation.
Lastly, the trend towards application-driven research is anticipated to continue, with a focus on
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developing robotic solutions tailored to specific real-world needs across various domains, from
industrial automation to healthcare. Overall, these trends underscore the ongoing advancement of
robotics technology towards increasingly sophisticated and impactful applications.
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Figure 14: Sweeping of accelerations, angles y torques for the pitch, yaw and linear mechanisms.
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