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Abstract— We evaluated the impact of Model Predictive
Control (MPC) robotic-assisted compared to unassisted train-
ing, and the effect of alternating between MPC-assisted and
unassisted training sequences on motor learning of a complex
bicycle steering task. This task involved participants steering
and collecting virtual stars displayed on a screen riding a steer-
by-wire bicycle on a treadmill. Ten participants were split into
two groups, alternating between MPC-assisted and unassisted
training.

Tasks’ motor skills were quantified by the distance to stars
and its standard deviation (SD), while motor performance
was determined by mean absolute and SD of steering rate
across three evaluation time points: Baseline, Mid-Training,
and Post-Training. The repeated-measures ANOVA indicated
a significant improvement in task skill (SD of distance from
stars) and steering performance (mean absolute and SD of
steering rate) and an interaction effect of Group x Time Point
on mean absolute and SD of steering rate. The group who
initially trained without MPC exhibited a notable decrease in
average and variation of steering rate, implying an advantage
in starting training unassisted.

Our findings suggest that the strategy of starting the training
unassisted could stimulate an internal focus (concentrating on
one’s own body movements) and intrinsic skill perception,
which forms a basis for later integrating MPC assistance to fur-
ther refining the gained motor skills. Such a sequential training
approach may be beneficial in motor skill acquisition of complex
dynamics tasks. MPC assistance could be advantageous for
individuals with diminished internal model and skill perception,
such as those with balance impairments, potentially allowing
them to rely less on their impaired sensorimotor abilities.

I. INTRODUCTION

Learning to ride a bicycle is a complex daily-life skill
that involves mastering balance and advanced techniques like
cornering and steering [1]. In countries like the Netherlands,
where bicycles are a primary mode of transportation, this
skill is especially crucial [2]. Importantly, the emergence
of electric bicycles (E-bikes) has added new dimensions to
this task, offering higher speeds but also increased risks,
especially for less skilled or elderly riders [3], [4].

Traditional bicycling training methods, such as the use of
training wheels, while popular, come with limitations. Train-
ing wheels can mask the real dynamics of bicycle riding,
potentially hindering the development of essential balancing
skills [5], [6]. More advanced training approaches, like those
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proposed by Klein et al. [7] that replaced the bicycle wheels
with rollers of varying radii, offer improvements but require
continuous mechanical adjustments in the training setup.
In contrast, robotic assistance, particularly Model Predictive
Control (MPC), presents a promising alternative. MPC is an
optimal control strategy that dynamically adjusts assisting
forces based on the learner’s performance, offering a tailored
learning experience. This method is particularly advanta-
geous as it potentially reduces the risk of learners becoming
passively reliant on assistance and potentially preserving the
perception of the task’s dynamics [8], [9], [10].

Recent advancements in robotic motor learning have
demonstrated the efficacy of MPC in learning dynamic tasks
such as swinging a virtual pendulum [11], suggesting its
potential applicability in more complex dynamic scenarios
like bicycle steering. MPC could be particularly suitable for
the task of steering & balancing a 2-wheeler since this task’s
generally unstable non-minimum phase dynamics requires
an advanced control strategy. This could not be achieved
by simply nudging the steer towards the on-road target,
as in [12], but requires an initial countersteering, followed
by steering towards the target while stabilizing. However,
MPC while offering a potentially (personalized) learning
experience of the dynamic task, must be carefully managed,
e.g., it is unclear if it should be provided at the early phases
of learning or in more advanced phases to avoid over-reliance
on the assistance.

Our research investigates the effectiveness of MPC in
training for complex bicycling tasks. We hypothesized that
MPC-assisted training will significantly improve motor skill
acquisition and performance compared to unassisted training
in a steering and navigating bicycling task. Furthermore,
we explored the impact of training sequence on skill ac-
quisition and performance, evaluating the effectiveness of
starting training with MPC assistance versus without it. This
aspect of our study aims to provide insights into how the
order of training modalities influences learning outcomes and
performance in complex bicycling tasks, addressing a gap
in current research and offering potential advancements in
training methodologies for bicycling.

II. METHODS

A. Experimental setup

The task was performed on a treadmill (Fig. 1) providing
a safe and controllable environment with complimentary
visual information (Fig. 2), while retaining realistic steering
and balancing dynamics. Participants wore a safety harness
connected to a fixed point on the ceiling, just above the center



Fig. 1. Experimental setup with a participant riding the steer-by-wire
bicycle on a treadmill. The participants wore a harness securely attached to
the ceiling for safety. The width of the treadmill’s usable space is 1.1 m.
The display showing the virtual star-shaped targets from a first-person
perspective is highlighted with a blue box. The locations of the SteamVR
Base Stations 2.0 are shown within red rectangles. The location of the HTC
Vive Tracker 3.0 is shown in green.

of the treadmill, to reduce the risk of injury. Note that due to
the harness, participants did not need to pedal and thus could
mainly focus on the steering and balancing task. We used a
custom steer-by-wire bicycle previously developed at Delft
University of Technology in The Netherlands, to provide
steering assistance during bicycle riding [13]. This bicycle
allows the provision of guiding torques to the handlebar
using a motor (and encoder) attached to the handlebar stem.

The lateral position, yaw angle, and roll angle of the steer-
by-wire bicycle were measured using an HTC Vive Tracker
3.0 (HTC, Taiwan) installed right above the rear wheel center
(Fig. 1). Two SteamVR Base Stations 2.0 (HTC, Taiwan)
were located on the back and side of the treadmill to enable
this tracking. Tracker data was sent to the supplied USB
dongle, which was connected to a Raspberry Pi 4 Model B
4 GB (Raspberry Pi Foundation, UK). This computer run
a 32-bit Raspberry Pi OS Lite version in headless mode.
Libsurvive’s [14] Simple Application Programming In-
terface (API) was used to read the data coming from the
tracker, calculate the position and orientation of the tracker,
and send the data using User Datagram Protocol (UDP)
at 220 Hz to a Windows 10 desktop computer, which runs
the MPC and virtual reality game. The desktop computer
was equipped with Intel i7-7700K 4.2 GHz processor (Intel,
US), running Simulink Desktop Real-Time (MathWorks,
US). The desktop computer and the bicycle communicated
wirelessly using Bluetooth at 200 Hz for the bicycle-to-
computer communication, and 75 Hz for the computer-to-
bicycle communication.

A 24-inch computer monitor was placed around 2 m in

Fig. 2. The virtual environment shown to the participants. The participants
controlled the lateral position of the virtual bicycle by steering the real
bicycle on the treadmill. The task consisted of collecting green stars that
appeared on the horizon and approaching the participant at 15 km/h (the
same speed as the treadmill). After passing through each star, a score
appeared on the top of the screen that depended on the distance between
the virtual bicycle and the center of the star. The red walls correspond to
the edges of the treadmill.

front of the participant (Fig. 1) to show the location of
the virtual targets (see subsection B). The game was imple-
mented using Unity (Unity Technologies, US) on the desktop
computer.

B. Steering and Navigation Task: Collecting Virtual Stars

The steering task consisted of collecting virtual star-shaped
targets approaching the rider at a constant velocity of
15 km/h (the same speed as the treadmill). To collect a star,
the rider had to steer and navigate the real bicycle which in
turn steered the virtual bicycle —shown on a screen in front
of them— to place it in front of the star and pass through it.
A first-person perspective of the virtual bicycle was shown on
a road of the same width as the usable width of the treadmill
(Fig. 2). The real bicycle acted as a Human Interface Device
for the game, i.e., the virtual bicycle moved in the lateral
direction mapping to the measured lateral position of the
real bicycle on the treadmill.

To provide feedback to the participants about their nav-
igational steering in the star collection task, a score was
displayed each time a star was passed, calculated based on
the distance between the lateral position of the bicycle’s rear
wheel contact point on the treadmill (yP) and the lateral
position of the star’s center yS, both in meters. Scores were
assigned using three conditions: 100 points for distance ≤
0.02 m, 0 for distance > 0.22 m. For distances between
0.02 and 0.22 m, the score ranged linearly from 100 to 0,
calculated as 500× (0.22− distance). The interval between
the appearance of two consecutive stars was 6 s.

C. The MPC Robotic Assistance

Our MPC used a mathematical model of the bicycle lateral
dynamics [15] to predict the system’s behavior throughout a
specified time horizon. We choose a control signal such that
the predicted system state follows a given reference state. A
cost function (and its weights) is specified —e.g., minimizing
the assistance and minimizing the distance to the stars—
which is then used by the controller to determine the control
action at each time step t, through real-time optimization.



Several constraints can be put on the system to guarantee,
e.g., safety.

The linear MPC problem employed in our study is stated in
Equation 1, where J is the cost function to be minimized, t is
the current time, N is the number of steps in the time horizon,
x is the bicycle state, r is the reference state, u is the control
input, and Q and R are designer-defined weighing matrices.
The input varies stepwise across the N steps resulting in
N input values to be optimized by the MPC. Only the
first (next) input is applied and the following inputs are
reoptimized at the next time step based on the updated system
state. The subscripts lb and ub stand for lower bound and
upper bound, respectively, and are used to enforce constraints
on the controller, i.e., maximum and minimum values of
lateral position (±0.5m), steering angle (±40deg), roll angle
(±20deg), and assisting torque (±10Nm). The matrices A
and B are linear time-invariant state-space matrices.

J =
t+N

∑
k=t

(xk − rk)
T Qk(xk − rk)+

t+N−1

∑
k=t

uT
k Rkuk

subject to xk+1 = Axk +Buk

xlb,k ≤ xk ≤ xub,k

ulb,k ≤ uk ≤ uub,k

(1)

In our study, N was set to 150, which is equal to a time
horizon of 2 s with a sample rate of 75 Hz. The control input
u is the steering torque applied by the handlebar motor. The
bicycle and reference states, x and r, consist of the lateral
position of the rear wheel of the bicycle yP, the yaw angle ψ ,
the roll angle φ , the steering angle δ , the roll rate φ̇ and the
steering rate δ̇ . Thus, the cost function stabilizes the bicycle
in steer and roll while both minimizing deviation from the
target and motor steer effort. The target tracking task is
represented by the lateral position relative to the target at the
time needed to reach the target. Thus, the MPC derives an
optimal steering sequence to reach the target. The state-space
matrices A and B were obtained using the HumanControl
software [16], which can convert the equations of motion
of a linear Whipple-Carvallo bicycle model to a state-space
representation. Bicycle parameters of the Davis Instrumented
Bicycle (specified under Rigid in pages 91-92 of [17]) were
used due to its physical similarity to the bicycle used in this
study. A forward speed of 15 km/h (4.17 m/s), equal to the
treadmill’s speed, was chosen.

D. Study Protocol

Ten healthy adult participants divided into two groups (9
between 25-39 years old, and 1 between 60-64 years old; 3
female) gave written consent to participate in the experiment.
The study was approved by the TU Delft Human Research
Ethics Committee (HREC).

The study protocol is depicted in Fig. 3. The experi-
ment consisted of six blocks: Familiarization (Free riding),
Baseline (BL), Training 1 (T1), Mid-Training evaluation
(MT), Training 2 (T2), and Post-Training evaluation (PT).
Participants were randomly assigned to one of two groups.
The five participants allocated to Group 1 (MPC first) trained

with MPC assistance during T1 and without assistance during
T2, while the order was reversed for Group 2 (MPC second).

In the Free riding (Familiarization) session participants
spent 5 minutes bicycling on the treadmill without any
assistance and were verbally encouraged to carry out lane
change maneuvers of varying amplitudes.

Baseline, Mid-Training and Post-Training blocks were
designed to evaluate the skill acquisition and steering per-
formance of the participants before, after the first, and
after the second training block, respectively. During these
evaluation blocks, no MPC assistance was provided and
riders cycled for 2 x 1-min trials trying to collect the stars
appearing on the screen by steering the bike. Each (1-min)
trial contained 10 stars to be collected. The location of the 10
stars was pseudo-randomized but similar for all participants
with varied placements on the virtual road.

The training blocks T1 and T2 were started right after the
Baseline and Mid-Training blocks, respectively. Participants
were informed that they may be assisted during the training.
Two-minute breaks were enforced between T1 and Mid-
Training blocks, and between T2 and Post-Training blocks.

E. Data Analyses

1) Skill Acquisition and Performance Measures: To eval-
uate the skill acquisition in the stars collecting task, the
average and standard deviation (SD) of the distance (m) from
the bike position to targeted stars averaged over 20 stars per
evaluation time point (BL, MT, and PT) was obtained. This
measure aims to indicate changes in the accuracy (average
distance) and consistency (standard deviation distance)
in the steering and navigation task compared to the baseline
measurement. A decreased average and standard deviation
indicate higher precision (accuracy) and repeatability (con-
sistency) in task execution, respectively, associated with an
improved skill acquisition. [18].

For evaluating the participants’ navigation and steering
performance, the average steering rate (rad/s) quantified by
mean absolute value of the steering rate [19] and the standard
deviation of steering rate (SD of steering rate (rad/s)) in a 6-
second time frame from appearing until hitting the stars were
calculated. These values provide insights into how smoothly
the riders maneuver the bicycle within each 6-second interval
between star appearances. For statistical analysis, the average
and standard deviation of the steering rate across 20 stars
(2 x 10 stars) for each evaluation time point (BL, MT,
and PT) were calculated, reflecting the participants’ average
performance over a total of 120 seconds (2 x 1-min trial). The
standard deviation of the steering rate serves as an indicator
of consistency or variability in the steering rate, where a
decreased SD of steering rate implies a more consistent and
refined motor control in steering behaviour.

2) Statistical Analyses: We applied a repeated measures
ANOVA on the average and standard deviation of the dis-
tance to stars, and on the average and standard deviation
of the steering rate. The analysis specifically focused on two
factors and their interaction that might influence participants’
skill acquisition and performance: evaluation Time Points



Fig. 3. Study protocol. Participants were randomly assigned to one of two groups. Each trial was 1 minute long and contained 10 stars. BL: Baseline
evaluation, MT: Mid-training evaluation, PT: Post-Training evaluation, MPC: training with MPC, No MPC: training without MPC

(Baseline [BL], Mid-Training [MT], and Post-Training [PT]),
and Group, denoting the different participant groups sub-
jected to varying training sequences, enabling a detailed
evaluation of how the timing and sequence of training
interventions influenced participants’ task skill acquisition
and steering performance.

The statistical analyses were performed in Jasp (version
0.16) and the significance level was determined at p-values
< 0.05.

III. RESULTS

All participants were able to complete all conditions
without falling and there were no reports of motion sickness.
The analysis focused on changes in accuracy and consistency
of collecting stars (Fig. 4) by evaluating the average and stan-
dard deviation of the distance to virtual stars, respectively,
together with the average and standard deviation of steering
rate (Fig. 5, and Fig 6). Results from the statistical analyses
are summarized in Table I.

A significant improvement in skill was evidenced by a
decrease in the standard deviation of the distance to stars (im-
proved consistency/repeatability), with no effects of Group
or interaction of Time Point X Group (Table I, Fig.4). We
did not find a significant effect of evaluation Time Point or
Group on the average distance to the stars (Table I).

Fig. 4. The standard deviation of the lateral distance to stars at Baseline
(BL), Mid-Training (MT) and Post-Training (PT) for each training group.
Error bars indicate the standard errors.

We found a significant effect of the evaluation Time
Points on average steering rate and a significant interac-
tion between Time Points and Group, as shown in Table

Fig. 5. The average of steering rate in (rad/s) at Baseline (BL), Mid-
Training (MT) and Post-Training (PT) time points for each training group.
Error bars indicate the standard errors.

Fig. 6. The standard deviation of steering rate in (rad/s) at Baseline (BL),
Mid-Training (MT) and Post-Training (PT) time points for each training
group. Error bars indicate the standard errors.

I and Fig. 5. Posthoc analysis for Group 1 (MPC first)
revealed no significant improvement in average steering rate
between the Baseline (BL) and Mid-Training (MT) or BL
and Post-Training (PT) evaluation time points (t = 2.535,
p = 0.171, Mean Difference = 0.015 and t = 1.251, p =
0.806, Mean Difference = 0.007, respectively). In contrast,
significant differences in average steering rate were observed
within Group 2 (MPC second). Specifically, a significant
improvement was noted between BL and MT (t = 3.914,
p = 0.013, Mean Difference = 0.022), indicating enhanced
steering performance (decreased steering rate) during this



training period. Furthermore, a significant improvement
from BL to PT was also observed (t = 5.165, p = 0.001,
Mean Difference = 0.030) in Group 2.

Similarly, we found a significant effect of the evaluation
Time Points on the standard deviation of steering rate and
a significant interaction between Time Points and Group as
shown in Table I and Fig. 6. Posthoc analysis for Group 1
(MPC first) revealed no significant improvement in SD of
steering rate between the Baseline (BL) and Mid-Training
(MT) or BL and Post-Training (PT) evaluation time points
(t = 2.463, p = 0.193, Mean Difference = 0.018 and t =
1.171, p = 0.844, Mean Difference = 0.008, respectively).
However, potshoc analysis revealed a significant difference
in SD of steering rate within Group 2 (MPC second) between
the Baseline (BL) and Mid-Training (MT) evaluation time
points (t = 4.113, p = 0.009, Mean Difference = 0.030),
indicating a significant improvement in steering performance
(decreased variation of steering rate) during this training pe-
riod. Furthermore, a significant improvement was also noted
from the Baseline to Post-Training (PT) time point in Group
2 (MPC second) (t = 5.1005, p = 0.001, Mean Difference =
0.037). These results suggest that Group 2 (MPC second),
which started training without MPC assistance, experienced
substantial improvements in steering performance over the
course of the training, something that was not observed
in Group 1 (MPC first). These findings suggest that the
introduction of MPC assistance at the beginning of the
training did not significantly impact the average and vari-
ation of steering actions for Group 1. However, Group 2,
which started training without MPC assistance, experienced
significant improvements in the steering actions average and
variation over the course of the training, highlighting the
potential benefits of gradually introducing MPC assistance
to enhance learning and adaptation processes, something that
was not observed in Group 1 (MPC first).

TABLE I
REPEATED MEASURES ANOVA RESULTS

Variable F-value p-value η2
p

Average of Distance to Stars
Time Points (Level) 2.775 0.109 0.258
Group (MPC Order) 1.785 0.218 0.182
Level*Group Interaction 0.061 0.903 0.008

SD of Distance to Stars
Time Points (Level) 5.083 0.048 0.389
Group (MPC Order) 0.213 0.657 0.026
Level*Group Interaction 0.195 0.697 0.024

Average of Steering Rate
Time Points (Level) 13.791 <.001 0.633
Group (MPC Order) 0.359 0.566 0.043
Level*Group Interaction 3.942 0.041 0.330

SD of Steering Rate
Time Points (Level) 13.876 <.001 0.634
Group (MPC Order) 0.365 0.563 0.044
Level*Group Interaction 3.998 0.039 0.333

IV. DISCUSSION

We investigated the impact of MPC assistance on motor
skill acquisition and steering performance in a complex

bicycling task, with a particular focus on the timing of MPC
introduction during training. Contrary to our initial hypoth-
esis that training with MPC assistance would be inherently
superior, the results revealed that both training methods led
to improvements in motor skill, yet the sequence of training
without MPC followed by training with MPC proved to be
more effective in improving the steering performance. This
finding is particularly intriguing as it suggests the importance
of mastering fundamental skills before introducing techno-
logical assistance in this particular task.

The sequence of training significantly influenced steering
performance in this complex bicycling task. Group 2 (MPC
second), which began without MPC, exhibited more pro-
nounced improvements in steering rate average and variation
compared to Group 1 (MPC first), highlighting the impact
of training sequence on motor learning. This is aligned with
the principles of motor learning, particularly the Guidance
Hypothesis, which states that too much augmented feed-
back during training, i.e., additional to the natural feedback
mechanisms inherent in performing a task, guides learners
but can cause dependency (slaking) if used too frequently
[5]. MPC provided additional information to the participants,
augmenting their natural sensory feedback with predictive
data about future states of the system. Thus, in line with
the Guidance Hypothesis, our results suggest that MPC
use might disrupt the development of intrinsic motor skills,
especially during the early stages of learning, necessitating a
balanced approach with unassisted training in its application
to prevent over-reliance.

A potential problem of providing robotic assistance while
learning to interact with environments with complex dy-
namics is that the assistance could inadvertently mask the
perception of the dynamics of the environment just as
adding training wheels disturbs the perception of the bicycle
dynamics. The study by Wähnert and Müller-Plath (2021)
states the functionality hypothesis in motor learning of a
balancing task, indicating that an internal focus, emphasiz-
ing body-internal senses, is more beneficial in tasks where
external feedback could add cognitive load [20], or in our
study, hinder the perception of the task dynamics through
body-internal senses. Our findings support the functionality
hypothesis in motor learning suggesting that training initially
without MPC likely fostered an internal focus, enabling
participants to develop a deeper intrinsic understanding of
the navigating and steering through their body-internal senses
in this bicycling task. This phase of self-reliance in learning
appears to be crucial for establishing a solid foundation upon
which technological assistance can build.

Furthermore, the study on audio-motor coordination in
learning piano performance skills provides relevant insights
into our findings [21]. Their research demonstrates that pre-
dictive motor control mechanisms, essential for determining
the sequence and timing of actions, play a crucial role even
in the early stages of learning complex motor skills. In our
study, the initial training phase without MPC might have
similarly encouraged the development of internal predictive
motor control skills, allowing participants to independently



navigate the task and refine their ability to anticipate and
respond to the bicycling dynamics. The subsequent introduc-
tion of MPC then provided targeted feedback and assistance,
leading to further refined motor control and enhancing the
skills developed during the initial phase.

In practical terms, our study suggests potential applica-
tions of MPC for individuals with impaired internal models,
such as those caused by aging or balance disorders. MPC’s
efficacy may be heightened in scenarios where learners fully
rely on this technology, thereby minimizing reliance on their
compromised internal models [5].

Future studies could benefit from a larger, more diverse
participant group and the addition of two focused groups, one
training exclusively with MPC and the other solely without
it, to strengthen our conclusion. Moreover, the MPC model
could be enhanced to adjust to individual rider characteris-
tics. This includes calibrating the weights in the MPC cost
function to align with each rider’s responsiveness and control
preferences, modifying constraints to match their specific
steering abilities, and fine-tuning the feedback mechanism
to offer customized guidance based on the rider’s skill
level. These targeted modifications aim to optimize the MPC
system for each individual rider, potentially increasing the
training effectiveness.

V. CONCLUSION

Our study highlights the feasibility and effectiveness of
Model Predictive Control in complex steering and bicycling
tasks, with a focus on the training sequence. We found that
unassisted learning strategies beginning with the develop-
ment of intrinsic predictive motor control, followed by the
integration of MPC-assisted learning, led to more refined
motor control. This highlights the importance of mastering
fundamental skills before introducing robotic assistance and
the need for well-structured training sequences.

Future research should focus on exploring the long-term
impacts of various training sequences and the optimal and
tailored integration of technological aids like MPC in en-
hancing motor performance.
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