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Abstract8

The development and validation of methods for fault detection and identi�ca-

tion in wastewater treatment research today relies on two important assump-

tions: (i) that sensor faults appear at distinct times in di�erent sensors and

(ii) that any given sensor will function near-perfectly for a signi�cant amount

of time following installation. In this work, we show that such assumptions

are unrealistic, at least for sensors built around an ion-selective measure-

ment principle. Indeed, long-term exposure of sensors to treated wastewater

shows that sensors exhibit important fault symptoms that appear simulta-

neously and with similar intensity. Consequently, our work suggests that

focus of research on methods for fault detection and identi�cation should

be reoriented towards methods that do not rely on the assumptions men-

tioned above. This study also provides the very �rst empirically validated

sensor fault model for wastewater treatment simulation and we recommend

its use for e�ective benchmarking of both fault detection and identi�cation
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methods and advanced control strategies. Finally, we evaluate the value

of redundancy for the purpose of remote sensor validation in decentralized

wastewater treatment systems.
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1. Introduction11

By several accounts, the lack of online sensor data quality poses a long-12

standing challenge for both the advancement of environmental science and13

engineering practice [17, 15, 18, 16, 9, 5]. It is therefore not surprising that14

considerable time and energy has been invested in methods for automated15

quality assessment and quality control of online measurement devices [e.g.,16

23, 22, 6, 20, 1, 19, 30, 11].17

Methods that are �nding their way into practice today mainly consist of18

sanity checks. In the authors' experience, these work rather well to detect19

and classify a subset of commonly recognized fault symptoms, including out-20

liers, spikes, stuck, and out-of-range values. For sensor faults that lead to21

more subtle symptoms, current practice relies primarily on regular on-site22

sensor maintenance, e.g. once every one or two weeks, to counter such subtle23

faults. For unsta�ed wastewater treatment plants, on-site maintenance may24

be feasible economically only if this is limited to once per year. This practical25

constraint to the adoption of quality assessment and control practices forms26

the primary motivation for this study.27
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The literature suggests that data-analytical techniques can enable auto-28

mated and remote detection of sensor faults. Without exception, such tech-29

niques rely on redundant relationships and can therefore be categorized by30

the type of redundancy that is used. A �rst category consists of techniques re-31

lying on reference measurements and computing a deviation between online32

sensor signal and the reference signal. A second category relies on hard-33

ware redundancy by placing multiple online sensors, possibly built around34

a distinct measurement principle, in the same location and then computing35

deviations between them. A third category relies on temporal redundancy,36

essentially assuming that meaningful changes in the sensor signal can only be37

smooth when measured with a su�ciently high frequency. Finally, the fourth38

category relies on spatial redundancy, relating signals produced at distinct39

locations or for di�erent measured variables. Examples of this last cate-40

gory include both methods based on �rst principles, e.g. balance equations,41

as well as methods rooted in statistical practice, e.g. principal component42

analysis. Importantly, each of these advanced methods require tuning to43

maximize the number of true alarms and to ensure suitable quality control44

e�orts while simultaneously minimizing the number of false alarms and fu-45

tile maintenance actions. Invariably, such tuning is obtained by means of46

a historical, fault-free data set from which acceptable limits for computed47

residuals are derived. Consequently, this means that these methods rely on48

the availability of representative data of an acceptable quality. In addition,49

the use of most techniques implies that sensor fault symptoms can be as-50
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sumed to appear independently from each other, i.e. the probability that51

two faults start at the same time is assumed to equal zero.52

The prevalence of faults in actuators, sensors, and processes as well as53

the complexity of the fault detection and identi�cation (FDI) task, has led54

to a plethora of methods that exploit one or more of the types of redundancy55

discussed above. In fact, the wealth of literature as well as the number of56

reviews on this or related topics [29, 27, 28, 9, 5] suggest that the science57

and practice of FDI is all but settled, an observation also supported by no58

free lunch theorems [33].59

Despite the tremendous amount of research on FDI methods, little is ac-60

tually known about the cause-and-e�ect relationships between sensor ageing,61

the occurrence of sensor faults and failures, and the production of faulty data.62

This is explained by the fact that the availability of information describing63

the exact circumstances under which faults occur or faulty data is produced,64

i.e. meta-data, is usually severely limited. This is the secondary motivation65

of this study.66

To facilitate performance evaluation of FDI tools, the formulation of sim-67

ulation benchmarks has been an accepted practice in engineering sciences68

[2, 7]. Similarly, the Benchmark Simulation Model No. 1 was conceived as69

a way to test and compare innovative FDI and control strategies [10]. To-70

day, it is primarily used as a starting point for a family of plant-wide models71

of water resource recovery facilities [12, 31]. Actual benchmarking of FDI72

methods has been limited to one study so far [6]. The BSM family includes73
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a set of sensor models which include sensor faults and this allows the user to74

add realism to the sensor signals. The simulated sensor faults always start at75

a time that is substantially later than the start of the simulated time. This76

provides ideal conditions for FDI method tuning as high-quality sensor data77

are always present in the �rst sections of the simulated data set. Moreover,78

a simulated fault always appears independently of any other sensor fault, i.e.79

no two sensor faults are simulated to start at the same time or with the same80

direction or magnitude. We expect that the situation in real-world condi-81

tions is very di�erent. We thus hypothesize that typical fault symptoms will82

appear at the same time and with similar directions and magnitudes when83

exposed to the same harsh medium, especially when the same measurement84

principle is applied. Evaluating the merit of this hypothesis is the tertiary85

motivation of this study.86

The following paragraphs are focused on the results and conclusions87

drawn directly from experimental data obtained during a long-term sensor88

exposure experiment. Additional insight is however obtained by studying a89

variety of dynamic models to describe our measurements.90

2. Materials & Methods91

2.1. Theoretical and real-world behavior of the ion-selective electrodes for pH92

measurement93

The ion-selective measurement principle for pH measurement is under-94

stood rather well. According to the Nernst equation [32] one measures an95
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electric potential E (in mV), which is related to the activity of the protons,96

[H+], in the measured medium in steady state:97

E = E0 +
RT

F
ln
([
H+

])
(1)

where E0 is the reference potential, F is the Faraday constant [96485.33289C mol−1
98

21], [H+] is the proton activity in the reference cell, R is the molar gas con-99

stant [8.3144598 J mol−1K−1 21], and T is the temperature measured in100

Kelvin. The pH is de�ned as − log [H+] [3] so that S(T ) is the temperature-101

speci�c sensitivity, which can be computed as:102

S(T ) =
RT

F log (e)
(2)

Most typically, pH sensors are designed to deliver 0 mV at pH 7 so that103

E0 is theoretically 0 mV. Similarly, the theoretical sensitivity at standard104

ambient temperature and pressure (SATP) thus is S(298.15) = 59.1593 mV105

per pH unit. Because the actual values of these parameters tend to deviate106

from their theoretical values, it is common to identify their values through107

a 2-point calibration procedure. At the engineering department at Eawag,108

the most common practice is to use bu�ered calibration media with pH 4.01109

and 7.00 for validation, followed by calibration when the absolute deviations110

between the produced pH measurements and the known pH values exceed a111
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predetermined threshold. The data end user sets this threshold. Depending112

on the application, this ranges from 0.1 to 0.4 pH units. The theoretical113

potential at pH 4.01 and SATP is 177.0 mV.114

2.2. Studied sensors115

A total of 12 pH sensors are produced by Endress+Hauser (Reinach,116

Switzerland). These sensors consist of 5 sensor types (T1-T5) whose exact117

type cannot be revealed due to a con�dentiality agreement. The �rst eight118

sensors consist of pairs of four commercially available sensor types (T1-T4)119

which are typically sold with a one-year warranty agreement. The �rst (sec-120

ond) sensor in each pair is designated with an a (b), e.g. T1a, T1b. The last121

4 pH sensors are replicates of a recently developed sensor prototype (T5) and122

are referred to as T5a, T5b, T5c, and T5d.123

The �rst three sensor pairs (T1-T3) have been in use throughout a long-124

term exposure experiment which lasted for 731 days (Oct. 4th, 2016 � Oct.125

4th, 2018). An overview of this experiment is given in Fig. 1. The 4th pair126

(T4) has been in use during the �rst half year and was replaced with the127

5th pair (T5) on April 3rd, 2017 (day 182) as (i) the T4 sensors exhibit a128

long response time (not shown) and (ii) the opportunity arose to test the T5129

prototypes. The T5a sensor stopped producing a meaningful signal on June130

30th, 2017 (day 270) while T5b became faulty (details below) on August131

31st, 2017 (day 332). These sensors were replaced with another sensor of132

the same prototype (T5) on Oct. 2nd, 2017 (day 364). In this last pair, one133
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sensor (T5d) failed within 1 day (day 365) while the other (T5c) has been134

fully functional until the end of the experiment.135
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T5c

T5b
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T4b
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T3b
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T2b
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T1b

T1a

Figure 1: Overview of the complete experimental campaign. The periods of sensor
exposure are indicated by rectangles. The periods during which the sensors produced
meaningful data are marked black.

2.3. Long-term exposure experiment136

The sensors are exposed to the contents of a reactor used primarily to137

study advanced control strategies for nitrite accumulation prevention in a138
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urine nitri�cation process [26]. To this end, the nitri�ed urine is pumped139

through a closed tube made from PVC with a �ow rate of 43 L/h. The design140

of this tube equipped with sensor-holding locks is shown in the Supplementary141

Information (Section B).142

The treated urine is from anthropogenic origin during the whole experi-143

mental period. The treated urine was collected from male lavatories in the144

Forum Chriesbach building at Eawag, with exception of the period from day145

April 30th, 2018 to June 21st, 2018 (day 574-625), when it was collected from146

female lavatories in the same building. From October 4th, 2017 to November147

24th, 2017 (day 366 to 417), the reactor was additionally fed with a nitrite148

stock solution. During the experimental period, the measured concentra-149

tions of nitrogen species in the nitri�ed urine ranged between 1180 and 2730150

mgN/L (mg atomic nitrogen per liter) for total ammonia, 0 and 82 mgN/L151

for nitrite, and 1290 and 2720 mg/L for nitrate. These measurements are152

copied from [26] and are shown in the Supplementary Information (Section153

C). The pH value of the nitri�ed urine, as measured by two independent154

and regularly calibrated pH sensors installed directly in the reactor, ranged155

between 5.7 and 7.3.156

2.4. Sensor characterization tests157

At regular intervals, the sensors were removed from their normal position158

and exposed to other media for sensor characterization. This was executed159

47 times in total. The exact times of these sensor characterization tests are160
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listed in the Supplementary Information (Section G.1). Two pairs of tests161

were executed on the same day to ensure acceptable experimental repro-162

ducibility (day 70: tests 11-12; day 351: tests 29-30). The selected media163

include (C4) pH 4.01 calibration solution (CPY20-C10A1, Endress+Hauser,164

Reinach, Switzerland); (C7) pH 7.00 calibration solution (CPY20-E10A1,165

Endress+Hauser, Reinach, Switzerland); (U4) nitri�ed urine at pH 4; (U7)166

nitri�ed urine at pH 7; and (W) tap water. For the present work, only the167

exposure to W, C4, and C7 is relevant. This occurs in �ve distinct phases168

(P0-P4), each lasting at least 5 minutes and exposing the sensors to W, C4,169

C7, C4, and W in this order. Exemplary results are shown in Fig. 2 and170

discussed in detail below.171

Raw potential measurements recorded during P1, P2, and P3 are used172

to compute the o�set (Ẽ0) and two measurements of the sensitivity (S̃D and173

S̃R). To this end, the following steps are applied for every sensor and every174

sensor characterization test [4]:175

1. Compute the median value among the potential measurements collected176

in P1, P2, and P3 between 2 and 1 minutes before the start of the next177

phase (P2, P3, and P4). Refer to these values as EP1, EP2, and EP3
178

2. The sensor o�set is de�ned as Ẽ0 = ẼP2.179

3. The decay potential sensitivity is de�ned as S̃D = ẼP1−ẼP2

7.00−4.01
= ẼP1−ẼP2

2.99
.180

4. The decay potential sensitivity is de�ned as S̃R = ẼP3−ẼP2

7.00−4.01
= ẼP3−ẼP2

2.99
.181

These steps are demonstrated below with a practical example.182
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Figure 2: Exemplary sensor characterization test. Raw data obtained in the �rst
sensor characterization test with sensor T1a. The measured potential decays during P0,
P2, and P4, while it increases during P1 and P3. Steady state is reached quickly in
P1, P2, and P3. The theoretical potential values for P1, P2, and P3 are indicated with
dashed horizontal lines. Grey shading indicates the data used to obtain the potential
measurements (2 to 1 minute before phase change). The selected median potential values
are shown with red crosses.

2.5. Drift model183

The results shown below indicate that the o�set signi�cantly varies over184

time while the sensitivity remains remarkably stable in all studied sensors.185

We describe the observed drift of the o�set by means of two models.186
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2.5.1. Model 1 - Constant trend followed by linear trend187

For the �rst model, we apply a modi�ed version of the excessive drift188

model proposed for the BSM family [18]. This model simulates E0(t), the189

sensor o�set, as:190

E0(t) = do + rdH (t− tf ) (3)

with do the initial o�set, rd the drift rate parameter, H (·) the Heaviside191

function (H(a) = 1 if a ≥ 0, H(a) = 0 otherwise), t the time since sensor192

installation, and tf the time of the drift onset. The applied modi�cation con-193

sists of adding the parameter do. To �t this model, the o�set measurements,194

Ẽ0(th), collected at discrete time instants th, are assumed to exhibit inde-195

pendently and identically distributed measurement errors, εh, drawn from a196

normal distribution with zero mean and standard deviation, σε:197

Ẽ0(th) = E0(th) + εh, εh ∼ N(0, σε) (4)

Values for the 4 parameters do, tf , rd, and σε are obtained independently198

for all sensors through maximum likelihood estimation (MLE). Once cali-199

brated, the model is used to obtain the estimated mean and point-wise stan-200

dard deviations for the sensor o�set, µ1(t) = E (E0(t)) and σ1(t), while using201

the estimates of tf and σε as �xed hyperparameter values.202
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2.5.2. Model 2 - Integrated Brownian motion for a single sensor203

In model 2, we assume instead that the recorded o�set measurements204

are generated by an integrated Brownian motion. This is a continuous-time205

stochastic process, which re�ects that the drift rate is subject to unmeasured206

disturbances:207

ṙd(t) = γ(t)dt, rd(0) = rd,o, γ(t) ∼ N(0, σγ), (5)

Ė0(t) = rd(t)dt, E(0) = do, (6)

Ẽ0(th) = E0(th) + εh, εh ∼ N(0, σε) (7)

This model also includes 4 parameters: the initial drift rate (rd,o); the208

initial o�set (do); an input noise standard deviation controlling the rate by209

which the drift rate changes (σ); and an output noise standard deviation210

(σε). As with model 1, parameter values are obtained through MLE. This is211

achieved by formulating the above process as a Gaussian process [14]. This212

also enables to compute expected values and associated point-wise standard213

deviations, µ2(t) = E (E0(t)) and σ2(t), with the estimates of σγ and σε now214

used as �xed hyperparameter values.215

2.5.3. Model 3 - Integrated Brownian motion for multiple sensors216

A third model is derived from Eqs. 5-7 by considering that two sensors217

of the same type may be characterized by distinct initial conditions (rd,o,218
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do) but the same noise parameters (σε, σγ). This lead to a model with six219

parameters (dao, d
b
o, r

a
d,o, r

b
d,o, σε, σγ), instead of two models with 4 parameters220

each. Their values are again obtained via MLE and used to obtain calibrated221

predictions (µ3(t) = E (E0(t)), σ3(t)) , once again using the estimates of σγ222

and σε as �xed hyperparameter values.223

2.5.4. Model evaluation224

The proposed models are evaluated through visual inspection of the mea-225

surements, predictions, and residuals between the measurements and predic-226

tions. In the present case, such a visual inspection is considered su�cient to227

select a suitable model.228

2.5.5. Implementation229

All data collected during the sensor characterization tests and all code230

necessary to reproduce our results is added in the Supplementary Information231

(Section A).232

3. Results233

3.1. Sensor characterization tests: Example234

Fig. 2 shows the data obtained in the �rst sensor characterization test235

with sensor T1a on Oct. 6th, 2016 (day 3). The raw potential measurement236

decreases during P0, increases to a steady value in P1, decreases to a steady237

value in P2, increases to a steady value in P3, and decreases again in P4.238

The time intervals used for computation of ẼP1, Ẽ0, and ẼP3 (in calibration239
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medium, pH = 4, 7, and 4) are indicated by grey shading. One can see240

that the measured o�set Ẽ0 is slightly below 0 mV (−1.30 mV). The values241

for ẼP1 and ẼP3 are slightly lower than their ideal value (171.9 and 172.4242

mV). The measured rise and decay sensitivities are therefore S̃D = 57.73 and243

S̃R = 57.90 mV per pH unit. The results of every sensor characterization244

test are visualized in the Supplementary Information (Section G.2).245

3.2. Long-term trends in the o�set measurements within the warranty period246

Fig. 3 displays the measured o�sets in all sensors throughout the exper-247

imental period. The recorded values collected within the warranty period248

(1 year) range from approximately 0 mV (no o�set) to roughly −70 mV.249

All commercially available sensors (T1-T4) produce a decaying trend in the250

o�sets. The �rstly recorded o�sets for the T1-T3 sensors are small in magni-251

tude and concentrate around 0 mV. In contrast, the T4 sensors o�set values252

indicate a shock e�ect producing a shift of −20 and −45 mV (T4a, T4b)253

within days from installation. This is explained by the manufacturer as an254

e�ect of the high ammonium concentration in the medium and should only255

be expected for this speci�c type of sensors. The accumulated drift in the256

T1 sensors is at most −25 mV after one year while the T2 and T3 sensors257

exhibit an o�set of −75 mV after one year. Without calibration, this means258

the T1 sensors can produce a pH value as high as 7.4 when the true pH is 7.259

The T2 and T3 sensors will produce a pH value as high as 8.3 in the same260

circumstances. Due to failure of T5d, no o�sets could be measured for this261
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sensor. The remaining prototypes (T5a/b/c) do not produce a signi�cant262

o�set at any time, except for T5b which produces a dramatic shift in the263

o�set during three sensor characterization tests executed prior to replace-264

ment. A detailed inspection of the T5b measurements revealed that the �rst265

symptoms of sensor degradation can be observed on August 31st, 2017 (day266

332). This is however only obvious when comparing these measurements267

with the simultaneous T1b/T2b/T3b measurements (see the Supplementary268

Information, Section D). In all cases, except for the T4 and T5a/b pairs, the269

di�erence between o�sets in sensors of the same type remains rather small270

with 1 year of installation, with a maximal di�erence of 16.7 mV recorded271

with the T2 sensors. Taking the 0.1 pH threshold discussed above as a272

guideline, one could propose to validate and calibrate the sensors when their273

potential measurements are 5.9 mV apart. This happens for the �rst time274

for the T1, T2, and T3 sensors on day 127, 79, and 309. By these times,275

the absolute o�sets are already larger than this accepted threshold so that276

the relative di�erence between sensors of the same type is unlikely a good277

measure to trigger sensor maintenance.278

Fig. 4 shows o�sets for the sensors T1a, T3a, and T3b collected in the �rst279

year of the experiment as a function of the di�erence in the o�set between280

T1a and T3a (left panel) and T3b and T3a (right panel). The left panel281

suggests that o�set di�erence between sensors can be predictive of the o�set282

in an individual sensor. The right panel shows that this is less likely to be283

successful for sensors of the same sensor type, as also described above. This284
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Figure 3: O�set in all studied sensors as a function of time. Vertical lines indicate
a change of installed sensors (see Fig. 1). Grey bands indicate a change of reactor medium
(see Section 2.3). The commercially available sensors (T1-T4) exhibit drift from the start of
installation while the prototypes (T5) exhibit close to no drift when otherwise functioning
properly. A signi�cant shock e�ect is observed for the T4 sensors at the start of the
experiment but not for any other sensor.

is considered an important opportunity for further research, which we discuss285

further below.286

3.3. Long-term trends in the o�set measurements beyond the warranty period287

The o�set measurements obtained after the warranty period expired ex-288

hibit two phenomena that are surprising (Fig. 3). The �rst phenomenon is289

the rise of the o�set of the T1a sensor after 480 days of exposure and a similar290

rise of the o�set of the T1b sensor after 630 days of exposure. Considering291

that this appears at distinct times in the lifetime of the T1 sensors, this can-292

not be explained as a direct e�ect of medium composition changes. Based on293
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Figure 4: O�set measurements as a function of relative deviations in the o�set

measurements. Left panel: O�sets of sensor T1a and T3a as a function of the di�erence
of these o�sets. These data are suggestive of a close to linear relationship between sensor
o�sets and the o�set di�erence. Right panel: O�sets of sensors T3a and T3b relative to the
di�erence of these o�sets. The di�erence in o�set remains small and there is no obvious
relationship in this case.

information provided by the sensor manufacturer, this type of drift rate sign294

reversal is unique for the T1 sensors and is unlikely to be observed with any295

other sensor type covered in this study. It is the opinion of the authors that296

the time for this reversal is di�cult to predict in advance. For this reason,297

this phenomenon is best handled as an unmeasured process disturbance.298

The second phenomenon consists of the rather �at to increasing pro�le of299

the o�set measurements in the T2 and T3 sensors between day 360 and day300

480. Before and after this period, the drift rate in these sensors are visually301

similar. Given the synchronicity of this e�ect between 4 pH sensors, it is302

hypothesized that this change in the drift rate is in�uenced by the deliberate303
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addition of nitrite in the form of NaNO2 salt to the reactor contents from day304

366 to 417. The nitrite addition a�ected the biomass concentration and the305

concentrations of all dominant nitrogen species (ammonia, nitrite, nitrate, see306

Supplementary Information, Section C) and may also have a�ected the ion307

strength and conductivity of the reactor contents. Due to this combination308

of e�ects, the available data only o�ers an incomplete understanding of the309

complete chain of causes and e�ects between the nitrite addition and the310

observed changes in the sensor drift rates. For this reason, the e�ects of311

changing media composition on the sensor drift rate is best also considered312

an unmeasured process disturbance.313

3.4. Long-term trends in the sensitivity measurements314

Fig. 5 displays the computed sensitivity measurements for the potential315

rise (S̃R) during the complete experimental period. These measurements316

do not exhibit strong trends in any particular direction. The sensitivity317

measurements fall between 54.9 and 62.1 mV per pH unit. This means that318

one can expect to measure a pH value between 5.95 and 6.08 when (i) the319

true pH value is 6 and (ii) any o�set is corrected for. The same graph also320

shows the theoretical value of the sensitivity according to (2) and the recorded321

temperature. This pro�le is very similar to the recorded sensitivity pro�les322

and explains most of the variations in the sensitivity measurements, which are323

small anyway. The same conclusions are drawn from the computed sensitivity324

measurements for the potential decay (S̃D, see Supplementary Information,325
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Section E).326
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Figure 5: Sensitivity measurements for the potential rise as a function of time.

Vertical lines indicate a change of installed sensors (see Fig. 1). Grey bands indicate
a change of reactor medium (see Section 2.3). A black line shows the theoretically ex-
pected sensitivity computed with (2). Variations in the sensitivity are small and follow
the theoretical sensitivity closely.

3.5. Drift models327

For practical intents and purposes, the sensitivity � when corrected for328

temperature variations � can be considered constant for the considered pro-329

cess and sensors. We therefore focus on further analysis of the o�set mea-330

surements.331

The left panel of Fig. 6 shows the o�set measurements for the T2a and332

T2b sensor together with the model predictions and their con�dence bounds.333

The right panel of Fig. 6 shows the prediction residuals. With Model 1,334

20



the time of the drift onset (tf ) is always identi�ed as a time before the �rst335

measurement was obtained (2.1 and 2.3 days), suggesting that drift occurs336

throughout the experiment. The same kind of result is obtained with every337

other commercially available sensor type (T1-T4), except for the T1a sensor338

(see the Supplementary Information (Section F)). More importantly however339

is that Model 1 o�ers a rather poor description of the data. The con�dence340

intervals are wide and the residuals are clearly auto-correlated. In contrast,341

Models 2 and 3 provide narrower con�dence intervals and residuals that do342

not suggest presence of autocorrelation. There are no clear di�erences in343

performance between these two models so that Model 3, which has fewer free344

parameters, is preferred. The modeling results for the T1 and T3 sensors lead345

to the same conclusions. For these results and all parameter estimates, we346

refer to the Supplementary Information (Section F). For the T4 sensors, all347

model types delivered the same, adequate performance. This may indicate348

that (a) the T4 sensors exhibit a drift which is in�uenced less by unmeasured349

disturbances and therefore occurs with a close to constant rate or (b) that350

the shortened exposure � 6 months in this case � was too short to capture351

the long-term e�ects of unmeasured disturbances.352

4. Discussion353

This study present the �rst peer-reviewed results with which the e�ect354

of long-term wear-and-tear on water quality sensors deployed in wastewater355

treatment plants is assessed and evaluated in a systematic manner and at356
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Figure 6: Modeling results for the T2 sensors. Left panel: O�set con�dence bounds
(µ±2σ) obtained with models 1 (µ1, σ1), 2 (µ2, σ2), and 3 (µ3, σ3). Right panel: Residuals
between expected values (µ) and measured potentials (Ẽ0). Model 1 does not describe
the data well, leading to larger con�dence bounds and auto-correlated residuals. Models
2 and 3 �t the data well and their predictions are hard to distinguish from each other.

this scale (12 sensors). The experimental results reveal that commonly held357

assumptions regarding the occurrence of sensors faults and fault symptoms358

are false. First, it is demonstrated that drift in pH sensors occurs simul-359

taneously in all commercially available sensors. Second, it is demonstrated360

that drift occurs as soon as a sensor is deployed in the measured medium.361

In some cases, the immediate onset of drift is paired by a signi�cant shift in362

the o�set. Importantly, the data needed to compute the o�sets and sensi-363

tivities as a function of time are also available in modern pH instruments in364

the form of a calibration logbook that can be accessed through standardized365

communication protocols (e.g., Modbus).366
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These observations have important consequences for the development of367

methods for fault detection and identi�cation (FDI). Indeed, (i) one cannot368

assume that faults appear independently in distinct sensors and (ii) one369

cannot assume to have access to a fault-free historical data set. Naturally, this370

also holds in the context of simulation-based benchmarking of FDI methods.371

Consequently, it is our opinion that the development of FDI methods and372

model-based benchmarking should be focused on methods that do not rely373

on such assumptions.374

Fortunately, our results also reveal a number of opportunities for the use375

and maintenance of ion-selective measurements. First, the prototype sensors376

tested in this study exhibit a remarkably stable o�set. While these sensors377

appear prone to failure, as one might expect from a prototype, this suggests378

that practically drift-free yet economical pH sensors will enter the market379

soon. Second, the recorded sensitivity measurements in all sensors hover380

around the ideal values and are remarkably stable throughout the experimen-381

tal period. Such a stable sensitivity lends support for advanced monitoring382

and control strategies which are inherently robust to changes in the o�set383

but still assume a rather stable sensitivity [30, 24, 25]. Third, it was shown384

that the o�set di�erence between two pH sensors in the same medium can385

be predictive of the o�set of the individual pH sensors, however only if two386

su�ciently distinct sensor types are selected. Combined with a stable sen-387

sitivity, this means that the deviation between two online pH sensor signals388

could be used as a proxy for the deviation in each individual sensor. Such389
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a proxy measurement could be very useful for remote sensor quality assess-390

ment and predictive sensor maintenance, especially since one can compute391

such deviations between on-line sensor signals while the sensors remain in392

their normal measurement location in the monitored reactor.393

The obtained o�set measurements were studied in more detail by com-394

paring the �t of 3 models. From this, it is concluded that the excessive395

drift model included in the BSM family [18, 8] cannot adequately describe396

the naturally occurring drift in ion-selective electrodes. Instead, the proposed397

stochastic model, speci�cally an integrated Brownian process, delivers a good398

description of the obtained data sets. In the authors' opinion, such a model399

should be included in the BSM family for realistic simulation of measurements400

obtained through ion-selective measurement principles. The obtained model401

also enables prediction of the expected o�set measurement and associated402

con�dence intervals beyond the last measurement. This means that such a403

model can be used for predictive sensor maintenance, e.g., by planning a new404

sensor validation and/or calibration before the predicted con�dence interval405

exceeds a predetermined tolerance, each time also updating the parameters406

of the stochastic model. For this, con�dence intervals for the reference po-407

tential (E0) rather than for the measurements (Ẽ0) are expected to be most408

useful. Exploring the utility of this idea is considered for future research.409
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5. Conclusions410

Despite the abundance of literature of fault detection and identi�cation411

(FDI) methods, little is actually known about the cause-and-e�ect relation-412

ships between the exposure of water quality sensors to harsh conditions, such413

as wastewater media, and the occurrence of sensor faults and failures. This414

�rst long-term study of the ageing of 12 individual pH sensors gives valuable415

insight into this challenge. First, it is concluded that commonly held assump-416

tions in FDI method development and evaluation, such as the availability of417

fault-free historical data and independent onsets of sensor faults, are invalid418

for pH sensors based on the ion-selective measurement principle. In addition,419

the e�ects of o�set drift in redundant sensors is unlikely to be identi�ed early420

if these sensors are of the exact same type and exposed to the same medium.421

A stochastic model is shown to o�er a good description of the observed drifts422

of the sensor o�sets and perform better than a previously established drift423

model. Finally, our results suggest that newly developed pH sensors which424

exhibit stable o�sets will enter the commercial market soon.425
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