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ABSTRACT

This project focuses on the design and development of a bipedal robot that utilizes

the natural dynamics of the Inverted Pendulum Model to optimize energy efficiency.

The robot incorporates a code parser, similar to a G-Code parser in CNC machines,

for precise control and motion planning.

A key feature of the robot is its serial-parallel hybrid leg mechanism, which combines

serial and parallel mechanisms to optimize workspace and load distribution. The pri-

mary objective is to design and build a bipedal robot that maximizes energy efficiency

using the Inverted Pendulum Model. Secondary objectives include the implementa-

tion of a code parser and an embedded system for robot control, as well as testing

the robot’s performance in simulated and real-world environments.

The outcomes of this project, including the architectural and mechanical designs, and

the code parser, will serve as a foundation for the subsequent project, which will focus

on implementing an improved controller design. This future phase aims to validate the

effectiveness of the enhanced algorithm in enhancing stability and energy efficiency

during practical applications.
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Chapter 1

Introduction and Background

This chapter provides an introduction to the project, including its background and

objectives. The Inverted Pendulum Model has been identified as a popular approach

to designing bipedal robots, and the project aims to design a robot that optimizes on

energy using this model.

1.1 Introduction

Bipedal robots have gained significant attention in recent years due to their potential

to perform tasks in unstructured environments that are difficult or impossible for

wheeled robots. In particular, the Inverted Pendulum Model has been a popular

approach to designing bipedal robots due to its simplicity and energy efficiency. This

model considers the robot as an inverted pendulum that is constantly falling forward

and requires controlled stepping to maintain balance.

This project focuses on designing a bipedal robot that uses the natural dynamics

of the Inverted Pendulum Model to optimize energy. The robot also includes a code

parser that can be used similarly to a G-Code parser in CNC machines. The robot is

designed to have a unique mechanism, the serial-parallel hybrid leg, which leverages

both serial and parallel mechanisms to optimize workspace and load distribution.
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1.2 Background

The idea for this project originated from a research internship application that was

sent to Professor Andy Ruina at Cornell University. After several meetings and dis-

cussions, the project was focused on improving the controller for a bipedal robot

designed by one of his PhD students, Petr Zeytsev. After two months of reading and

understanding the thesis, minor improvements were proposed and tested using simu-

lations. These improvements showed not only an improvement in energy but also in

the controllable regions of the robot, resulting in improved robustness.

From this experience, the idea of designing a bipedal robot to implement the

improved algorithm originated. Research was conducted on the mechanism and hard-

ware to be used, and the paper by Disney Research[1] on the serial-parallel hybrid leg

caught my attention. The design was perfect for the Inverted Pendulum Model as it

kept most of the leg mass at the hip and leveraged both serial and parallel mechanisms

for optimal workspace and load distribution.

The initial prototype took about 1.5 years to complete before I went on a semester-

long internship, and the project came to a temporary halt. Upon returning to college,

the project was converted into the final year project, serving as a catalyst to motivate

and actively propel me toward the successful completion of the project. During the

six-month internship in Bangalore, I learned new design concepts and techniques for

machining, 3D printing, and GD&T, and hence, the project was redesigned to include

these improvements.

1.3 Objectives

The primary objective of this project is to design and build a bipedal robot that

uses the natural dynamics of the Inverted Pendulum Model to optimize on energy.

The robot is to be designed with a unique mechanism, the serial-parallel hybrid leg,

which leverages both serial and parallel mechanisms to optimize workspace and load

distribution.

Secondary objectives include designing and implementing a code parser that can

be used similarly to a G-Code parser in CNC machines, designing and implementing

an embedded system for controlling the robot, and testing the robot’s performance in
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simulated and real-world environments.

The project’s outcomes (the Architectural Design, the Mechanical Design, and

the Code Parser) will be instrumental in the subsequent project, where the improved

controller design will be implemented. This next phase aims to demonstrate the ef-

fectiveness of the enhanced algorithm in improving the robot’s stability and energy

efficiency in practical settings. Isolating the algorithm implementation as a sepa-

rate project, the focus of this project is on the robot’s design and evaluation of the

algorithm.
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Chapter 2

Architecture

This chapter presents the design of the bipedal robot, including the robot architecture,

serial-parallel hybrid leg mechanism, embedded system, code parser, manufacturing

process, and simulation and testing.

2.1 Robot Architecture

The bipedal robot is designed to use the Inverted Pendulum Model, which is a simple

yet effective approach to maintaining balance. The robot consists of a torso, two legs,

and two feet, with each leg comprising of a serial-parallel hybrid mechanism that is

connected to the torso via a hip-roll joint. Each leg consists of 6 degrees of motion,

namely: Hip Pitch, Hip Roll, Knee Pitch, Foot Pitch, Foot Roll, and Foot Yaw.

To avoid overextension of the research and ensure the quality of the results, the

Hip Roll, Foot Roll, and Foot Yaw motions will be constrained as follows:

1. Electronically (by using code-Parser to prevent asymmetric motion between the

5-bar chains of a leg ), and

2. Mechanically (by using 1 DOF redundant joint on the Foot shaft instead of

universal joint and ball joint on either ends).
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2.2 Serial-Parallel Hybrid Leg Mechanism

The serial-parallel hybrid leg mechanism is the core design element of the robot’s legs.

The mechanism consists of two parallel linkages connected to a serial chain of links.

The parallel linkages allow for load-sharing capacity among the servo motors, while

the serial chain provides additional workspace, support, and stability.

2.3 Embedded System

The robot is controlled by an embedded system, which includes a microcontroller

(Arduino Uno), motor driver circuitry (consisting of Adafruit’s 16-Channel Servo

Motor Drive- PCA9685), and an Inertial Measurement Unit (IMU-6050 to get the

Angles and the Angular Velocities while free-falling).

2.4 Code Parser

A code parser is designed and implemented to enable the robot to move in a controlled

manner. The parser is similar to a G-Code parser used in CNC machines and converts

high-level movement commands into lower-level motor control signals. The parser is

designed to accept commands such as “LK” for “Left Knee” or “RF” for “Right Foot”

and convert them into appropriate motor control signals for the robot to execute.

2.5 Manufacturing

The robot components are manufactured using a combination of manufacturing tech-

niques. The joints are 3D Printed in Resin and PLA, while the limbs are cut out

of Pultruded Carbon Fiber Rod. The manufacturing process is optimized to ensure

accurate and repeatable results, and to keep the robot limbs safe for testing various

motions.
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Chapter 3

Mechanical Design

The mechanical design of the bipedal robot is crucial for its functionality, stability,

and energy efficiency. This chapter outlines the mechanical design process, including

the selection of materials, components, and mechanisms.

3.1 Components

3.1.1 Feet

The robot’s feet are designed to maximize ground contact and provide stability during

movement. The feet consist of a foam layer for improved traction and prevention of

damage due to impact.

3.1.2 Hip

The robot’s frame (the hip) is designed to provide rigidity and support for the legs

and hold onto the electrical components and wiring.

3.1.3 5-bar Linkage

The 5-bar linkage design offers a unique advantage by allowing the weight to be

positioned at the top while maintaining control over the knee joint, which is located

at a distance from the hip.
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Components List

Component Name CAD Model Remarks

Hip Frame For holding both legs and the

electronics assembly

Motor Back Frame For holding 4 butt motors of

a leg

Motor Front Frame For holding 4 butt motors of

a leg

Carbon Fiber Rod Acts as limb (links) between

various Joints

Joints Various Joints derived from

same basic shape

Interconnect between

Carbon Fiber Rods

Needed for Links with an off-

set in Perpendicular Direction
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Foot Foot

TowerPro MG996R

Metal Gear 180◦

Servo

For actuation of various

Joints

HK0808 & HK0810

Needle Roller Bear-

ings

For smooth motion between

Passive Joints

M3 Screws Screws of different lengths as

per requirement

Table 3.1: Component List

3.2 Materials

The materials used in the mechanical design of the robot are selected based on their

strength, durability, weight, and cost.

The joints selected for this project are made from Resin SLA 3D-printing tech-

nology and are directly affixed to the servo motor. These joints possess a 25T gear

profile that can only be achieved through high-resolution SLA printing, making it a

suitable manufacturing technique.
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3.2.1 Metal Manufacturing

In the pursuit of creating a robust and functional mechanical system, I recognized the

importance of designing metal-manufacturing capable joints for my project. These

joints would not only provide strength and durability but also ensure compatibility

with metal fabrication processes, specifically the use of a Virtual Machining Center

(VMC). However, the constraints of time and budget presented significant challenges.

As a result, I was unable to proceed with the actual metal manufacturing process, but

the following shows the drawing files that can be used for manufacturing the joints in

metal:

14



PART NAME: CREATED BY:

DATE:MATERIAL:

SHEET NUMBER:

REVISION NUMBER:

WEIGHT:

Joint_Motor v4 Devansh Garg

09-02-2023Aluminum

1/1

10.927 g

12±0.1

14±0.1

0.1

(2)
A

8
 0 -0

.1

Ø3.15±0.1 THRU

4±0.05

16±0.1

0.1B

12

Ø3.15±0.1 THRU

1
0±

0
.1 0
.1

B

8
 0 -0

.1

0.05 A

B

0.1

C

8±0.1

0.1C

A

A (2:1)

25T Profile 3
 0
-0.2

2
.7

5

3

0.02 B

Ø23±0.1



Other Joints and robot structure are FDM 3D-printed in PLA to keep costs low.

Lastly, the limbs are made out of carbon fiber rods because of their low weight yet

high strength to bare the impact forces.

3.3 Mechanisms

The five-bar linkage mechanism in the robot’s legs is designed to concentrate the mass

of motors near the hip yet provide a big work envelope. A simple schematic below

shows the active and the redundant joints in mechanism.

Figure 3.1: Single Leg Schematic: Green Joints (Actively powered by Servo Motors); White Joints (Passive Joints)

3.4 CAD Model

A detailed CAD model of the robot is created to ensure the mechanical design is

feasible and could be assembled correctly. The CAD model is used to verify that the

robot’s components would fit together and operate as intended. It is also used to

simulate the robot’s movements and validate its stability.
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Figure 3.2: CAD Model View 1 Figure 3.3: CAD Model View 2

Figure 3.4: Rendered View of the Robot
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Chapter 4

Embedded Systems

Embedded systems are a vital component of Kinetic Pace, enabling its real-time

performance and energy efficiency. This chapter explores the microcontrollers, sensors,

and control algorithms that power the robot’s natural movement and code parsing

capabilities.

4.1 Architecture

The embedded system used in this project comprises two main components, an Ar-

duino and a Raspberry Pi. The Arduino is responsible for controlling the servo motors

using the PCA9685 driver. The Raspberry Pi serves as the main controller and is re-

sponsible for communicating with the Arduino and processing sensor data from the

IMU.

4.2 Components

The main components used in the embedded system are the Arduino Uno, Raspberry

Pi 4, PCA9685 PWM Driver, and the MPU6050 IMU. The servos are powered by a

5V, 21Amps SMPS through the PCA9865. The PCA9865 and the MPU6050’s ICs

are powered by the Arduino. The servo motors used in the project are the MG996R

with a 180-degree rotation capability. A total of 12 motors are used, each connected

to the PCA9685 driver.
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Figure 4.1: Embedded Systems Architecture

4.3 Communication Protocols

The PCA9685 PWM driver is connected to the Arduino using the I2C protocol. The

IMU is also connected to the Arduino using the I2C protocol and is powered by the

Arduino. The Arduino is programmed to receive data from the IMU and send the

motor control signals to the PCA9685 driver using the I2C protocol. The Raspberry

Pi is connected to the Arduino via the USB 3.0 port and is programmed to receive

data, run the simulations and do High Processing Tasks.

The communication between the Raspberry Pi and the Arduino is achieved using

the PySerial library in Python. The Raspberry Pi sends control signals to the Arduino

in the form of bytes. The Arduino receives the bytes and processes them to generate

the required motor control signals.

4.4 Code Parser

The code parser is designed to run on the Arduino Uno and enables users to send

commands to the board through the serial monitor. These commands allow users

to either request data or direct the robot to perform a prescribed motion. By using

the serial monitor, the Raspberry Pi can send data outputted from the algorithm to

the Arduino and enable the robot to walk more intelligently. Essentially, this system

provides the robot with a “brain.”
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4.5 Conclusion

Overall, the embedded system architecture is designed to provide a reliable and ef-

ficient control mechanism for the robot. The combination of the Raspberry Pi and

the Arduino provides a flexible and scalable platform for future developments in the

project. The use of standard communication protocols such as I2C and USB en-

sures compatibility with a wide range of sensors and other devices, allowing for easy

integration with the system.
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Chapter 5

Code Parser

The code parser is a crucial component of the bipedal robot control system as it serves

as an interface between the user and the robot. The purpose of the code parser is to

interpret user commands and convert them into executable instructions for the robot.

The code parser allows the user to send commands to the Arduino board via the

serial monitor. The commands can be used to request data or make the robot perform

a prescribed motion. The use of the serial monitor allows for real-time communication

between the user and the robot, enabling the user to monitor the robot’s performance

and adjust its behavior as needed. The user here can be Raspi or a Human directly

commanding data over Serial

The code parser is designed to recognize several different types of commands,

including motion commands, data requests, and calibration commands. The motion

commands are used to control the robot’s movements, while the data requests are

used to request sensor data from the robot. The calibration commands are used

to calibrate the sensors and actuators to ensure accurate measurements and precise

movements.

5.1 Design

The code Parser is designed such that it can implement motions of several kind to-

gether and each completing the motion with unique speeds. This additional feature

of motions being completed in different time using different speeds is not normally
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seen in G-Code Parsers used in CNC machines.

5.2 Implementation

// Defining All Motors. In terms of index. Not channels

#define LFoot 0 //Foot

#define LL2 1 //Main

#define LL1 2 //Knee

#define LHip 3 //Hip

#define LR1 4 //Knee

#define LR2 5 //Main

#define RL2 6 //Main

#define RL1 7 //Knee

#define RHip 9 //Hip

#define RR1 9 //Knee

#define RR2 10 //Main

#define RFoot 11 //Foot

uint8_t MOTOR_PIN_ASSIGNMENT[12] = {0,2,3,4,6,7,8,9,11,12,13,15};

//COMMAND SELECTOR Groups parsed in commands_bytearray

//[gs,lk,lh,lf,rk,rh,rf,empty]

#define COMMAND_SELECTOR_G bit(7) // For Global Speed

#define COMMAND_SELECTOR_LK bit(6) // For Left Knee

#define COMMAND_SELECTOR_LH bit(5) // For Left Hip

#define COMMAND_SELECTOR_LF bit(4) // For Left Foot

#define COMMAND_SELECTOR_RK bit(3) // For Right Knee

#define COMMAND_SELECTOR_RH bit(2) // For Right Hip

#define COMMAND_SELECTOR_RF bit(1) // For Right Foot

#define MAX_SPEED 1 // In Microseconds

#define MIN_SPEED 16384 // In Microseconds

#define DEFAULT_SPEED 50 // In Microseconds

uint16_t CURRENT_POSITION[12] = {};

// Tracks the 12 Values of Motors in Present

uint16_t GLOBAL_SPEED = DEFAULT_SPEED;
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bool INVALID_COMMAND = false;

struct command {

uint16_t value = 0;

uint16_t speed = DEFAULT_SPEED;

} lk, lh, lf, rk, rh, rf;

void motion(uint8_t commands_bytearray) {

if(INVALID_COMMAND) {

Serial.println("INVALID_COMMAND");

return;

}

uint8_t desired_reached = 1;

desired_reached |= ~commands_bytearray;

// Uncommanded bits already at position

desired_reached |= COMMAND_SELECTOR_G;

// GS bit, Useless

uint32_t time_counter = 0;

while(desired_reached != 255) {

time_counter++;

// Left Knee

if (time_counter%lk.speed == 0 && !((desired_reached >> 6)&1)) {

if (CURRENT_POSITION[LL1] > lk.value) {

CURRENT_POSITION[LL1] = CURRENT_POSITION[LL1] -1;

pwm.setPWM(MOTOR_PIN_ASSIGNMENT[LL1], 0,

max(SERVOMIN,HOMING_POSITION+HOMING_OFFSETS[LL1]

-2048+CURRENT_POSITION[LL1]));

CURRENT_POSITION[LR1] = CURRENT_POSITION[LR1] -1;

pwm.setPWM(MOTOR_PIN_ASSIGNMENT[LR1], 0,

max(SERVOMIN,HOMING_POSITION+HOMING_OFFSETS[LR1]

+2048-CURRENT_POSITION[LR1]));

}

else {

if (CURRENT_POSITION[LL1] < lk.value) {

CURRENT_POSITION[LL1] = CURRENT_POSITION[LL1] +1;

pwm.setPWM(MOTOR_PIN_ASSIGNMENT[LL1], 0,
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min(SERVOMAX,HOMING_POSITION+HOMING_OFFSETS[LL1]

-2048+CURRENT_POSITION[LL1]));

CURRENT_POSITION[LR1] = CURRENT_POSITION[LR1] +1;

pwm.setPWM(MOTOR_PIN_ASSIGNMENT[LR1], 0,

min(SERVOMAX,HOMING_POSITION+HOMING_OFFSETS[LR1]

+2048-CURRENT_POSITION[LR1]));

}

else {desired_reached |= COMMAND_SELECTOR_LK;}

}

}

.

.

.

Similarly for

Left Hip

Left Foot

Right Knee

Right Hip

Right Foot

.

.

.

delayMicroseconds(1);

}

return;

}

// Simplifies Command to only conatin Alphanumeric_characters that are

// returned in UpperCase

void command_interpreter(char *command_simplified, int max_len) {

int char_counter = 0;

char c;

while(Serial.available()) {

delay(10);

c = Serial.read();

if(c == ’\n’) { //End of line reached
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command_simplified[char_counter++]= ’\0’;

return;

}

else {

if(!isAlphaNumeric(c)) { //Ignore Non-alphanumeric characters

}

else { //Append c in UpperCase Format

command_simplified[char_counter++]= toupper(c);

}

}

}

command_simplified[char_counter]=’\0’;

return;

}

// Execture the Simplified Commands received

void execute_command(char *line) {

uint8_t char_counter =0;

char first_letter;

char second_letter;

uint8_t commands_bytearray = 0;

while (line[char_counter] != ’\0’){

bool speedset = false;

String value = "";

String speed = "";

char first_letter = line[char_counter];

char_counter++;

char second_letter = line[char_counter];

char_counter++;

switch (first_letter) {

case ’G’:

switch (second_letter) {

case ’S’:

commands_bytearray |= COMMAND_SELECTOR_G;

break;

default:

INVALID_COMMAND = true;

}

break;
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case ’L’:

switch (second_letter) {

case ’K’:

commands_bytearray |= COMMAND_SELECTOR_LK;

break;

case ’H’:

commands_bytearray |= COMMAND_SELECTOR_LH;

break;

case ’F’:

commands_bytearray |= COMMAND_SELECTOR_LF;

break;

default:

INVALID_COMMAND = true;

}

break;

case ’R’:

switch (second_letter) {

case ’K’:

commands_bytearray |= COMMAND_SELECTOR_RK;

break;

case ’H’:

commands_bytearray |= COMMAND_SELECTOR_RH;

break;

case ’F’:

commands_bytearray |= COMMAND_SELECTOR_RF;

break;

default:

INVALID_COMMAND = true;

}

break;

default:

INVALID_COMMAND = true;

}

for(uint16_t value_index =0; value_index <5; value_index++ ){

// 5 because max servo value can be of 4 digits + 1 to initiate

// char_counter++

if (line[char_counter] >= ’0’ && line[char_counter] <= ’9’) {

value.concat(line[char_counter]);

char_counter++;
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}

else {

if (line[char_counter] == ’S’) {

speedset = true;

char_counter++;

for(uint16_t speed_index =0; speed_index <4; speed_index++ ){

// 4 because max speed can be of 4 digits

if (line[char_counter] >= ’0’ && line[char_counter] <= ’9’) {

speed.concat(line[char_counter]);

char_counter++;

}

else {

goto exitbothloops;

}

}

}

}

}

exitbothloops: ;

switch(first_letter) {

case ’G’:

lk.speed = value.toInt();

lh.speed = value.toInt();

lf.speed = value.toInt();

rk.speed = value.toInt();

rh.speed = value.toInt();

rf.speed = value.toInt();

break;

case ’L’:

switch(second_letter) {

case ’K’:

lk.value = value.toInt();

if (speedset) { lk.speed = speed.toInt(); }

break;

case ’H’:

lh.value = value.toInt();

if (speedset) { lh.speed = speed.toInt(); }

break;

case ’F’:
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lf.value = value.toInt();

if (speedset) { lf.speed = speed.toInt(); }

break;

}

break;

case ’R’:

switch(second_letter) {

case ’K’:

rk.value = value.toInt();

if (speedset) { rk.speed = speed.toInt(); }

break;

case ’H’:

rh.value = value.toInt();

if (speedset) { rh.speed = speed.toInt(); }

break;

case ’F’:

rf.value = value.toInt();

if (speedset) { rf.speed = speed.toInt(); }

break;

}

break;

}

}

#ifdef CHECK_COMMAND_VALUES

check_values();

#endif

motion(commands_bytearray);

}

5.3 Usage (Documentation)

The Code Parser is a program that allows the user to send commands to the Arduino

Board via the Serial Monitor running on Baud Rate of 115200. The program works

by parsing the user’s input, ignoring all characters that are not alphanumeric, and

removing any whitespaces.

The following are the only valid commands that the Code Parser recognizes:
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• LK: Left Knee Pitch

• LF: Left Foot Pitch

• LH: Left Hip Pitch

• RK: Right Knee Pitch

• RF: Right Foot Pitch

• RH: Right Hip Pitch

• GS: Set Global Speed

• S: Set Motion Speed

The L stands for Left Leg, while the R stands for Right Leg as seen from front of

the Robot. The K stands for Knee Pitch, F stands for Foot Pitch, and H stands for

Hip Pitch.

5.3.1 General Guideline

After homing, the default current positions are set to 2048 for each motor. To send a

valid command, it must be followed by numerical values that have a maximum value

of 4096. The Code Parser will invalidate any commands that do not follow this rule.

5.3.2 Sequence of Command

Commands can be entered in the Serial Monitor in any sequence. The only exception is

that the S command for a motion must be immediately preceded by the corresponding

motion command. However, motion commands need not necessarily be followed by

S command and the motion command takes the Global Speed Value if set, or the

default Speed Value.

5.3.3 Speed Commands

The Speed commands (both GS and S) are defined in terms of Time Delays i.e. The

larger the value, the slower the motions, and vice versa.
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The GS command sets the global speed for all the motions. The GS command

if used, assigns speed to all the motion commands except the ones followed by S

command. However, an exception to this is that if the motion command has been

assigned a S command, but the motion command precedes the GS command, it won’t

take the S value but the GS value.

Example: LK2060 S20 LF2040 GS30 RH2012 RK2048S10 RF2005

Result: LK, LF, RH and RF commands will have speed

= Value of GS i.e. 30.

(Note that the LK command even though is followed by S takes

the GS value as it precedes the GS command)

RK command will have a speed = Value of S i.e. 10.

5.3.4 Speed Commands stored as Global Variables

If a motion is already set to a specific speed in a previous command entry instance,

the speed does not change unless specified while sending commands the next time.

This is because the value of speeds remains stored in global variables.

5.3.5 Absolute Value for Positions

All positions sent using the motion commands take absolute values, not relative.

Therefore, it is important to remember that the homing position is 2048.

5.3.6 More Examples:

• To set the left knee pitch to 3000, the user can enter the command “LK 3000”

in the Serial Monitor.

• To set the global speed to 500, the user can enter the command “GS 500”.

• To set the speed of the left foot pitch to 1000, the user can enter the command

“LF 2048 S 1000”
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5.4 Conclusion

In this project, the code parser plays a significant role in enabling the Raspberry Pi

to send commands to the Arduino Uno board via the Serial Monitor. The user can

request for data or make the robot perform a prescribed motion. The Serial Monitor

allows for the Raspi to send the data outputted from the algorithm and make the

robot walk smarter.

Future improvements can be made to the code parser to enhance its capabilities.

One improvement may be to enable the parser to accept more complex commands.

Additionally, improving the user interface by designing a more user-friendly Serial

Monitor may enhance the user experience.
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Chapter 6

Controller

This chapter provides an overview of the controller designed by Petr Zeytsev [2], as

discussed in his dissertation. It summarizes the key components and principles of the

original controller design, outlining its objectives and goals. Additionally, it presents

the improvements made to the controller, highlighting the enhancements and modifi-

cations implemented to address any limitations or challenges. The chapter concludes

with a discussion of the results and performance evaluation of the improved controller,

along with the implications and potential future directions for further development.

6.1 Petr Zeytsev’s Controller

The controller designed by Petr Zeytsev [2] leverages the two models: Pratt’s Capture

Region and the Viability Theory, and make Extended Viable and Controllable Regions

for an Inverted Pendulum Model.

6.1.1 Extended Viable and Controllable Regions

The concept of the Viable and Controllable Regions, which describes the state of

the robot, has been expanded to include an extended definition incorporating the

controls available to the robot to reach the target. This extended state is represented

as (State, Controls), where State refers to the robot’s current state, and Controls

refers to the available control inputs that can be utilized to navigate toward the
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desired target. This expanded definition provides a comprehensive understanding of

the robot’s capabilities and the range of actions it can take within its operational

space.

6.1.2 Inverted Pendulum Model

By applying the basic principles of kinematics and dynamics to the Inverted Pendulum

model, the following equation was derived:

Figure 6.1: Poincare Map Equation

The above equation is a relation between

1. the robot’s angular velocity at present state (θ̇0)

2. the robot’s angular velocity in next state (θ̇1)

3. the push-off value i.e. the ground reaction on foot (p)

4. the leg stance either in terms of angle (θ0) or stepping length (xst)

6.1.3 Choosing a Controller

Upon further analysis of the constraints involved in walking, the initially derived

controllable regions were found to be more limited. As a result, a controller was

needed to be selected from the remaining restricted workspace of [θ̇0, p, xst]. This

selection process involved considering the available options within this limited range

and choosing a controller that best suited the desired walking behavior and objectives.

6.2 Improvements

The improvements made to the controller are built upon the foundational concepts

outlined in the paper. These key building blocks include TCOT (Total Cost of Trans-

port), the Poincare Map, and the Nominal State. By leveraging these concepts, the
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controller design is refined to achieve an improved Nominal State. This leads to

expanded controllable regions and a reduction in the total cost of transport.

6.2.1 Building Blocks

Total Cost of Transport (TCOT)

The paper describes the equation for TCOT (Total Cost of Transport) of the Cornell

Robot (Ranger), which is defined as the total energy used divided by the product of

the Weight of the robot and the Distance traveled.

TCOT =
TotalEnergyUtilised

Weight ∗Distance
(6.1)

Specifically, for one step, the equation is given as follows

TCOT =
0.011 + 0.017Tst + 0.5p2

xst

(6.2)

where Tst = Duration of Step.

Nominal State

The nominal state for the Cornell Robot Ranger was selected randomly. The nominal

state represents the state that the robot strives to reach if it were to step infinitely. It

can also be referred to as the ultimate target or final state. Once the nominal state is

achieved, the push-off and stepping length are chosen in such a way that the angular

velocity remains constant, thereby keeping the robot in the target state.

6.2.2 Derivation of Better Nominal State

The Poincare Map is used such that θ̇1 = θ̇0 reduces it in the Nominal State, thereby

leaving the equation in 3 variables: p, xst and θ̇0.

A Python script is coded to evolve the equation of Theta with Time using the

“odeint” module in the Scripy Library. The continuous state [0 < p < 1, 0 < θ0 <

π/2, 0 < θ̇0 < 1] is discretized and checked if each nominal state satisfied the con-

straints of walking, and the one which resulted in the least TCOT is chosen as the

Best Nominal State.
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Procedure

This is done as follows:

1. The Continuous Angular Velocity ‘θ̇0’ is discretized into steps of 1/1000 varying

from 0 to 1

2. The Angular Velocity ‘θ̇0’ is evolved with Time in steps of 0.001 seconds varying

from 0 to 5 seconds

3. The values of the Stance Angle ‘θ0’ obtained are stored

4. The corresponding Push-off Values ‘p’ are found such that the Poincare Map

results in Nominal States.

5. Now for all the states [p, xst, θ̇0] that resulted in Nominal State and satisfied the

constraints of walking, TCOT is calculated and stored in a new variable called

‘Least TCOT’

6. The ‘Least TCOT’ variable and its corresponding state [p, xst, θ̇0] are stored as

the best Nominal State

The testing takes 48 Hours on an RTX-3090 compute-enabled graphics card and

it is found that the Nominal State for the least TCOT is

[p, xst, θ̇0] = [0.127, 0.445, 0.512] (6.3)

having the TCOT value equal to 0.0754.
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Chapter 7

Simulation, Testing and Results

Simulation and testing are conducted to evaluate its performance in different scenar-

ios. The simulation is carried out to evolve the controller equation with time and

conclude its theoretical performance.

7.1 Comparison of TCOT for Initial and New Nom-

inal States

The initial Nominal State for the Cornell Robot Ranger was [p, xst, θ̇0] = [0.046, 0.35,

0.19] having the TCOT value equal to 0.28, and the new derived Nominal State for

the robot is [p, xst, θ̇0] = [0.127, 0.445, 0.512] having the TCOT value equal to 0.075.

This is an improvement of 73% in terms of the Total Cost of Travel.

7.2 Simulation

The simulation is conducted using a Python script to find out the Controllable region

C1 for New and Old Nominal States and compare the two.

The Python script involves making a work-space of all the states in the region

[0 < p < 1, 0 < xst < 2, 0 < θ̇0 < 1], and finding the ones that satisfy the constraints

of walking and lead to the Nominal State in just one step. The computation is carried

out for 200 discretized points in xst and 100 discretized points in θ̇0. The graphs for
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the same are plotted.

7.3 Results

The following are the graphs obtained for Controllable Region 1 for the initial Nominal

Angular Velocity (0.19), and the derived-improved Nominal Angular Velocity (0.512)

The red Circle indicates the Nominal State of the Robot.

Figure 7.1: C1 for Nominal Angular Velocity of 0.19 Figure 7.2: C1 for Nominal Angular Velocity of 0.512

The following graphs are combined for both the Nominal Angular Velocities. The

Green is for the initial angular velocity and the Blue is for the new-derived angular

velocity.

Figure 7.3: C1 for both Nominal Angular Velocities
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The following graphs are combined for both the Nominal Angular Velocities as seen

from the given different views.

Figure 7.4: C1 for both Nominal Angular Velocities
(θ̇0 vs p)

Figure 7.5: C1 for both Nominal Angular Velocities
(θ̇0 vs xst)

7.4 Conclusion

The graphs derived from the data together indicate that there in a 17% increase in

the area of C1. This, therefore, increases the state-space and provides more options

for the robot to correct itself, if deviated from the target. Thus, it increases the

robustness of the robot by 17%.
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Chapter 8

Conclusion

The project has successfully accomplished its objectives, with the completion of the

mechanical design, an appropriate and minimal embedded system, and a functional

code parser. The improvements to the controller have elevated the robot’s capabili-

ties, resulting in an increased robustness and a significant reduction in the total cost

of transport. These achievements pave the way for future advancements in the imple-

mentation of advanced algorithms, propelling the field of bipedal robotics forward.

8.1 Mechanical Design

In this project, I have successfully completed the mechanical design of the bipedal

robot, Kinetic Pace. The design incorporates the principles of the Inverted Pendulum

Model, leveraging its natural dynamics to optimize energy efficiency and stability.

The mechanical components have been carefully engineered to ensure robustness and

effective locomotion across various terrains. Through rigorous testing and refinement,

I have achieved a reliable and functional mechanical system that meets the objectives

of the project.

8.2 Embedded Systems

The embedded system implemented in Kinetic Pace has proven to be appropriate and

minimal for the current objectives. The selection of micro-controllers, sensors, and

39



control algorithms allows for a real-time performance and reliable operation. The

embedded system works seamlessly with the mechanical design, providing precise

control and responsiveness to the robot’s movements.

8.3 Code Parser

Furthermore, the addition of the Code Parser has significantly improved the user

experience. Drawing inspiration from G-Code Parsers used in CNC Machines, the

Code Parser allows for versatile programming and control of Kinetic Pace. Users can

easily input commands and customize the robot’s behavior, enhancing its adaptability

for various applications.

8.4 Improved Controller

The improvements made to the controller have played a vital role in enhancing the

robot’s overall performance. Through careful analysis and leveraging concepts such

as TCOT, the Poincare Map, and the Nominal State, the controller has become

more robust by 17%. This improvement ensures better stability, control and energy

efficiency during the robot’s locomotion. Additionally, the optimized Nominal State

has contributed to a remarkable 73% decrease in the total cost of transport, further

improving the robot’s efficiency.

8.5 Controller Implementation on Physical Robot

in Subsequent Project

With the successful achievement of the project’s objectives, I am confident that the

outcomes will have a profound impact on subsequent projects. The improved con-

troller design and optimized Nominal State lay the foundation for the implementation

of advanced algorithms on the physical robot, promising even greater stability, energy

efficiency and performance in future iterations.
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Chapter 9

Applications and Future Scope

Bipedal robots have a wide range of potential applications in various fields, including

robotics, manufacturing, and military operations. In this section, I will discuss some

of the potential applications of the bipedal robot, Kinetic Pace, as well as areas for

further research and examples of bipedal robots in other applications.

9.1 Potential Applications

1. Robotics: Kinetic Pace can be used in robotics applications that require a robot

to navigate uneven or unpredictable terrain, such as disaster response or ex-

ploration missions. Its natural dynamic movements would allow it to move

efficiently over challenging surfaces while conserving energy.

2. Manufacturing: Kinetic Pace can also be used in manufacturing, where it can be

programmed to perform repetitive tasks that require mobility, such as moving

parts or materials between workstations.

3. Military: Kinetic Pace can potentially be used in military operations to assist

soldiers in carrying heavy loads over rough terrain, or in reconnaissance missions

where a stealthy and agile robot is required.
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9.2 Further Research

1. Efficiency: One area for further research is improving the efficiency of Kinetic

Pace’s movement. This could involve optimizing the control algorithms further,

to reduce energy consumption or exploring different gait patterns that could

improve its overall efficiency.

2. Range of motion: Expanding Kinetic Pace’s range of motion may involve ex-

ploring different joint designs that would allow the robot to move in more varied

and complex ways, such as climbing stairs or crawling through tight spaces.

3. Other research: For example, researchers are exploring the use of bipedal robots

for search and rescue missions, where they could navigate difficult terrain to

reach victims in need of assistance.

9.3 Conclusion

In conclusion, Kinetic Pace has a wide range of potential applications in various

fields. There are many areas for further research that could improve its functionality

and expand its capabilities. By exploring other examples of bipedal robots in other

applications, we gain valuable insights that complement my work on Kinetic Pace.
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Chapter 10

Visual Documentation

The “Visual Documentation” chapter provides a visual representation of the physical

robot designed and constructed for this project. Through a series of photographs,

readers can gain a comprehensive understanding of the robot’s mechanical design,

components, and overall structure.

It not only presents the physical aspects of the robot but also serves as a visual

chronicle of my journey of development. It showcases the progress made from the

initial makeshift setup at home to the refined and completed design. These visual

representations capture the evolution of the project, highlighting the determination,

resourcefulness, and commitment that went into bringing the robot to life.
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Figure 10.1: Initial Prototype Initial Model CAD
Model View 1

Figure 10.2: Initial Prototype Initial Model CAD
Model View 2

Figure 10.3: Initial Prototype Physical Model View 1

Figure 10.4: Initial Prototype Physical Model View 2
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Figure 10.5: Physical Model of Kinetic Pace for Final Year Project

Figure 10.6: Physical Model of Kinetic Pace for Final Year Project
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Figure 10.7: Guide Rod for Final Year Project Physical Model

Figure 10.8: Guide Rod for Final Year Project Physical Model
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Figure 10.9: Meticulous Wire Management with SMPS

Figure 10.10: Meticulous Wire Management with SMPS
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