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Adaptive Tracking Control of
Robotic Manipulator Subjected
to Actuator Saturation and Partial
Loss of Effectiveness
This paper introduces an adaptive control design tailored for robotic systems described by
Euler–Lagrange equations under actuator saturation and partial loss of effectiveness. The
adaptive law put forth not only retains conventional control properties but also extends its
scope to effectively address challenges posed by actuator saturation and partial loss of
effectiveness. The framework’s primary focus is on bolstering system robustness, thereby
ensuring the achievement of uniformly ultimate bounded tracking errors. The stability
and convergence of the system’s behavior are rigorously established through the applica-
tion of the Lyapunov analysis technique. Moreover, the effectiveness and superiority of the
introduced framework are compellingly demonstrated through a series of practical simula-
tions and experimental instances. [DOI: 10.1115/1.4064653]
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1 Introduction
In recent times, robots have found widespread applications across

a vast array of fields, including manufacturing, human–robot collab-
oration, warehousing, and nursing. Actuators, playing a pivotal role
in robots, serve as the driving force behind their motion. It’s impor-
tant to recognize that actuators possess physical limitations, which
restrict their ability to generate torque or speed beyond certain
thresholds [1,2]. In simpler terms, all actuators inherently exhibit
saturation, stemming from their inherent physical properties. More-
over, alongside this natural saturation, actuators also exhibit artifi-
cial saturation, intentionally set by human operators to ensure the
safety of both robots and the objects they interact with. Actuators
can also be susceptible to malfunctions, including gradual loss of
effectiveness over time. This makes it imperative to develop a com-
prehensive control framework for robotic systems that effectively
addresses challenges arising from actuator saturation and loss of
effectiveness, thereby averting potential instability [3].
While adaptive laws [4,5] offer the advantage of online parameter

compensation to enhance system performance, the presence of
saturation can introduce inaccuracies in updating the adaptive
terms. This can result in windup behavior that not only compro-
mises performance but also potentially triggers unstable states
[1,6]. Extensive research efforts have been directed toward mitigat-
ing the detrimental effects of input saturation, leading to the classi-
fication of two primary approaches. The first method is exemplified
by works such as Refs. [7,8]. Here, input saturation is eliminated
using a smooth nonlinear function like the hyperbolic tangent

function, i.e., tanh (·). The second method adopts auxiliary func-
tions, such as neural network functions [9,10] or stable linear func-
tions [11,12], to estimate the discrepancy between the controller
output and the saturation threshold. This estimation is subsequently
harnessed to compensate for the deviation during the controller’s
design phase. Besides the challenges posed by saturation, the
partial loss of effectiveness in actuators can similarly contribute
to a decline in system performance. Consequently, numerous
control algorithms have been devised to confront this concern, as
evidenced by Refs. [13–15].
In existing literature, a range of studies have tackled issues per-

taining to saturation and partial loss of effectiveness in both linear
and nonlinear systems, as evidenced by Refs. [13,16–19]. These
works encompass diverse control algorithm proposals, including
adaptive control, model predictive control, backstepping control,
and robust output-regulation control. However, despite the exis-
tence of these approaches, the exploration of these challenges
within the context of Euler–Lagrange systems remains limited,
even though Euler–Lagrange equations are typically the preferred
modeling approach for practical mechatronics systems [20,21].
Consequently, there arises a need to develop dedicated control algo-
rithms tailored to Euler–Lagrange systems, capable of effectively
managing issues arising from actuator saturation and loss of
effectiveness.
In this paper, we present a pioneering control framework to

address this combined challenge. The proposed approach leverages
the Lyapunov theory to analyze its effectiveness. Moreover, we
provide experimental results featuring two-link manipulators,
showcasing the practical viability of the framework. The novel con-
troller demonstrates remarkable resilience against both actuator
saturation and partial loss of effectiveness. It attains several
pivotal objectives, including the following: First, the adaptive
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laws proposed within the framework effectively mitigate the unde-
sirable impacts of nonlinearity within control inputs, encompassing
the saturation and loss of effectiveness of actuators, thereby enhanc-
ing the performance of the closed-loop system. Second, the stability
of the closed-loop system is ensured, with the filtered tracking error
achieving uniform ultimate boundedness. Third, in the absence of
saturation, the filtered tracking error exhibits asymptotic stability
at the origin. This comprehensive approach addresses the intricate
interplay between saturation and partial loss of effectiveness, con-
tributing to the robustness and reliability of control in robotic
systems modeled by Euler–Lagrange equations.

2 Problem Formulation
Let’s consider a robotic system modeled by Euler–Lagrange

equation

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

where q, q̇, q̈ ∈ Rn, respectively, denote the generalized position,
velocity, acceleration vectors in the generalized coordinates,
M(q) ∈ Rn×n stands for the inertia matrix and is symmetric
positive-definite, C(q, q̇) ∈ Rn×n represents the Coriolis and cen-
tripetal forces matrix, G(q) ∈ Rn denotes the gradient of the poten-
tial function, and τ ∈ Rn is the output of the controller which
assumes equal to the output of the actuators in the ideal case. The
dynamic model, Eq. (1), possesses several useful properties,
which are recalled here [22].
Property 1. Ṁ(q) − 2C(q, q̇) is a skew symmetric matrix, then,
ξT [Ṁ(q) − 2C(q, q̇)]ξ = 0, where ξ ∈ Rn is any vector.
Property 2. The dynamics (1) linearly depends on a constant
vector Θ ∈ Rw of the system parameters such that M(q)ξ̇+
C(q, q̇)ξ + G(q) = Y(q, q̇, ξ, ξ̇)Θ, where Y(q, q̇, ξ, ξ̇) ∈ Rn×w is a
known regressor matrix and ξ ∈ Rn is any differential vector.
Let X(t) = h(q) ∈ Rp represent a trajectory of the system in the

task space, where h(q) :Rn → Rp is a mapping from the general-
ized coordinates to the task-space coordinates. We have the kine-

matic relationship between X(t) and q(t) as Ẋ =
∂h(q)
∂q

q̇ = J(q)q̇,

where J(q) =
∂h(q)
∂q

∈ R p×n is the Jacobian matrix. Assuming that

the robot works in the singularity-free regions, the inverse of J(q)
always exists.
Given a desired trajectory Xd(t) ∈ Rp in the task space with

bounded first and second derivatives such as Ẋ
d
(t) ∈ L∞ and

Ẍ
d
(t) ∈ L∞. e(t) = X(t) − Xd(t) denotes the tracking error. It is well-

known that the adaptive control algorithm, which can drive X(t) to
asymptotically track the desired value Xd(t), e.g., limt→∞ e(t) = 0, is
given as below [23]

τ = YΘ̂ − Kss − JTKJJs,
˙̂Θ = −ΓYTs (2)

where YΘ̂ = Y(q, q̇, q̇r , q̈r)Θ̂, q̇r = J+(Ẋ
d − λe), q̈r = J+(Ẍ

d − λė)+
J̇
+
(Ẋ

d − λe), and s = q̇ − q̇r , respectively, denote the linearization
dynamics, reference velocity, acceleration, and filtered tracking
error, J+ : = JT (JJT )−1 stands for a pseudo-inverse of the Jacobian
matrix J if n > p, and J+ : = J−1 if n = p, Ks, KJ , Γ, λ represent
control gains, which are positive-definite diagonal matrices with

appropriate dimension, and ˙̂Θ is the adaptive law to tune the param-
eters of the robot.
The fact is always existing saturation in actuators since all the actu-

ators have physical torque limits. In addition, working in hostile envi-
ronments or for long-time operations, robots may encounter
unanticipated problems such as loss-of-effectiveness in actuators.
To cover both the saturation and partial-loss-of-effectiveness in actu-
ators, the robot dynamics is represented as

M(q)q̈ + C(q, q̇)q̇ + G(q) = sat
(
(In×1 − δ)⊙ τp

)
(3)

where ⊙ denotes the Hadamard (element-wise) product, δ =
[δ1, . . . , δi, . . . , δn]T is the vector characterizing actuator fault sever-
ity with δi ∈ [0, 1), (In×1 − δ)⊙ τp ∈ Rn presents partial-loss-
of-effectiveness of the actuators [24], τp ∈ Rn denotes the output
of the controller, sat

(
(In×1 − δ)⊙ τp

)
:Rn → Rn represents the

output of the actuators, and sat(u) = [sat(u1), . . . , sat(ui), . . . ,
sat(un)]T ∈ Rn is a saturation function whose elements are defined
as [15]

sat(ui) =
�ui, if ui > �ui
ui, if − �ui ≤ ui ≤ �ui
−�ui, if ui < −�ui

⎧⎨
⎩ (4)

where �ui > 0 presents the magnitude constrain of each actuator,
�u = [�u1, . . . , �ui, . . . , �un]T . To assure the feasibility of solutions, the
following assumptions are provided:
ASSUMPTION 1. δi ∈ [0, 1) is quasi-static such that

d
dt
(δi) = 0.

ASSUMPTION 2. 0 ≤ |gi(q)| < �ui, ∀i ∈ {1, 2, . . . , n}.
Assumption 1 is required for adaptive laws and Assumption 2 is

needed to guarantee the working condition of actuators at any
desired equilibrium configuration.
It is observed that the aforementioned control law, refer to Eq.

(2), does not work well in Eq. (3). Because the outputs of the actu-
ators, sat

(
(In×1 − δ)⊙ τp

)
, are different from the output of the con-

troller, τp, in the presence of saturation or loss of effectiveness.
When these issues occur, the outputs of actuators do not match
the controller outputs, thus, the actuators cannot drive the robot as
expected. Consequently, the states of the controller are incorrectly
updated. This behavior is named controller windup [1]. Furthermore,
the control law (2) has an integrator inside. When saturation occurs,
the outputs of the actuators do not change but the output of the con-
troller might keep increasing caused by the low response of the fil-
tered tracking error, s, to the adaptive law (2). If the duration of
the saturation is long enough, the controller output, τ, and the esti-
mated value, Θ̂, can become very large that leads to an unstable state.
It is worth mentioning that, to reduce the effects of input satura-

tion in Euler–Lagrange systems, consider there is no partial-loss-
of-effectiveness δ = 0, many papers, e.g., Refs. [11,12,15,25],
have used the auxiliary function

ξ̇ =
−Kξξ − ‖sTΔτ‖+0.5‖Δτ‖2

‖ξ‖2 ξ + Δτ, if ‖ξ‖ > ν

0, if ‖ξ‖ ≤ ν

{
(5)

and the controller

τp = YΘ̂ − JTKJJs − Kss + KPξ (6)

where ξ ∈ Rn is the state of the function, Δτ = sat(τp) − τp denotes
the different between the output of the actuator and the output of
the controller, ν is a small positive value, Kξ, KJ , Ks, KP ∈ Rn×n

denote positive-definite diagonal matrices. Substituting Eq. (6) in
Eq. (3) leads to the closed-loop dynamics

Mṡ = Δτ + YΘ̃ − Cs − JTKJJs − Kss + KPξ (7)

where Θ̃ = Θ̂ − Θ is the estimated error of the robot’s parameters.
Let us analyze the above control framework to show that the auxil-
iary function (5) is not effective in handling the saturation issue.
Consider a positive function

V =
1
2
sTMs +

1
2
Θ̃T Θ̃ +

1
2
ξTξ (8)

Differentiating V along the dynamics (7) yields

V̇ = sTMṡ +
1
2
sTṀs + Θ̃T ˙̂Θ + ξT ξ̇

= sT
(
Δτ + YΘ̃ − JTKJJs − Kss + KPξ − Cs

)
+
1
2
sTṀs + Θ̃T ˙̂Θ + ξT ξ̇ (9)
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From the adaptive law (2) and the skew symmetric property
(Property 1), the above equation is reduced such that

V̇ = sT
(
Δτ − JTKJJsi − Kss + KPξ

)
+ ξT ξ̇ (10)

Since ξTΔτ ≤ 1
2
ξTξ +

1
2
ΔT

τ Δτ, sTKPξ ≤ 1
2
sTs +

1
2
ξTKT

PKPξ, and

from Eq. (5), we have

ξT ξ̇ = −ξTKξξ − ‖sTΔτ‖ − 0.5‖Δτ‖2 + ξTΔτ

≤ −ξT Kξ −
1
2
In

( )
ξ − ‖sTΔτ‖ (11)

Thus, we obtain

V̇ ≤ −sT
(
JTKJJ + Ks − In

)
s − ξT Kξ −

1
2
(In + KT

PKP)

( )
ξ (12)

By selecting JTKJJ + Ks > In and Kξ − 1
2 (In + KT

PKP) ≥ 1
2
In, we

have that

V̇ ≤ −sT
(
JTKJJ + Ks − In

)
s ≤ 0 (13)

Thus, Refs. [11,12,15,25] claim such that the control framework,
which is addressed in Eqs. (5) and (6), guarantees asymptotic stabi-
lity at the origin, if the control gains are selected such that JTKJJ +

Ks > In and Kξ −
1
2
(In + KT

PKP) ≥ 0. However, the condition Kξ −
1
2
(In + KT

PKP) ≥ 0 indicates that ξT ξ̇ ≤ 0. The condition ξT ξ̇ ≤ 0

indicates that ξ in Eq. (5) exponentially converges to the origin
and stays there forever. Therefore, the auxiliary function (5) does
not effect to help with the actuator saturation issues.
In the following section, we propose a control framework that

handles the issue of Eq. (5) and the problems of actuators such
that: it reduces the difference between the controller output and
the output of the actuator, and it also diminishes the increase of
the controller output when saturation occurs. Furthermore, the
framework can simultaneously solve the issue of the loss of
effectiveness.

3 Controller Design
The dynamic model (3) can be rewritten as

M(q)q̈ + C(q, q̇)q̇ + G(q) = Δu + (In×1 − δ)⊙ τp (14)

where Δu = sat
(
(In×1 − δ)⊙ τp

)
− (In×1 − δ)⊙ τp. The magnitude

of |Δu| degrades system performance since it affects the size of
the stability region and the transient response. Consider that the
real-value of |Δu| is unknown but its bounded value is know
such as |Δu| ≤ �Umax. To mitigate the influence of the saturation,
a bumpless transfer compensation function is formed such that

ξ̇ = −Kξξ + �U, �U =
0, if |τp| ≤ �u
|τp| − �u, if |τp| > �u

{
(15)

To mitigate the adverse effect of the actuator problems, we pro-
posed an adaptive control scheme of the form

(In×1 − δ̂)⊙ τp = τ∗ (16)

τ∗ = YΘ̂e − Kss − JTKJJs + KPξ⊙ sgn(s) (17)

˙̂δ = −ε(−Kδ‖ξ‖)Γδ(τ
p ⊙ s) (18)

˙̂Θe = −ε(−K‖ξ‖)ΓYTs (19)

Ks > In (20)

Kξ >
1
2
(In + KT

PKP) (21)

where Ks, KJ , KP, Γδ, and Γ are positive-definite diagonal matrices,
Kδ and K are positive scale values, ε(·) :R → R≥0 denotes the
exponential function, δ̂ and Θ̂e respectively denote learned values
of δ and Θ.
Remark 1. Different from related works, e.g., Refs. [11,12,25], the
exponential functions, e.g., ε(−Kδ‖ξ‖) and ε(−K‖ξ‖), are integrated into
the adaptive laws to reduce the adverse effect of the saturation on
the estimated values.
Equation (14) can be rewritten such that

M(q)q̈ + C(q, q̇)q̇ + G(q) = Δu + τp − δ⊙ τp (22)

and Eq. (16) can be rewritten such that τp = δ̂⊙ τp + τ∗.
Thus, substituting Eq. (16) into Eq. (14) yields to
M(q)q̈ + C(q, q̇)q̇ + G(q) = Δu + δ̃⊙ τp + τ∗, where δ̃ = δ̂ − δ.
Subsequently, by using Eq. (17) we obtain the closed-loop dynam-
ics

Mṡ = Δu + δ̃⊙ τp + YΘ̃ − Cs − Kss − JTKJJs + KPξ⊙ sgn(s)

(23)

The main result of the paper is summarized as follows.
THEOREM 1. Consider the uncertain Euler–Lagrange system (3)

satisfying Assumptions 1 and 2. By applying the control frame-
work, from Eq. (15) to Eq. (21),

(1) the filtered error s achieves UUB under actuator saturation
and partial loss of effectiveness.

(2) Moreover, the filtered error s achieves asymptotically stable
at the origin if the actuators are not saturated.

Proof. Let’s consider a Lyapunov-like function candidate V =
1
2
sTMs +

1
2
ε(K‖ξ‖)Θ̃TΓ−1Θ̃ +

1
2
ε(Kδ‖ξ‖)δ̃

TΓ−1
δ δ̃ +

1
2
ξTξ. The deriva-

tive of V along the dynamics (23) is

V̇ = sTMṡ +
1
2
sTṀs + ξT ξ̇

+ ε(K‖ξ‖)Θ̃TΓ−1 ˙̂Θe +
K

2
ξT ξ̇

‖ξ‖ ε
(K‖ξ‖)Θ̃TΓ−1Θ̃

+ ε(Kδ‖ξ‖)δ̃
TΓ−1

δ
˙̂δ +

Kδ

2
ξT ξ̇

‖ξ‖ ε
(Kδ‖ξ‖)δ̃

TΓ−1
δ δ̃

= sT
(
Δu + δ̃⊙ τp + YΘ̃ − Cs − JTKJJs

− Kss + KPξ⊙ sgn(s)
)
+
1
2
sTṀs + ξT ξ̇

+ ε(K‖ξ‖)Θ̃TΓ−1 ˙̂Θe +
K

2
ξT ξ̇

‖ξ‖ ε
(K‖ξ‖)Θ̃TΓ−1Θ̃

+ ε(Kδ‖ξ‖)δ̃
TΓ−1

δ
˙̂δ +

Kδ

2
ξT ξ̇

‖ξ‖ ε
(Kδ‖ξ‖)δ̃

TΓ−1
δ δ̃ (24)

Applying skew symmetric property, Property 1, we have

V̇ = sT
(
Δu − JTKJJs − Kss + KPξ⊙ sgn(s)

)
+ ξT ξ̇ + sTYΘ̃ + sT δ̃⊙ τp

+ ε(K‖ξ‖)Θ̃TΓ−1 ˙̂Θe +
K

2
ξT ξ̇

‖ξ‖ ε
(K‖ξ‖)Θ̃TΓ−1Θ̃

+ ε(Kδ‖ξ‖)δ̃
TΓ−1

δ
˙̂δ +

Kδ

2
ξT ξ̇

‖ξ‖ ε
(Kδ‖ξ‖)δ̃

TΓ−1
δ δ̃ (25)

and then applying adaptive laws (18) and (19) on the above equa-
tion leads that

V̇ = sT
(
Δu − JTKJJs − Kss + KPξ⊙ sgn(s)

)
+ ξT ξ̇ +

K

2
ξT ξ̇

‖ξ‖ ε
(K‖ξ‖)Θ̃TΓ−1Θ̃ +

Kδ

2
ξT ξ̇

‖ξ‖ ε
(Kδ‖ξ‖)δ̃

TΓ−1
δ δ̃ (26)
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Note that sTΔu ≤ 1
2 s

Ts + 1
2Δu

TΔu ≤ 1
2 s

Ts + 1
2
�UT �U, sTKPξ⊙

sgn(s) ≤ 1
2
sTs +

1
2
ξTKT

PKPξ. Since the system (15) is input to

state stable and satisfies ‖ξ‖ ≤ ‖�U/Kξ‖ and ‖ξ̇‖ ≤ ‖�U‖ we have
ξT ξ̇
‖ξ‖ ≤ ‖ξ̇‖ ≤ ‖�U‖, and from Eq. (15), we also have ξT ξ̇ = −ξTKξξ +

ξT �U ≤ −ξT (Kξ −
1
2
In)ξ +

1
2
�UT �U. Hence, we can obtain that

V̇ ≤ −sT
(
JTKJJ + Ks − In

)
s

− ξT (Kξ −
1
2
(In + KT

PKP))ξ + Δ�U

(27)

where Δ�U = �UT �U +
‖�U‖
2

(Kε(K‖ξ‖)Θ̃TΓ−1Θ̃ + Kδε
(Kδ‖ξ‖)δ̃

TΓ−1
δ δ̃).

By choosing Ks > In and Kξ > 1
2 (In + KT

PKP), V̇ is further
bounded such that

V̇ ≤ −λmin
(
JTKJJ + Ks − In

)‖s‖2 + Δ�U (28)

(1) It is obvious that Δ�U > 0 if the system has actuator saturations.

In this case, V̇ is negative as long as ‖s‖ ≥
����������������

Δ�U

λmin
(
JTKJJ+Ks−In

)√
. Thus,

we can conclude that s is uniformly ultimately bounded under actu-
ator saturations. It is worth mentioning that the upper bounds of ‖s‖
is for the worst case, where divergence and convergence of ‖s‖ tend
to stabilize at

����������������
Δ�U

λmin(JTKJJ+Ks−In)

√
.

(2) Δ�U = 0 if the system has no actuator saturations, thus, Eq.
(28) can be written as V̇ ≤ −λmin

(
JTKJJ + Ks − In

)‖s‖2. Therefore,
we can conclude that ‖s‖ ∈ L2 ∩ L∞, Θ̃ ∈ L∞, and δ̃ ∈ L∞. In
addition, according to Barbalat’s lemma, we can conclude that
‖s‖ asymptotically converges to zero. ▪

4 Numerical Verification
Consider a two-link manipulator with revolute joints, where the

manipulator parameters are given as m1 = 1.2 kg, m2 = 0.6 kg,
I1 = 0.24 kgm2, I2 = 0.12 kgm2, l1 = 1.5m, l2 = 1.4m, lc1 = l1/2,
lc2 = l2/2, g = 9.81m/s2. The detail of dynamic model (1) can be
found in Ref. [22]. In the simulations, the initial conditions are selected
as q(0) = [ − 0.15, 1.5]T rad, Θ̂e(0) = [2, 1, 1, 1, 1]T . The design tra-
jectory is given as Xd = [1.2 + 0.5sin(0.3t), 1 + 0.3cos(0.3t)]T . The
control parameters are selected as follows, Ks = 5, KJ = 2, KP = 1,
Kξ = 3, K = 100, Kδ = 100, and λ = 20.
First, we conduct a simulation using control law (6) with actuator

saturations, �u = [25, 25]T . The simulation results are shown in Figs.
1 and 2. Figure 1 demonstrates that the output of the robot cannot
track the desired trajectory. Figure 2 illustrates that the actuator
outputs are bumped between saturation values.
Second, we conduct a simulation using control law (16) with both

saturation and partial loss of effectiveness of actuators, �u =
[25, 25]T and δ = [0.2, 0.3]T . The simulation results are shown in
Figs. 3 and 4. Figure 3 illustrates that the output of the robot can
track the desired trajectory very well. It is almost the same as the
case of the ideal actuators. Figure 4 demonstrates that the actuator
outputs shortly chatter between ±25 and then stable.
The norms of the tracking errors, ‖e(t)‖, of the previous two sim-

ulations and the ideal case are shown in Fig. 5. It further verifies
that the proposed control framework effectively deals with both
saturation and partial loss of effectiveness of actuators since the
tracking error under actuator issues is close to the tracking error
under ideal actuators.

5 Experimental Verification
In this section, we use a PHANToM Omni haptic device

(Touch) to verify the proposed control algorithm. The control
algorithm is generated by using C++ on the desktop computer,

where Open-Haptic interface API is employed to exchange
signals between Touch and the computer. The Touch’s kinematic
model, dynamic model, regressor matrix, and Jacobian matrix can
be obtained in Ref. [26]. The end-effector of Touch will be con-
trolled to track a desired trajectory X0(t) = [0; − 40; − 110] +
[0; 1t; 1t]mm on the vertical plane Oyz starting from its initial
position selected randomly round [0; − 40; − 110]mm. Control
parameters are selected such as Ks = diag{100, 30, 30},
KJ =diag{0.01, 0.01, 0.01}, Kξ=diag{3, 3, 3}, KP=diag{1, 1, 1},
Γ=diag{1, 1, 1, 1, 1, 1, 1, 1}, �u= [350; 150; 75], λ=1, K =Kδ=1,
δ=[0;0.2;0.2], Θ̂(0)=[0.3;−0.05;0.3;0.4;0.4;0.2;50;100], δ̂(0)=
[0;0;0], and Γδ=diag{1,1,1}.
We present two sets of experimental results. The first set involves

saturation and utilizes a control law discussed in Eq. (2). The second
set incorporates both saturation and partial loss of effectiveness,
employing the control law we propose in Eq. (16). These results
are depicted in Figs. 6 and 7, respectively. Upon observing the out-
comes in Fig. 6, we notice significant chattering behavior between
the 15th and 25th seconds and the robot has a significant vibration.
It’s worth noting that this is the best outcome we’ve achieved,

Fig. 1 Position tracking result under control law (6) with actua-
tor saturations, �u= [25, 25]T

Fig. 2 Responses of actuators under control law (6) with actua-
tor saturations, �u= [25, 25]T
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as in most cases, the system becomes unstable shortly after chatter-
ing. In contrast, Fig. 7 demonstrates minimal chattering behavior.
This underscores the effectiveness of our proposed control

algorithm in addressing issues related to actuators, including satura-
tion and partial loss of effectiveness. It is worth mentioning that the
proposed control framework can be directly applied to robotic

Fig. 3 Position tracking result under control law (16) with both
saturation and partial loss of effectiveness of actuators, �u=
[25, 25]T and δ= [0.2, 0.3]T

Fig. 4 Responses of actuators under control law (16) with both
saturation and partial loss of effectiveness of actuators, �u=
[25, 25]T and δ= [0.2, 0.3]T

Fig. 5 Norms of the tracking errors

Fig. 6 Experimental results with saturation �u = [350; 150; 75]
and using control law (2): (a) tracking results on vertical plane
and (b) command torques

Fig. 7 Experimental results with saturation �u = [350; 150; 75]
and loss of effectiveness δ = [0; 0.2; 0.2] and using control law
(16): (a) tracking results on vertical plane and (b) command
torques
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systems under normal conditions. This enhancement significantly
bolsters the safety and reliability of the control system, as it auton-
omously compensates for challenges associated with saturation
and loss of effectiveness.

6 Conclusion
This paper presents an adaptive control framework tailored for

robotic systems modeled by the Euler–Lagrange equation, while
addressing significant actuator-related challenges. Specifically, we
tackle the complex issues of saturation and partial loss of effective-
ness. To counteract saturation, an auxiliary function is introduced,
followed by the proposal of a modified adaptive law. This novel
law facilitates the estimation of unknown loss of effectiveness
values and system parameters. The application of Lyapunov stabi-
lity theory substantiates that the filtered tracking error achieves
uniform ultimate boundedness in the presence of saturation, and
attains asymptotic stability at the origin when saturation is absent.
In the forthcoming stages, our intent is to expand upon this
research by delving into the synchronization of multi-robotic
systems, where communication delays will be a crucial factor to
consider. This extension would contribute to a broader application
of the proposed framework and further advance the understanding
and control of complex robotic systems.
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