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Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used to assess tissue vascular-
ization, particularly in oncological applications. However, the most widely used pharmacokinetic (PK) models 
do not account for contrast agent (CA) diffusion between neighboring voxels, which can limit the accuracy of 
the results, especially in cases of heterogeneous tumors. To address this issue, previous works have proposed 
algorithms that incorporate diffusion phenomena into the formulation. However, these algorithms often face 
convergence problems due to the ill-posed nature of the problem.
In this work, we present a new approach to fitting DCE-MRI data that incorporates CA diffusion by using Physics-
Informed Neural Networks (PINNs). PINNs can be trained to fit measured data obtained from DCE-MRI while 
ensuring the mass conservation equation from the PK model. We compare the performance of PINNs to pre-
vious algorithms on different 1D cases inspired by previous works from literature. Results show that PINNs 
retrieve vascularization parameters more accurately from diffusion-corrected tracer-kinetic models. Furthermore, 
we demonstrate the robustness of PINNs compared to other traditional algorithms when faced with noisy or in-
complete data. Overall, our results suggest that PINNs can be a valuable tool for improving the accuracy of 
DCE-MRI data analysis, particularly in cases where CA diffusion plays a significant role.
1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) 
is a widely used imaging technique that provides information on tissue 
perfusion and permeability of different tissues. By analyzing the uptake 
and washout of a contrast agent (CA) in a tissue, DCE-MRI can help di-
agnose and monitor various pathologies, particularly tumors [2,47,26]. 
To extract quantitative information of these tissues, the voxel-wise CA 
concentration versus time curves need to be fitted to some of the phar-
macokinetic (PK) models available [17]. Although there are multiple 
PK models, some of the most employed models are the standard Tofts 
model (STM) and the extended Tofts model (ETM) [39,38]. Both are 
compartmental models that incorporate two distinct compartments - the 
intravascular and extravascular-extracellular space (EES) - and account 
for the exchange of CA between them. Unlike the STM, the ETM consid-
ers that a fraction of the voxel is occupied by blood vessels. Therefore, 
the ETM incorporates an additional term that includes the contribution 
of the intravascular CA to the total CA concentration in the voxel.

* Corresponding author.

The major limitation of both models is that they disregard the pas-
sive phenomena of CA transport, considering only the arrival of CA 
to the tissue through blood perfusion. Several authors have previously 
highlighted this limitation, proving that the assumption of no inter-
voxel CA transport can introduce inaccuracies in the estimated pa-
rameters of the model [34,15,19,4,28,8,33]. Consequently, they have 
proposed alternative formulations that include these phenomena, fo-
cusing mainly on CA transport by diffusion.

This work is based on our previous publication [31], where we pre-
sented the formulation of the diffusion-corrected ETM (D-ETM) model, 
along with the implementation of a finite element (FE) based optimiza-
tion algorithm to fit that model to CA concentration curves. In this 
previous work, we demonstrated the importance of CA diffusion, espe-
cially in necrotic regions in tumors, and showed the increased accuracy 
of the D-ETM model with respect to the ETM when retrieving the model 
parameters in the presence of CA diffusion. Nevertheless, due to the 
ill-posed nature of the problem, the algorithm faced convergence prob-
lems, getting caught in local minima in some cases.
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Thanks to the great advances in Machine Learning (ML), and more 
precisely in Deep Learning (DL), in the last years several authors have 
developed different DL-based methods to retrieve PK model’s parame-
ters from DCE-MRI data. Such works mainly focus on the use of convolu-
tional neural networks (CNN) [7,41,40] and recurrent neural networks 
(RNN), such as long short-term memory (LSTM) networks [48]. The 
main drawback of these architectures is that both are purely data-driven 
approaches. This means that these networks need to be trained on a 
sufficiently large dataset that includes different patients from distinct 
clinical centers where diverse protocols may have been applied. Besides, 
they do not only need the raw clinical data, but also the “ground-truth” 
for the parameters of the model being fitted. Although in the case of 
the STM or the ETM these parameter values can be extracted using a 
fast algorithm such as non-linear least-squares (NLLS) [37] fitting, if 
we want to include the diffusive term we need to incorporate other op-
timization algorithms, such as those proposed in [4,28,8,33,31]. This 
poses a major challenge, since those algorithms that are fast enough for 
this task make assumptions that limit their applicability to certain tis-
sues [4,8] and those which can be widely applied to different tissues are 
too computationally expensive to fit such a large dataset and struggle 
to converge to the exact solution in some situations [28,33,31]. Thus, 
it appears that the problem we are addressing requires that the known 
physical laws that govern the processes of CA transport are included 
in the network architecture, steering away from purely data-driven ap-
proaches.

Recently, Physics Informed Neural Networks (PINNs) [29,16,3] have 
emerged as a promising alternative for solving PDEs and other in-
verse problems. PINNs combine the flexibility and scalability of neu-
ral networks with the physical constraints imposed by the underlying 
equations, allowing for efficient and accurate solutions even for highly 
nonlinear and ill-posed problems. Other authors have used this type 
of neural networks (NN) to fit tracer-kinetic models to DCE-MRI data 
[27,12], outperforming current NLLS method. Zapf et al. [46] used 
PINNs to estimate the diffusion coefficient governing the long term 
spread of molecules in the human brain from diffusion tensor imaging 
(DTI) MR data, showing its potential for this task. The results obtained 
in these works show that PINNs can successfully retrieve PK parameters 
and solve inverse problems of CA diffusion in biological tissues.

In this paper, we investigate the potential of using PINNs to fit 
diffusion-corrected pharmacokinetic models to synthetic DCE-MRI data, 
with the aim of establishing a robust framework for future analysis. 
To facilitate our exploration, we focus on 1D spatial domains while 
highlighting the broader implications of this approach for advancing 
DCE-MRI data analysis.

With this physics-driven NN architecture we aim to overcome the 
limitations of traditional solvers and achieve more robust parameter 
estimation for DCE-MRI analysis, showing the potential of PINNs to 
extract more accurate vascularization data from this type of MR se-
quences, even when faced with noisy and incomplete data.

2. Methods

This section begins with the introduction of the D-ETM formulation. 
Then, the fundamentals of PINNs will be explained, finishing with a 
description of the PINN implementation chosen for the D-ETM.

2.1. D-ETM formulation

The ETM is a compartmental model that, as stated previously, con-
siders two different compartments (intravascular and EES compart-
ments) and the exchange of CA between them. This model assumes the 
hypothesis of well-mixed compartments presented by Tofts [38], which 
states that no CA concentration gradients exist within the respective 
compartments (Eq. (1)):
2

𝐶𝑡(𝒙, 𝑡) = 𝑣𝑒(𝒙)𝐶𝑒(𝒙, 𝑡) + 𝑣𝑝(𝒙)𝐶𝑝(𝑡) (1)
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where 𝐶𝑡(𝒙, 𝑡) is the CA concentration in the voxel; 𝐶𝑒(𝒙, 𝑡) and 𝐶𝑝(𝑡)
are the CA concentration in the EES and intravascular compartments, 
respectively; 𝑣𝑒(𝒙) and 𝑣𝑝(𝒙) are the volume fraction of each of these 
compartments with respect to the voxel and 𝒙 is the spatial coordinates 
vector. The D-ETM formulation, as defined in [31], adds a diffusive 
term to the differential formulation of the ETM, obtaining Eq. (2):

𝜕𝐶𝑡(𝒙, 𝑡)
𝜕𝑡

= 𝛁 ⋅
(
𝐷𝑒𝑓𝑓 (𝒙)∇𝐶𝑡(𝒙, 𝑡)

)

+𝐾𝑇𝑟𝑎𝑛𝑠

𝑣𝑒
(𝒙)

(
𝐶𝑝(𝑡)(𝑣𝑒(𝒙) + 𝑣𝑝(𝒙)) −𝐶𝑡(𝒙, 𝑡)

)
+ 𝑣𝑝(𝒙)

d𝐶𝑝(𝑡)
d𝑡

(2)

where KTrans(x) is the extravasation rate between the intravascular and 
the EES compartments.

This formulation is based on the concept of effective diffusivity 
applied to biological tissues. Essentially, we are assuming that the trans-
port of particles through any biological tissue can be viewed as the 
transport of particles through a porous medium [24,25,23]. Given the 
similarity between porosity and 𝑣𝑒, as both measure the volume frac-
tion of “empty” space [36], the effective diffusivity coefficient can be 
defined as:

𝐷𝑒𝑓𝑓 = 2𝐷
3 − 𝑣𝑒

(3)

where D is the diffusivity coefficient of CA in free medium.

2.2. Physics-Informed Neural Networks

In recent years, the field of biomedical engineering has significantly 
increased in the use of deep learning techniques for a wide range of 
applications, from medical image analysis [32] to drug discovery [5]. 
Deep learning algorithms have shown great promise in improving the 
accuracy and efficiency of tasks such as disease diagnosis, prognostica-
tion, and treatment planning [22]. However, many of these approaches 
rely on large amounts of labeled data, which can be challenging to ob-
tain in biomedical settings [21]. This is where Physics-Informed Neural 
Networks (PINNs) have emerged as a promising alternative, leveraging 
the underlying physics of the problem to reduce the reliance on labeled 
data and improve model generalization [6].

PINNs incorporate prior physical knowledge of the problem into the 
neural network architecture, making them more efficient and accurate 
than traditional data-driven DL approaches. PINNs can include partial 
differential equations (PDEs) to encode the governing physics of the 
problem, and then use neural networks to approximate the solution to 
the PDEs.

This combination of physics-based constraints and data-driven learn-
ing makes PINNs particularly effective for problems with limited data 
and complex physical phenomena. In the following sections, we will ex-
plain the basic concepts of PINNs and how we used them to solve our 
specific problem.

2.2.1. Fundamentals

PINNs are based on two main concepts: the Universal Approximation 
Theorem [13] and Automatic Differentiation (AD) [11].

The Universal Approximation Theorem states that any arbitrary 
function, no matter its complexity, can be approximated by a NN with 
only one hidden layer and a finite number of neurons.

Automatic differentiation is a technique for efficiently computing 
the derivatives of a function specified by a computer program. It works 
by recursively applying the chain rule of calculus to elementary oper-
ations such as addition, multiplication, and elementary functions like 
exponentials and trigonometric functions. This allows us to compute 
exact derivatives to machine precision without the need for symbolic 
manipulation or numerical approximations. In other words, we can ob-
tain the derivatives of a function with the same precision as the function 

itself.
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Therefore, one can train a NN to express solutions of time-dependent 
linear and non-linear PDEs from a set of inputs. Given a PDE of the form:

𝜕𝑢

𝜕𝑡
+ [𝑢;𝑃 ] = 0, 𝒙 ∈Ω ⊂ℝ𝐷, 𝑡 ∈ [0, 𝑇 ] (4)

where  [𝑢; 𝑃 ] is a differential operator with parameters 𝑃 acting on 
the hidden solution 𝑢(𝒙, 𝑡). We can approximate the solution of the PDE 
𝑢(𝒙, 𝑡) with a NN such that 𝑢(𝒙, 𝑡) ≈𝑁𝑁(𝒙, 𝑡; 𝜃), being 𝜃 the NN param-
eters and (𝒙, 𝑡) the input variables.

The process of NN training comprises a set of training data, a loss 
function  that measures the fitness performance of the NN with re-
spect to the objective, and an optimizer that adjusts the NN parameters 
to minimize . In the case of PINNs, we incorporate the PDE as a con-
straint in  to ensure that the solution obtained by the NN satisfies the 
physical laws described by the PDE on a certain set of collocation points 
{𝒙𝑖, 𝑡𝑖}

𝑁𝑓

𝑖=1 ∈ Ω × [0, 𝑇 ]. In the case of inverse problems, where 𝑢(𝒙, 𝑡) is 
known on some set of training points {𝒙𝑖, 𝑡𝑖, 𝑢𝑖}

𝑁𝑢

𝑖=1 ∈ Ω × [0, 𝑇 ], this loss 
function is composed by two main terms:

(𝜃,𝑃 ) =𝑤𝑑𝑑 +𝑤𝑟𝑟 (5)

where:

𝑑 =
1
𝑁𝑢

𝑁𝑢∑
𝑖=1

(
𝑢(𝒙𝑖, 𝑡𝑖) −𝑁𝑁(𝒙𝑖, 𝑡𝑖;𝜃)

)2
(6)

𝑟 =
1
𝑁𝑓

𝑁𝑓∑
𝑖=1

(
𝜕𝑁𝑁(𝒙, 𝑡;𝜃)

𝜕𝑡
+ [𝑁𝑁(𝒙, 𝑡;𝜃);𝑃 ]

)2
(7)

and 𝑁𝑢 and 𝑁𝑓 are the number of training points and collocation 
points, respectively. The first term of the loss function (Eq. (6)) is the 
mean square error (MSE) between the predicted solution and the ground 
truth solution at the sampled training points. The second term (Eq. (7)) 
is the MSE of the PDE residual at the collocation points. To compute this 
term, the differential operators included in the PDE are computed using 
automatic differentiation. Both terms are scaled by different weight-
ing factors, 𝑤𝑑 and 𝑤𝑟 that control the relative importance of the data 
and PDE losses. Additionally, one may add other terms to the loss func-
tion related to boundary or initial conditions with their correspondent 
weighting factors, although they are not mandatory for inverse prob-
lems [30].

By minimizing this loss function, the NN learns to approximate the 
solution of the PDE at the training points while it satisfies the physical 
laws described by the PDE at the collocation points. For inverse prob-
lems this minimization process not only updates the NN weights and 
biases but also retrieves the unknown PDE parameters P.

2.2.2. Fitting the D-ETM using PINNs

After presenting the general concepts of PINNs, we now shift our 
focus to the specific implementation used to fit the D-ETM to synthetic 
DCE-MRI data.

Our implementation is based on previous works [29,14,12] that 
solved similar problems. Therefore, we opted for a densely connected 
forward neural network (FNN) architecture consisting of 8 hidden lay-
ers and 100 neurons per layer and the hyperbolic tangent (tanh) as the 
activation function. A normalization layer was included before the hid-
den layers to normalize the spatial and temporal coordinates to the 
[-1, 1] range, as it is recognized as a safeguard against vanishing or 
exploding gradients, as well as a stabilizing factor for the training pro-
cedure [29]. The network parameters 𝜃 were initialized using Glorot 
initialization [9] while the D-ETM parameters P were given random val-
ues within the physiological range (𝐾𝑇𝑟𝑎𝑛𝑠 between 0.05 and 0.5 𝑚𝑖𝑛−1; 
𝑣𝑒 between 0.3 and 1.0 and 𝑣𝑝 between 0.01 and 0.3) [31,28]. The orig-
inal formulation of the loss function presented in Eq. (5) is modified to 
include two additional terms:
3

(𝜃,𝑃 ) =𝑤𝑑𝑑 +𝑤𝑟𝑟 +𝑤𝐼𝐶𝐼𝐶 +𝑤𝐶𝐶 (8)
Medical Engineering and Physics 123 (2024) 104092

where 𝐼𝐶 represents the initial conditions, 𝐶 is a soft constraint for 
the PDE parameters and 𝑤𝐼𝐶 and 𝑤𝐶 are their respective weighting 
factors. These additional terms are defined as:

𝐼𝐶 = 1
𝑁𝐼𝐶

𝑁𝐼𝐶∑
𝑖=1

(𝑁𝑁(𝒙𝑖,0;𝜃))2 (9)

𝐶 =
𝑁𝑝∑
𝑖=1

(
𝑔(𝐾𝑇𝑟𝑎𝑛𝑠

𝑖
, 𝑣𝑒𝑖, 𝑣𝑝𝑖)

)
(10)

where 𝑁𝐼𝐶 is the number of points used to evaluate the initial condition (
𝐶𝑡(𝒙, 𝑡) = 0

)
and 𝑁𝑝 is the number of points where the PDE parameters 

are evaluated. Given that the three D-ETM parameters (𝐾𝑇𝑟𝑎𝑛𝑠, 𝑣𝑒 and 
𝑣𝑝) are spatial distributions, 𝑁𝑝 should be equal or greater than the 
spatial discretization of the data points to achieve sufficient precision. 
The soft constraint presented in Eq. (10) is defined as:

𝑔(𝐾𝑇𝑟𝑎𝑛𝑠
𝑖

, 𝑣𝑒𝑖, 𝑣𝑝𝑖) =𝑚𝑎𝑥(𝐾𝑇𝑟𝑎𝑛𝑠
𝑖

,0) −𝐾𝑇𝑟𝑎𝑛𝑠
𝑖

+𝑚𝑎𝑥(𝑣𝑒𝑖,0) − 𝑣𝑒𝑖

+𝑚𝑎𝑥(𝑣𝑝𝑖,0) − 𝑣𝑝𝑖 +𝑚𝑎𝑥(𝑣𝑒𝑖 + 𝑣𝑝𝑖,1) − 1 (11)

Eq. (11) sets the lower bound for all three PDE parameters to 0, 
while the upper bound for the sum of 𝑣𝑒 + 𝑣𝑝 is set to 1. This constraint 
ensures that the sum of the intravascular space and the EES does not 
exceed the total voxel volume. These limits ensure that the parameters 
obtained are physically plausible. The weighting factors were all set to 1 
except 𝑤𝑟, which was given a value of 1000. Based on the different tests 
conducted, this combination of weights leads to the best results. The 
loss function defined in Eq. (8) is minimized using the Adam optimizer 
[18] with a constant learning rate of 0.001 during 60,000 epochs. A 
schematic overview of this PINN implementation is presented in Fig. 1.

The number of training points was obtained from the resolution of 
the synthetic data, with a total of 360 points in the temporal domain (1 
s resolution) and 60 points in the spatial domain (0.1 mm resolution) 
[31]. That resulted in a total of 21.600 training points. 𝑁𝐼𝐶 and 𝑁𝑝

were set to 100 and 120, respectively. We found empirically that en-
hancing the spatial discretization of PDE parameters (𝑁𝑝) with a factor 
of 2 with respect to the data resolution increased the accuracy. Finally, 
10,000 collocation points were distributed over the whole domain using 
the Latin Hypercube Sampling (LHS) method [35].

The implementation shown so far includes most of the features de-
scribed in the original work that laid the foundations for PINNs [29]. 
However, the results obtained with this implementation showed that, 
although the network was able to fit the data curves accurately, the er-
ror in the PDE parameters, particularly 𝑣𝑒, was too high (Appendix A). 
To retrieve more accurate PDE parameters, we introduced the residual-
based adaptive refinement (RAR) method [20]. This method aims to 
improve the distribution of collocation points during training. After a 
certain number of epochs (𝐸𝑅𝐴𝑅), the PDE residual is evaluated at a 
new set of collocation points randomly sampled. Then, these points are 
ranked by their mean 𝑟 value. Finally, the top k points are added to the 
initial list of collocation points. This technique helps the NN focus on 
those regions where the PDE residual is higher, enhancing the gradients 
corresponding to the PDE parameters in that regions. Through succes-
sive tests, the RAR parameters were set to 𝐸𝑅𝐴𝑅 = 500 and 𝑘 = 500. 
The deep learning library Tensorflow 2 [1] is used to implement all the 
methods and optimizations described earlier.

It is important to note that all these hyperparameters were manually 
calibrated until we obtained satisfactory results. Moreover, it should be 
emphasized that before applying our methodology to more complex 2D 
cases, a proper tuning of the hyperparameters is necessary to under-
stand and measure how each hyperparameter affect the results.

3. Examples of application

To assess the effectiveness of PINNs in accurately determining the 

D-ETM parameters in comparison to previous optimization algorithms 
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Fig. 1. Schematic representation of the PINN implementation developed to fit the D-ETM. PINNs take advantage of the computational efficiency of automatic 
differentiation to get the derivatives of 𝐶𝑡 needed for the computation of 𝑟. As in any other inverse problem, the optimizer not only updates the NN parameters 
(𝜃∗) but also the PDE parameters (𝑃 ∗).
[31], two distinct in silico cases were devised. Both cases were based 
on a 1D spatial domain that corresponds to a cross-section of a cir-
cular tumor with two different regions: a necrotic core and a highly 
vascularized rim, similar to the benchmark case used in previous stud-
ies [28,8,31]. The objective of this benchmark case was to highlight 
the effect of diffusion in CA transport, therefore pointing out the lim-
itations of the ETM. The different sets of synthetic CA concentration 
time courses were generated using the forward implementation of the 
D-ETM in ANSYS (Ansys Inc., TX, USA), as described in [31]. In all cases 
the diffusion coefficient for CA in free medium, D, was set to 2.6E-04 
𝑚𝑚2∕𝑠 [19,10]; while the arterial input function (AIF) was the same as 
the one used in our previous work [31].

In the first case, the distribution of 𝐾𝑇𝑟𝑎𝑛𝑠 and 𝑣𝑝 is homogeneous 
through each of the regions, taking values of 0.3 min-1 and 0.1 in 
the vascularized rim and 0.05 min-1 and 0.01 along the necrotic core, 
respectively. The second case, on the other hand, is based on a heteroge-
neous distribution of these two vascularization parameters: 𝐾𝑇𝑟𝑎𝑛𝑠 and 
𝑣𝑝 defined in the ranges [0.2, 0.3] min-1 and [0.07, 0.13], respectively, 
along the vascularized rim and 𝐾𝑇𝑟𝑎𝑛𝑠 taking values between 0.02 and 
0.07 min-1 and 𝑣𝑝 ranging between 0.0 and 0.05 in the necrotic core. 
In both cases, 𝑣𝑒 was set to 0.5 through the whole domain, to replicate 
the configuration presented in previous works [28,8,31]. We employed 
the absolute relative difference (ARD) metric to quantify the error in 
the fitted parameters for each model.

Additionally, each case was fitted with the two original models: the 
ETM [38] to and the D-ETM [31]. The latter was fitted using two dif-
ferent optimization methods: the FE-based algorithm presented in [31]
(D-ETM FE) and the PINN approach presented in this work (D-ETM 
PINN). As stated before, in the D-ETM PINN the D-ETM parameters 
were initialized using random values within their physiological ranges. 
In the case of the D-ETM FE the output from the ETM fitting was used as 
initial seed. This was done to reduce the complexity of the minimization 
process, trying to avoid local minima.

3.1. Homogeneous distribution of parameters

Taking a look at the results obtained for the homogeneous case 
(Fig. 2 and Table 1), it is clear that this initial seed was not sufficient to 
prevent the D-ETM FE to converge to a local minimum in this case. In 
fact, it shows a greater error than the ETM for the 𝐾𝑇𝑟𝑎𝑛𝑠 distribution 
(87% of nodes fitted by the ETM have an ARD error lower than 20%, 
while the D-ETM has only 73% below that threshold). This outcome 
was expected, since the limitations of this D-ETM FE when dealing with 
4

homogeneous distributions were first discovered in [31].
In comparison, this test proved the robustness of the D-ETM PINN 
when facing ill-posed problems, getting 99% of the nodes below the 
ARD threshold with a median ARD of only 0.68%, 3 times lower than 
the ETM. The Interquartile Range (IQR) also highlights the increased 
dispersion in the ARD distribution of the D-ETM FE mainly and, to a 
lesser extent, the ETM.

A key point of these results is the ability of PINNs to accurately ad-
just 𝑣𝑒 values in necrotic zones, where 𝐾𝑇𝑟𝑎𝑛𝑠 takes values close to zero. 
Previous models and algorithms [28,31] failed to retrieve accurately the 
distribution of 𝑣𝑒 in those regions. This was caused by the vanishing ef-
fect observed in the gradient of 𝐶𝑡 with respect to 𝑣𝑒, since this gradient 
was dependent on the 𝐾𝑇𝑟𝑎𝑛𝑠 value. Therefore, when 𝐾𝑇𝑟𝑎𝑛𝑠 tends to 
zero, the gradient does the same, causing the algorithm to converge to 
a local minimum. Thanks to the RAR method, PINNs are able to reduce 
this vanishing effect, overcoming the convergence issues and achieving 
great accuracy for 𝑣𝑒 in necrotic regions.

3.2. Heterogeneous distribution of parameters

The second set of simulations corresponded to the same 1D domain 
of a circular tumor, but defining heterogeneous distributions of param-
eters. This case aims to resemble more closely to a real tumor where 
some degree of heterogeneity is present.

Results obtained are consistent with previous works [28,8,31]: the 
ETM tends to average the parameters distribution, failing to capture the 
heterogeneity shown in Fig. 3, while the two implementations of the D-
ETM (FE and PINN) accurately depict this heterogeneity (Table 2).

This effect is of particular significance in the case of the 𝑣𝑝 , where 
only 46% of nodes fitted by the ETM show an ARD lower than 20%. 
This metric raises to 84% and 91% in the case of the PINN and FE 
implementations of the D-ETM. While the PINN method shows a slightly 
greater error for 𝑣𝑝, it outperforms the D-ETM FE in the case of 𝐾𝑇𝑟𝑎𝑛𝑠, 
with 94% of nodes below the ARD threshold versus 78% in the case 
of the D-ETM FE. The averaging effect shown by the ETM has a clear 
impact on the 𝐾𝑇𝑟𝑎𝑛𝑠 error metrics, having only 52% of nodes with and 
ARD below 20%.

Regarding 𝑣𝑒, results are similar to the homogeneous case: both the 
ETM and the D-ETM FE fail to retrieve the 𝑣𝑒 distribution. Although 
around three quarters of nodes are below the ARD threshold, Fig. 3
shows that in some nodes the ARD value is close to 100%. This can 
be explained by the vanishing effect explained previously, which pre-
vents the D-ETM FE to converge to the solution. Again, the D-ETM PINN 
overcomes this issue and gets more than 98% of values below the ARD 

threshold, keeping the maximum ARD value below 25%.
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Fig. 2. Homogeneous case. Reference values and results of the D-ETM (with both methods, FE and PINN) and the ETM fitting. Results highlight the limitation of the 
ETM when faced with significant diffusion gradients, tending to average the 𝐾𝑇𝑟𝑎𝑛𝑠 along that region. They also show the improved accuracy of the D-ETM PINN 
with respect to the D-ETM FE. While the latter converges to a local minimum, as in [31], the former retrieves accurately the distribution of parameters.

Table 1

Error metrics comparison between the D-ETM (FE and PINN methods) and the ETM for the homogeneous case. The metrics 
computed are the median and Interquartile Range (IQR) of the ARD distribution and the fraction of nodes whose ARD is below 
the defined threshold of 20%.

D-ETM PINN D-ETM FE ETM

Median (%) IQR (%) Frac nodes 
ARD <20%

Median (%) IQR (%) Frac nodes 
ARD <20%

Median (%) IQR (%) Frac nodes 
ARD <20%

𝐾𝑇𝑟𝑎𝑛𝑠 0.68 1.46 99.18 2.43 22.11 73.77 2.20 3.61 86.88
𝑣𝑒 0.50 0.45 100 3.26 9.21 83.61 1.62 10.62 83.61
𝑣𝑝 4.70 1.53 97.54 1.18 5.11 86.88 5.90 0.8 86.88
5

Fig. 3. Heterogeneous case. Reference values and results of the D-ETM (with both methods, FE and PINN) and the ETM fitting.
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Table 2

Error metrics comparison between the D-ETM (FE and PINN methods) and the ETM for the heterogeneous case. 
The metrics computed are the median (m) and IQR of the ARD distribution and the fraction of nodes whose ARD 
is below the defined threshold of 20%. These metrics were computed from a set of 10 simulations with different 
heterogeneous distributions of parameters.

D-ETM PINN D-ETM FE ETM

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

𝐾𝑇𝑟𝑎𝑛𝑠 4.04 7.39 95.16 8.81 18.31 78.33 18.85 26.92 52.46

𝑣𝑒 2.01 4.34 98.93 10.19 18.33 72.13 7.94 12.29 77.05

𝑣𝑝 7.43 12.24 82.95 1.68 4.76 91.80 22.60 16.17 45.90

Fig. 4. Comparison of the ARD probability density function (PDF) of each of the parameters for each of the models and three different levels of noise: 0%, 2.5% and 
5%. Vertical lines correspond to the median of the ARD distributions. The D-ETM PINN is much more robust to noise compared to the D-ETM FE, while the ETM 
does not seem affected by noise.
It is worth noting that despite this good error metrics, the D-ETM 
PINN shows some kind of averaging patterns in some regions of the 
spatial domain, especially for 𝑣𝑝. This is probably due to the different 
effect these parameters have on the cost function depending on the al-
gorithm. While in the case of the D-ETM FE the 𝐶𝑡 curves depended on 
the parameters value through a forward FE simulation (see [31] for fur-
ther details), therefore increasing the impact of PDE parameters (mainly 
𝑣𝑝) on the cost function; in the case of the D-ETM PINN the PDE param-
eters only impact part of the loss function (𝑟 and 𝐶 ). Therefore, there 
can be small errors on the PDE parameters distribution while the total 
loss value  is minimized, since the data loss (𝑑 ) is being reduced by 
updating the NN parameters (𝜃).

4. Testing the robustness of the PINN approach against noisy and 
incomplete data

After demonstrating the increased accuracy of the D-ETM PINN with 
respect to the D-ETM FE, we test its robustness when faced with noise 
6

and incomplete temporal data.
4.1. Influence of noise

Initially, a set of 1D heterogeneous distributions of parameters sim-
ilar to those presented in Fig. 3 were generated. Next, experimental 
noise was added to the generated 𝐶𝑡 data curves using a Gaussian dis-
tribution with a standard deviation (SD) equal to a fraction (2.5%, and 
5%) of the highest concentration value reached in the whole domain, 
similar to previous works [28,31].

The ARD distributions for each of the parameters and each model 
are shown in Fig. 4. These results show that the D-ETM PINN is much 
more robust to noise than the D-ETM FE, even in the case of 𝑣𝑝. When 
faced with medium levels of noise, both methods show similar ARD for 
this variable (Table 3). However, when the noise level reaches 5%, the 
D-ETM PINN is more accurate than the D-ETM FE (Table 4).

The results of the other two variables follow this same trend: the 
influence of noise is much lower in the case of the D-ETM PINN com-
pared to the D-ETM FE. The ETM, however, seems to be unaffected by 
noise, reaching a similar accuracy to the D-ETM FE for high noise levels 

(5%).
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Table 3

Error metrics comparison between the D-ETM (FE and PINN methods) and the ETM for the heterogeneous case 
corresponding to the 2.5% noise level. The metrics computed are the median (m) and IQR of the ARD distribution 
and the fraction of nodes whose ARD is below the defined threshold of 20%. These metrics were computed from a 
set of 10 simulations with different heterogeneous distributions of parameters.

D-ETM PINN D-ETM FE ETM

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

𝐾𝑇𝑟𝑎𝑛𝑠 4.62 7.42 93.85 12.04 21.43 64.20 18.46 25.88 54.09
𝑣𝑒 3.31 6.59 96.39 13.31 22.69 69.67 8.36 17.61 74.92
𝑣𝑝 8.30 12.33 82.13 7.66 12.47 87.71 21.98 17.80 42.63

Table 4

Error metrics comparison between the D-ETM (FE and PINN methods) and the ETM for the heterogeneous case 
corresponding to the 5% noise level. The metrics computed are the median and IQR of the ARD distribution and 
the fraction of nodes whose ARD is below the defined threshold of 20%. These metrics were computed from a set 
of 10 simulations with different heterogeneous distributions of parameters.

D-ETM PINN D-ETM FE ETM

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

𝐾𝑇𝑟𝑎𝑛𝑠 6.29 10.05 89.67 23.86 56.44 43.44 18.90 25.45 53.61
𝑣𝑒 5.46 11.29 85.32 17.57 22.92 67.21 9.24 21.34 73.11
𝑣𝑝 9.28 14.43 78.61 12.92 27.37 61.48 22.36 20.33 42.13

Fig. 5. Comparison of the ARD probability density function (PDF) of each of the parameters for each of the models over three different time resolutions: 1 s (No 
undersampling), 5 s (1/5) and 10 s (1/10). Vertical lines correspond to the median of the ARD distributions. The D-ETM PINN outperforms the other two, showing 
great robustness even in the worst scenario.
4.2. Temporal undersampling

In this final subsection, we investigated the impact of incomplete 
data on the accuracy of the ETM, the D-ETM FE, and D-ETM PINN. 
To achieve this, we conducted a temporal undersampling analysis on 
both the concentration data curves and the arterial input function (AIF). 
Specifically, we considered two scenarios where the temporal resolution 
7

was reduced to 5 seconds and 10 seconds, respectively. The aim of this 
analysis was to simulate realistic situations in which the temporal res-
olution may deviate from the ideal resolution of 1 second used in our 
previous experiments.

Our results, presented in Fig. 5, revealed that the ETM was almost 
unaffected by the undersampling, except for the 𝑣𝑝 variable, which was 
more sensitive to it. Conversely, the D-ETM FE performed well at a tem-
poral resolution of 5 s, but its performance degraded when the temporal 

resolution was reduced to 10 s, obtaining higher errors than the ETM.
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Table 5

Error metrics comparison between the D-ETM (FE and PINN methods) and the ETM for the case with a temporal 
resolution of 5 s. The metrics computed are the median (m) and IQR of the ARD distribution and the fraction of 
nodes whose ARD is below the defined threshold of 20%.

D-ETM PINN D-ETM FE ETM

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

𝐾𝑇𝑟𝑎𝑛𝑠 4.23 10.09 96.72 12.70 26.74 60.66 18.03 21.85 52.46
𝑣𝑒 1.81 5.07 100 9.97 20.92 73.77 8.05 13.01 77.05
𝑣𝑝 10.20 12.01 86.60 13.81 26.52 70.49 26.68 23.86 31.15

Table 6

Error metrics comparison between the D-ETM (FE and PINN methods) and the ETM for the case with a temporal 
resolution of 10 s. The metrics computed are the median (m) and IQR of the ARD distribution and the fraction of 
nodes whose ARD is below the defined threshold of 20%.

D-ETM PINN D-ETM FE ETM

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

m (%) IQR (%) Frac nodes 
ARD <20%

𝐾𝑇𝑟𝑎𝑛𝑠 6.97 7.93 93.44 29.26 40.82 40.98 18.92 19.11 52.46
𝑣𝑒 5.76 8.36 89.34 19.38 34.31 50.82 8.07 13.27 80.32
𝑣𝑝 13.72 18.28 67.20 47.84 49.16 18.03 48.59 20.54 14.75
Interestingly, the D-ETM PINN demonstrated superior performance, 
even under the worst-case scenario of a 10 s temporal resolution. As 
shown in Table 5 and Table 6, the D-ETM PINN outperformed both 
the D-ETM FE and the ETM. With a 10 s resolution, 93% and 89% 
of nodes show an ARD lower than the 20% threshold for 𝐾𝑇𝑟𝑎𝑛𝑠 and 
𝑣𝑒, respectively. This was almost twice the proportion observed for the 
ETM and the D-ETM FE. Even in the case of the sensitive 𝑣𝑝 variable, the 
D-ETM PINN maintained a relatively high proportion (67%) of values 
below the ARD threshold, in comparison to the D-ETM FE (18%) and 
the ETM (15%).

In summary, our findings suggest that the D-ETM PINN is more ro-
bust to incomplete data and performs better than both the ETM and 
D-ETM FE under these conditions. The ETM performs reasonably well 
except for the 𝑣𝑝 variable, while the D-ETM FE shows good perfor-
mance at a 5 s temporal resolution but struggles with further under-
sampling.

5. Discussion

DCE-MRI is a powerful imaging technique widely used in clinical 
practice, particularly in oncology, to assess the vascular properties of 
tissues. The ability to obtain functional information about tumors us-
ing DCE-MRI is useful for diagnosing, staging, and monitoring tumors’ 
response to antiangiogenic therapies [2,47,26]. However, accurately re-
trieving physiological parameters from DCE-MRI is a challenging task 
due to the complexity of the underlying pharmacokinetic models. Tra-
ditional models, such as the standard and extended Tofts models, are 
widely used to estimate these parameters but are known to produce in-
accurate results in regions where there is significant passive delivery 
of CA [34,15,19,4,28,8,33,31]. Other authors have proposed different 
approaches that include the diffusion of CA and have developed sev-
eral methods to fit their models to DCE-MRI data. Nevertheless, these 
approaches either have a limited applicability due to the hypothe-
sis considered or due to their convergence issues computational cost. 
Therefore, there is a critical need for new methods that can retrieve 
more accurate parameters from DCE-MRI data.

The main objective of this study was to explore the use of PINNs as 
an alternative to other traditional algorithms to fit one of the models 
that include the diffusion term: the D-ETM. To do so, we tested the 
performance of this PINN approach versus the FE-based optimization 
algorithm presented in [31]. Both methods were compared to the ETM 
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to highlight the importance of diffusion in CA delivery.
We tested these approaches on a 1D domain resembling a slice of 
a circular tumor with a highly vascularized rim and a necrotic core. 
This highlights CA diffusion effects, creating large CA concentration 
gradients between regions.

Our results indicate that PINNs are a promising tool to solve the 
ill-posed inverse problems associated with the fitting of the D-ETM to 
DCE-MRI data. The PINN-based approach kept almost all nodes in the 
domain below the acceptable error threshold. Previous algorithms, such 
as the FE-based, failed to retrieve the 𝑣𝑒 distribution in necrotic re-
gions, due to a low influence of this parameter on the global solution. 
However, the use of PINNs along with the RAR method overcome this 
limitation, outperforming traditional algorithms. Even in the homoge-
neous case, where the FE algorithm converged to a local minimum, the 
PINN approach depicted accurately the distribution of all the parame-
ters.

To further demonstrate the robustness of PINNs, we tested its per-
formance in the presence of noisy and incomplete data. The results 
obtained show that the PINN was affected to a much lower extent than 
the FE algorithm, retrieving very accurate distributions of D-ETM pa-
rameters. Taking a look at the error distribution for each of the three 
approaches tested we could conclude that PINNs combine (and even in-
crease) the precision of the FE algorithm with the robustness of the ETM 
against noisy and incomplete data.

Despite these promising results, there is still room for improvement. 
First, in this study we did not perform a comprehensive hyperparame-
ter tuning, which may have resulted in suboptimal performance. Future 
studies should focus on optimizing the PINN hyperparameters to fur-
ther improve its performance [43]. Second, there are other additional 
features of PINNs described in the literature that were not included in 
our study. These may include the use of gradient-enhanced PINNs [20], 
the inclusion of annealing algorithms to update each loss weight (𝑤𝑖) 
or new NN architectures optimized for PINNs [42]. Incorporating these 
features in future studies may enhance the accuracy and robustness of 
the PINN approach while reducing the training time.

The main limitation of our methodology is the lengthy training 
time required for the PINN. Our experiments were conducted on a PC 
equipped with a NVIDIA RTX 3070 GPU, 32 GB RAM, and an Intel i7-
11700K CPU, with an average training time of around 30 minutes. This 
is even slower than the current FE algorithm, which took an average 
of 20 minutes on the same PC. Meanwhile, the NLLS algorithm used 
for the ETM required only a few seconds to fit all nodes in the domain, 
so it cannot be directly compared to either of our methods. To address 

this limitation, proper calibration of the PINN may help to reduce the 
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training time. Additionally, transfer-learning techniques [45,44] can be 
applied to further lower the computational cost.

Our study demonstrates the capability of PINNs to overcome conver-
gence issues when fitting the D-ETM to DCE-MRI data, outperforming 
previous algorithms. Currently, this 1D implementation has a limited 
applicability on in vivo data as living tissues rarely have axisymmetric 
properties. Therefore, this work lays the foundation for further research 
that improves our implementation and optimizes it for its application to 
2D cases, the first and necessary step before applying this methodology 
to in vivo cases.
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Appendix A. Influence of RAR method on the results

In order to highlight the influence of the RAR method on the preci-
sion of the retrieved parameters, two PINN implementations, both with 
and without using the RAR method, were trained and fitted to some 
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data curves. Specifically, the data corresponds to the homogeneous case 

Fig. A.7. Vascularization parameters maps corresponding to the homogeneous case. 
fitted using both the FE algorithm and the PINN approach, with and without the RA
with the implementation that included the RAR method.
Medical Engineering and Physics 123 (2024) 104092

presented in section 3.1. Fig. A.6 compares the reference curve to the 
fitted curves obtained with and without the RAR method. These re-
sults show that both implementations are able to fit very accurately the 
reference curves, with minimal differences between each implementa-
tion.

However, the distribution of fitted parameters presented in Fig. A.7
highlights the limitations of the vanilla PINN (i.e., the standard imple-
mentation proposed in the original paper by Raissi et al. [29]). This 
original implementation fails to accurately retrieve the vasculariza-
tion parameters, specifically the 𝑣𝑒 parameter. By introducing the RAR 
method into the PINN implementation, we help the NN focus on those 
regions where the loss term related to the PDE reaches higher values, 
increasing significantly the precision of the fitted 𝑣𝑒 map.

Fig. A.6. Comparison of the reference curves (ground truth) and the fitted 
curves obtained with the two PINN implementations, with and without the 
RAR method. The concentration values are expressed in mM. These curves cor-
respond to one of the nodes of the homogeneous case presented in section 3.1. 

These results show the accuracy of both methods in fitting the curves.

Reference values and results of the D-ETM and the ETM fitting. The D-ETM was 
R method. Results show the lack of accuracy of the vanilla PINN in comparison 
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