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Abstract 

Urban centers contribute substantially to global greenhouse gas emissions, and with 

ongoing urbanization, the demand for construction materials is set to rise. This paper addresses the 

challenge of quantifying building material stocks (MS) in urban landscapes, a critical step in 

mitigating the environmental footprint of urban development. Traditional methods of estimating 

MS often falter due to the lack of granular building data. We propose a novel solution by 

employing deep learning to derive MS estimates from readily available aerial and street-view 

imagery. Our methodology involves the development of two deep learning models that adeptly 

classify building types and predict floor areas, respectively. The models demonstrate exceptional 

performance, with building type classification accuracy reaching 84.71% and floor area 

predictions achieving a mere 1.86% error. These predictions facilitate an MS estimation of 

concrete and total building materials with errors as low as 2.07% and 0.29%, respectively. The 

successful application of these models illustrates a scalable and effective approach to MS 

estimation, thereby aiding numerous cities in planning for a sustainable, circular economy where 

conventional methods are impractical. 
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1 INTRODUCTION 

The construction and building sector significantly impacts the environment, responsible for 

36% of the world's energy consumption and 39% of its CO2 emissions, as highlighted by (Abergel, 

Dean, and Dulac 2017). Annually, the global production of concrete and cement reaches 17.7 Gt 

and 4.1 Gt, respectively, making cement the second most utilized substance after water (Monteiro, 

Miller, and Horvath 2017) and resulting in the emission of 3.1 Gt of CO2. Cement production alone 

contributes to 9-10% of worldwide CO2 emissions related to energy (Cao et al. 2021), a figure that 

could escalate to 26% of all anthropogenic CO2 emissions by 2050 if the current production 

methods persist (Beyond Zero Emissions 2017). The challenge in reducing the carbon footprint of 

cement lies in its production process, particularly the high-temperature (up to 1450 °C) calcination 

process, which converts CaCO3 to CaO, accounting for 60-65% of the CO2 emissions during 

production (Antunes et al. 2022). 

 Intergovernmental Panel on Climate Change (IPCC) reports that urban areas are 

responsible for 67-72% of global greenhouse gas emissions in 2020 (Abergel, Dean, and Dulac 

2017). Moreover, the IPCC projects that by 2050, urban areas will expand by up to 211% relative 

to their size in 2015, inevitably boosting the demand for construction materials. Therefore, there 

is a pressing need to measure and manage cement consumption effectively. As urbanization 

accelerates, cities face the dual challenge of meeting infrastructural demand while adhering to 

global sustainability targets. Accurate estimation of cement consumption can enable policymakers, 

urban planners, and industry stakeholders to make informed decisions to achieve sustainable urban 

development. 
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The buildings and infrastructures in cities are essential component of cities to support 

human life. Due to the urbanization of the recent century, MS per capita has increased by 23-fold 

over the 20th century globally (Krausmann et al. 2017). In the last century, more than half of the 

resources are used for urban expansion and their infrastructure renewal. Furthermore, the global 

speed of accumulation of material stocks will be faster in the future. We have accumulated 600Gt 

of building MS from 1970 to 2010, but the study estimates to add 800Gt to stock from 2010 to 

2030 (Fishman, Schandl, and Tanikawa 2016). By quantifying the building MS, we can assess the 

environmental impact associated with extraction, processing, use, and disposal of these materials. 

This helps to calculate carbon footprint of buildings and identifies opportunities to reduce 

greenhouse gas emissions through more sustainable alternative materials and construction practice. 

Understanding MS helps city planners to practice better resource management and promote a 

circular economy. 

A retrospective understanding of building MS and consumption in cities is essential to 

reducing the amount of cement we will consume in the future. Many researchers have used MS 

analysis to estimate building MS in cities worldwide (Lanau and Liu 2020; Mao et al. 2020; 

Göswein et al. 2019). In the MS analysis, the MS is calculated by multiplying floor area and 

material intensity, representing the amount of material used per floor area. Two approaches are 

widely used to estimate material use and their embodied environmental impact in cities: top-down 

and bottom-up (Tanikawa, Guo, and Fishman 2022). The top-down approaches utilize materials 

flow statistics, while bottom-up approaches use inventory data of end-use objects such as floor 

area to determine the material’s environmental impact in cities (Reyna and Chester 2015; Fishman 

et al. 2014). These conventional methods highly depend on statistical or inventory data, which are 

not widely available across cities. 
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Emerging remote sensing technology and machine learning techniques can overcome this 

limitation. With the recent development of remote sensing technologies in recent years, high-

resolution satellite and aerial imagery are available across the globe. Advancements in remote 

sensing technologies and computer vision techniques have informed many features of cities (Hipp 

et al. 2022; Gebru et al. 2017; Jean et al. 2016; Yeh et al. 2020). For example, satellite and aerial 

images are used to map socioeconomic inequalities and human activity volumes (Abitbol and 

Karsai 2020; Xing et al. 2020). In addition to remote sensing images, Google Street View images 

are also used to understand building features. Some research used street view images to identify 

the façade material of buildings and count external features of buildings (Raghu, Bucher, and De 

Wolf 2023; Arbabi et al. 2022). However, using computer vision through remote sensing and street 

view imagery to estimate building MS is limited. Since this image data is widely available across 

cities, it can advance MS estimation with machine learning technology. 

 Floor area is a crucial metric for assessing building MS, as material intensity calculations 

are typically based on this measure. Traditionally, regional-scale floor area estimation relied on 

top-down and bottom-up survey approaches (Arehart et al. 2021). The top-down method calculates 

floor area per capita at the national level and then downscales this to specific regions. Conversely, 

the bottom-up approach starts with estimating floor area per capita in smaller regions and 

aggregates this data to larger scales. These conventional methods, however, often overlook unused 

buildings and rely on a limited dataset from surveys. Recently, there has been a shift towards 

integrating machine learning and remote sensing technologies to develop more accurate 

methodologies for estimating urban floor areas (Barbour et al. 2019; X. Zhang et al. 2019; Ji and 

Tang 2020; 2022; Liu et al. 2021). Nonetheless, many of these innovative approaches have yet to 

achieve an accuracy level that is practical for real-world application. Additionally, while there 
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have been advancements in estimating the footprint and height of individual buildings with 

considerable accuracy, as demonstrated by Microsoft using remote sensing data (Microsoft), the 

development of a robust methodology for precise floor area estimation of each building remains 

an area needing further refinement. In this study, we develop two machine learning models. One 

classifies the building types, and the other predicts the floor area of individual buildings (parcels). 

These predicted variables and material intensity data enable us to estimate the building MS of each 

building. Then we aggregate them to estimate city-wide building MS by using aerial and street 

view imagery. 

 The quantification of material usage in buildings is significantly influenced by the type of 

building, specifically single-family houses (SFHs), multi-family houses (MFHs), and non-

residential houses (Dodoo 2019; Soonsawad, Martinez, and Schandl 2022; Mollaei, Ibrahim, and 

Habib 2021). Acknowledging the building type in individual structures is vital for accurate 

estimations of building material usage within urban contexts. Overlooking this aspect can lead to 

substantial discrepancies between estimated figures and actual data. While previous city-scale 

studies with conventional approach of MS might have included this differentiation (Lanau and Liu 

2020), obtaining detailed information about building types poses a challenge, as such data is not 

uniformly accessible across different cities. For instance, several studies employing machine 

learning and remote sensing to predict urban MS have not accounted for building type variations 

(Bao et al. 2023). Although previous research has successfully used machine learning models to 

classify land usage, such as residential versus non-residential areas, from remote sensing data 

(Zhao et al. 2023; Zhou et al. 2023; Bergado, Persello, and Stein 2020; Huang, Zhao, and Song 

2018; Li and Stein 2020; X. Zhang et al. 2019; C. Zhang et al. 2018; Zhou et al. 2020), there is a 

notable lack in models that differentiate SFHs from MFHs using remote sensing imagery. 
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Addressing this gap, our study introduces a deep learning model capable of distinguishing between 

SFHs and MFHs using remote sensing and street view images. This innovation aims to enhance 

the precision of material use estimations at the city scale. 

This study pioneers the integration of machine learning, street view, and remote sensing 

technologies to classify residential building types, accurately estimate floor area, and assess 

building MS at the individual house level. By employing advanced machine learning models, we 

significantly enhance the precision of estimating building MS, surpassing the estimations provided 

by prior research. Specifically, one of our deep learning models adeptly differentiates between 

SFHs and MFHs using both aerial and street view imagery. Concurrently, another model forecasts 

the building floor area for each tax parcel. Subsequently, we calculate MS based on the predicted 

building types and floor area. Leveraging computer vision techniques alongside remote sensing 

and street view data, our methodology refines the comprehension of material usage in the 

construction sector. Aerial imagery elucidates the geographical footprint of structures, while street 

view images furnish detailed insights into building heights and façade materials. Consequently, 

our approach offers a more accurate and reliable assessment of building MS and their 

environmental repercussions. Our proposed model is capable of executing parcel-level MS 

estimations using publicly accessible imagery datasets. This model empowers urban planners, 

policymakers, and researchers to proactively foresee and tackle the challenges associated with 

sustainable urban expansion, thereby facilitating the development of greener and more resilient 

urban landscapes. This research highlights the critical role of innovative data utilization amidst 

escalating urbanization while demonstrating the transformative potential of deep learning in 

reforming traditional practices within the construction industry. 
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2 METHODOLOGY 

Our study area is Saint Paul (St. Paul), the capital city in Minnesota, U.S. St. Paul holds a 

distinguished place in the American Midwest. It is adjacent to its twin city, Minneapolis; St. Paul 

forms one-half of the Twin Cities metropolitan area, the largest conurbation in the state. The area 

of the city is 145.5 km2 and hosts 307,193 population in 2021. St. Paul is a metropolitan city 

expected to experience stable development in the future, with less than a 10% population increase 

from 2018 to 2040. The city launched the city development plan, Climate Action and Resilience 

Plan, in 2019, which aims to achieve carbon neutrality in city operations by 2030 and citywide by 

2050. This plan includes a goal of reducing carbon emissions by 50% by 2030 with the effort to 

reduce carbon emissions across every sector in the city. The construction sector is one of the key 

sectors to achieve this goal and its consequent opportunities for urban mining, circular economy, 

and waste management. The finding of our research in St. Paul can have practical applications to 

other cities in the U.S. and even globally that face similar situations beyond the region itself.  

This study analyzes the in-use and non-use buildings in all 84,770 tax parcels in St. Paul. 

The sample in this study includes both residential and non-residential buildings. The Minnesota 

government provides the building floor area, building type, and other relative information for each 

tax parcel (Minnesota Geospatial Information). We collect this tax parcel data for 2021 and use 

this data to create the ground truth of our deep learning model. We develop two deep learning 

models in this study. One classifies building type and another predicts floor area. Both models use 

two remote sensing imagery data: aerial images and street view images. We use the NAIP 

(National Agriculture Imagery Program) image as the aerial image and the Google Street View 

image for corresponding parcel areas as our input data (United States Geological Survey 2017; 
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Google Map Platform). We obtained the NAIP image of St. Paul taken in 2021 from Google Earth 

Engine and the most recent street view image by using Google Maps Static API. Our deep learning 

model has dual input channels, which process two distinct types of images (aerial and street view) 

to extract relevant features for predicting building type and floor area change. We used the NAIP 

image to make the deep learning model learn the building patterns and their footprint from the sky. 

We employed Street view to let our model learn features from the ground-level information. 

 Our research employed a Convolutional Neural Network (CNN) as the foundational 

technology for our deep learning framework (Figure 1 & 2). CNNs, a class of deep neural 

networks, are adept at processing data, such as images, with a grid-like topology. This capability 

stems from their unique architecture, which involves the use of learnable weights and biases to 

assign significance to different aspects or objects within an image, thereby facilitating the 

distinction between diverse visual elements. The design of CNNs draws inspiration from the 

human brain's visual processing system, incorporating convolutional layers that sift through input 

data to identify useful information and pooling layers that streamline this information by reducing 

its dimensionality. This approach enables the effective recognition and classification of images. 

The utilization of machine learning and deep learning methodologies proves to be exceedingly 

efficient in managing the vast datasets commonly encountered in urban and geographical research. 

The automated feature extraction and processing capabilities of machine learning and CNNs 

significantly diminish the time and resources required, offering a considerable improvement over 

conventional technique. CNNs, in particular, are celebrated for their proficiency in recognition 

tasks and their ability to discern critical features from images autonomously. Another notable 

benefit of these models is their scalability; once trained, they can be adapted for use across different 

geographical contexts or scaled up to cover more extensive areas. Opting to refine a pre-training 
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classification model, such as ResNet-18 (He et al. 2015), through hyperparameter adjustments 

using our specific dataset has been demonstrated to be more efficacious than constructing a new 

deep learning model from the ground up.  

Figure 1: Architecture of the Convolutional Neural Network for Building Type Classification 

Figure 2: Architecture of the Convolutional Neural Network for Floor Area Prediction 
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To enhance our deep learning framework, we also integrated Vision Transformers (ViT), a 

novel approach that applies the transformer architecture, previously successful in natural language 

processing, to image recognition tasks (Dosovitskiy et al. 2021) (Figure 3& 4). Unlike CNNs, 

which process images through local convolutions, ViTs divide an image into patches and treat 

these patches as sequences, similar to words in a sentence. This methodology allows ViTs to 

capture global dependencies within an image, providing a comprehensive understanding of the 

visual context beyond what local convolutions can achieve. ViTs start by linearly embedding each 

of the image patches, followed by the addition of positional embeddings to retain the order of the 

patches. The transformer then processes this sequence of embeddings through self-attention 

mechanisms, which enable the model to weigh the importance of each patch relative to others for 

a given task. This ability to focus on relevant parts of an image dynamically is a key advantage of 

ViTs, allowing for more nuanced and context-aware interpretations of visual data. The 

incorporation of ViTs into our framework complements the strengths of CNNs by providing a 

different perspective on image analysis. While CNNs excel at capturing local patterns and textures, 

ViTs offer superior capabilities in understanding the global structure and relationships within 

images. This combination ensures a robust and versatile model capable of handling a wide range 

of visual recognition tasks with high accuracy. 
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Figure 3: Architecture of the Vision Transformers for Building Type Classification. 768-D 

indicates 768-dimensional feature. 

 

 

Figure 4: Architecture of the Vision Transformers for Floor Area Prediction. 768-D indicates 768-

dimensional feature 
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Our studies compared two deep learning method with different sample splits ratio. Then 

we calculated the MS by using the predictive model with highest accuracy.  The training data was 

augmented using techniques such as cropping, flipping, and rotation to improve generalization. 

Our building type classification model was trained by using cross-entropy loss and the floor area 

prediction model was trained by mean squared error. The models used stochastic gradient descent 

to optimize weights and an early stopping method to prevent overfitting. We used three different 

ratio to split the data into training, validation, and test, 60:20:20, 80:10:10, and 90:5:5. Once we 

trained the model, we calculated the accuracy with test dataset.  

2.1 Building Type Classification Model 

 This paper develops a deep learning model to classify building types from remote sensing 

data. The original GIS-based tax parcel data in St. Paul includes information on building type with 

34 categories. Based on original building type information, we grouped all buildings into three 

categories: SFHs, MFHs, and non-residential buildings (Table A1). Our sample data comprises 

57,924 SFHs, 16,951 MFHs, and 9,895 non-residential buildings. Since our data is imbalanced, 

we split the sample into training, validation, and test sets using the stratified split method to ensure 

the distribution of building type categories is the same for all sets. We calculated the accuracy, 

recall, precision, and F1 score of test data to see the reliability of the created model. Precision, 

recall, and F1 score are finer-grained ideas of how well the model can classify targets than just 

looking at overall accuracy. Precision shows how many positive predictions are correct. Recall, 

also called sensitivity, measures how many of the positive predictions are correct over all the 

positive cases. F1 score is the measure of combining precision and recall, often described as 

harmonic means of these two. The idea is a single metric that weights the two ratios in a balanced 

way. Thus, both measures must be high to have a high F1 score. These measures are presented 
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with values between 0 and 1; a higher value shows the better performance of the model. The 

following are equations for calculating these measurements (equations 1 & 2). Higher values for 

each measurement indicate a more accurate model. 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

( 1 ) 

True Positives (TP): Number of samples correctly predicted as “positive.” 

False Positives (FP): Number of samples wrongly predicted as “positive.” 

True Negatives (TN): Number of samples correctly predicted as “negative.” 

False Negatives (FN): Number of samples wrongly predicted as “negative.” 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

 +  
1

𝑅𝑒𝑐𝑎𝑙𝑙

 

                    =
𝑇𝑃

𝑇𝑃 + 
1
2 (𝐹𝑃 + 𝐹𝑁)

 

( 2 ) 

2.2 Floor Area Change Prediction Model 

 We also created another deep learning model to predict floor area in 2021. The collected 

municipality tax parcel data has floor area information for each tax parcel. This information in 
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squared meters is the ground truth of our deep learning model. We used the same sample split with 

building type classification model to ensure that we trained and tested the model with same 

samples. To evaluate model accuracy, we used mean squared error (MSE), root mean squared error 

(RMSE), mean absolute error (MAE), r-squared (R2) based on predicted floor area for each 

building. Furthermore, since our main focus was to predict building MS at city-wide scale, we 

aimed to develop the model that can accurately predict total floor area of multiple buildings. 

Therefore, we evaluated accuracy of prediction model based on sum of floor area of test data by 

using total error in addition to other accuracy metrics. We used the following equations to calculate 

each accuracy measurement (equations 3, 4, 5, 6, & 7). 

𝑀𝑆𝐸 =   
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

  

( 3 ) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

 

( 4 ) 

 𝑀𝐴𝐸 [𝑚2] =  
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

( 5 ) 

R2 = 1 −  
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝒚̅)2𝑛
𝑖=1

 

( 6 ) 
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𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 [%] =  
|∑ (𝑦𝑖

𝑛
𝑖=1 − 𝑦𝑖̂)|

∑ 𝑦𝑖
𝑛
𝑖=1

∗ 100 

( 7 ) 

 

2.3 Material stocks Estimation 

 We used the classified building type and predicted floor area of test data to estimate 

building MS at city-scale. The building MS was calculated based on the equation (8). We looked 

into eight building materials: concrete, cement, wood, brick, gypsum, aggregates, asphalt, and steel 

by using material intensity data presented in the previous paper (Mollaei, Ibrahim, and Habib 2021; 

Hottle et al. 2022) (Table 1). We calculated the ground truth of MS based on the ground truth of 

building type and floor area. Predicted MS were estimated based on the predicted values from our 

deep learning model. We evaluated our deep learning based building MS estimation by checking 

the error percentage of each material (equation 9). 

𝑀𝑆𝑚,𝑖 = ∑(𝑀𝐼𝑚,𝑖

𝑚,𝑖

∗ 𝐹𝐴 𝑖) 

( 8 ) 

𝐸𝑟𝑟𝑜𝑟 [%] =  
|𝑀𝑆𝑚 − 𝑀𝑆𝑚̂)|

𝑀𝑆𝑚
∗ 100 

( 9 ) 

Where 𝑀𝑆𝑚,𝑖 is the material stocks of building material m in building type i; 𝑀𝐼𝑚,𝑖 is the material 

intensity of building material m in building type i; and 𝐹𝐴𝑖 is the floor area of building type i. 
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Table 1: Building Material Intensity adapted from (Mollaei, Ibrahim, and Habib 2021; Hottle et al. 

2022) . The unit is [kg/m2]. SFHs: single-family houses, MFHs: multi-family houses, Non-R: non-

residential houses 

Material Concrete Cement Wood Brick Gypsum Aggregates Asphalt Steel Total 

SFHs 477 43 104 136 100 318 8  1143 

MFHs 342 31 109 143 34 295 4 59 985 

Non-R 451 41 6 57 5 54 18 87 679 
 

3. RESULT 

3.1 Building Type Classification Model 

In the evaluation of building type classification models, We find that our CNN models 

exhibited superior performance over the ViT models. Specifically, the CNN models achieved a 

peak accuracy of 85.00%, contrasting with 30.97% accuracy exhibited by the best performing ViT 

model. This discrepancy is reflected across multiple training-validation-test splits, as detailed in 

Table 2. A notable characteristic of ViT models is that they are more conservative in predicting 

positive classes; they prefer to be more confident about their positive predictions since they have 

higher precision values than recall values. Conversely, the CNN models demonstrated a 

commendable balance in performance, as evidenced by high F1 scores. This indicates proficient 

identification of positive instances while effectively minimizing false positives. The confusion 

matrix further corroborates the CNN models' capability to discriminate among three distinct 

building types (Figure 5). However, it was observed that there was a propensity to misclassify non-

residential buildings and multi-family houses as single-family houses. This indicates areas for 

potential refinement in future develpment of the model. 
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Table 2: Accuracy Comparison of Building Type Classification Model 

Model Accuracy [%] Precision Recall F1 Score 

CNN 

60:20:20 ratio 84.71 0.845 0.847 0.836 

CNN 

80:10:10 ratio 84.84 0.842 0.848 0.842 

CNN 

90:5:5 ratio 85.00 0.846 0.850 0.843 

ViT  

60:20:20 ratio 30.97 0.568 0.310 0.359 

ViT  

80:10:10 ratio 12.78 0.266 0.128 0.052 

ViT  

90:5:5 ratio 20.45 0.453 0.205 0.137 
 

 

Figure 5: Confusion Matrix of Classification Model. 0: Non-residential, 1: SFH, 2:MFH. 

 

3.2 Floor Area Change Prediction 

 In contrasting two deep learning methodologies across three data split ratios, ViTs 

exhibited lower total error when compared to CNNs (Table 3). Specifically, the ViT model with 

an 80:10:10 simple split ratio achieved a minimum total error percentage of 0.32% on a test set 

with 8,477 samples. This finding is somewhat counterintuitive, given that other predictive 

performance metrics suggested that the CNN methods generally predicted floor area with greater 

accuracy than their ViT counterparts. For instance, R2 values of CNN methods hovered around 
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0.40 for two of the data splits, indicating a moderate positive correlation with the observed data. 

Meanwhile, all ViT models displayed R2 values around 0.00, signifying a lack of predictive 

strength. 

Table 3: Accuracy Comparison of Floor Area Prediction Model 

Model MSE RMSE MAE R2 Total Error [%] 

CNN 

60:20:20 ratio 0.74 0.86 0.61 0.38 1.86 

CNN 

80:10:10 ratio 0.71 0.84 0.60 0.40 5.05 

CNN 

90:5:5 ratio 1.05 1.02 0.75 0.10 20.21 

ViT  

60:20:20 ratio 1.22 1.10 0.78 -0.02 9.28 

ViT  

80:10:10 ratio 1.20 1.09 0.78 -0.00 0.32 

ViT  

90:5:5 ratio 1.16 1.08 0.77 0.00 1.54 

 

 The overall performance of CNN models in predicting floor area surpassed that of the ViT 

models when considering the comprehensive suite of metrics, excluding total error. Such a trend 

was analogous to the one observed in building type classification, where CNN models 

outperformed in accuracy. Among the CNN variants, the 60:20:20 ratio displays the lowest total 

error, making it the preferred model for city-scale estimation of floor area. Concurrently, the 

accuracy of the CNN building type classification models was consistent across different sample 

splits, prompting the selection of the CNN model with the 60:20:20 ratio as the most reliable for 

building type classification. 

 In delving into the model’s predictive nuances for different building categories, the floor 

area prediction model manifests certain limitations, particularly in estimating the floor area of non-

residential houses, as delineated in Table 4. The performance metrics for non-residential houses 
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are considerably lower than those for residential buildings, with the R2 value being negative (-

1.31), which implies a model fit worse than a horizontal line, and an egregious total error 

percentage of 448.06%. In stark contrast, the prediction errors for SFHs and MFHs are relatively 

minimal, at 1.62% and 5.77% respectively. This discrepancy highlights the model’s predictive 

challenges in the context of non-residential buildings. 

Table 4: Building Floor Area Prediction for Building Types Test Set with CNN of 60:20:20 split 

[km2]. Total sample size for test set is 16,954. Sample size for SFHs, MFHs, and Non-residential 

are 11,585, 3,390, and 1,979. 

Subgroup MSE RMSE MAE R2 Total Error [%] 

SFHs 0.59 0.77 0.53 0.21 1.62 

MFHs 1.18 1.09 0.82 0.25 5.76 

Non-Residential 0.89 0.94 0.73 -1.31 448.06 

 

3.3 Material stocks Estimation 

 Utilizing the optimal CNN model configuration with a 60:20:20 data split ratio for both 

building type classification and floor area prediction, we estimated the MS for the city of St. Paul. 

Our sample, encompassing 16,954 tax parcels, served as the test data for our study. The model's 

estimation of MS was reasonably accurate, exhibiting low error rates when juxtaposed with ground 

truth values, as delineated in Table 5. Exceptional accuracy was observed in the prediction of MS 

for all building material types—excluding asphalt and steel—with errors for remaining materials 

under the 2.25% threshold. Concrete and cement MS predictions were particularly precise, with a 

mere 2.07% error. Furthermore, the aggregate error for all building materials was significantly low 

at 0.29%. 

 To further establish the robustness of our deep learning model's predictive capabilities, I 

conducted an analysis of MS estimation accuracy on a subset of 100 randomly selected parcels. 

This rigorous assessment was designed to discount the possibility that our model's reliability could 
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merely be the consequence of averaging effects in large-sample aggregations. The findings, 

outlined in Table 6, confirm the model's exceptional performance; even when applied to a small 

sample comprising 67 SFHs, 23 MFHs, and 10 non-residential buildings, the error rate for the total 

MS estimation stands at a mere 2.22%. This precision across diverse material categories—from 

concrete to steel—underscores the sophisticated predictive power of our deep learning approach. 

 

Table 5: Material Stocks Estimation Results [103 ton] (16,954 parcels) 

Material Concrete Cement Wood Brick Gypsum Aggregates Asphalt Steel Total 

Truth 878.79 79.09 202.84 267.21 168.20 606.42 14.77 24.48 2162.72 

Prediction 896.99 80.73 198.31 265.38 165.36 596.38 16.01 30.50 2168.93 

Error [%] 2.07 2.07 2.23 0.68 1.68 1.66 8.37 24.57 0.29 

 

Table 6: Randomly Selected Material Stocks Estimation Results [103 ton] (100 parcels: 67 SFHs, 

23 MFHs, and 10 Non-Residential Houses) 

Material Concrete Cement Wood Brick Gypsum Aggregates Asphalt Steel Total 

Truth 4.84 0.44 1.14 1.50 0.92 3.39 0.08 0.15 12.02 

Prediction 5.07 0.46 1.13 1.50 0.94 3.39 0.09 0.16 12.28 

Error [%] 4.69 4.69 1.10 0.54 2.33 0.07 12.64 10.48 2.22 

 

4. DISCUSSION 

 The findings of this study underscore the efficacy of deep learning methodologies in 

predicting MS at an urban scale by leveraging publicly accessible datasets. The CNN models 

showcased a high degree of precision, successfully classifying various building types with an 

accuracy exceeding 84%. This performance is particularly commendable given the complexity of 

urban landscapes and the diversity of architectural styles captured in aerial and street-view 

imagery. Moreover, the CNN models demonstrated remarkable capability in estimating floor 
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area, with a total error of 1.86%. This level of precision in predicting floor area is critical as it 

directly influences the accuracy of MS calculations. When it came to predicting the quantity of a 

variety types of building materials, the deep learning model achieved a low error rate of 0.29% for 

a total weight of material, suggesting that the model not only grasps the nuances of material usage 

patterns across different building types but also aligns closely with the ground truth of urban 

construction practices. These outcomes collectively suggest that our deep learning model can serve 

as a robust tool for predicting city-wide MS estimation using data sources that are both widely 

accessible and freely available. This methodology stands as a testament to the potential of AI-

driven approaches to significantly contribute to the fields of urban development and sustainability, 

paving the way for more informed and data-driven decision-making in urban planning. 

To elucidate the decision-making processes of our CNN model, class activation maps 

(CAMs) play an instrumental role by revealing which regions of the input imagery command the 

model's attention during the prediction phase. To shed light on the internal workings of the model, 

we employed Grad-CAM to generate CAMs for a selection of random test samples, following the 

methodology proposed by (Selvaraju et al. 2020). As depicted in Figure 6, the CAMs illustrate that 

our CNN model proficiently identifies the architectural features of buildings within both aerial and 

street-view images, corroborating the model's configuration detailed in the results section. The 

utility of CAMs extends beyond mere validation of correct predictions; they provide a visual 

exposition of the model’s focal points. For instance, the CAMs revealed instances where the 

model's attention was inadvertently drawn to non-building objects, such as vehicles and foliage in 

street-view images. These distractions, prevalent in urban settings, have the potential to divert the 

model’s focus from the building, consequently leading to inaccurate predictions of the floor area 
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or building type. The presence of such objects underscores the need for enhanced feature 

discrimination within the model to refine its predictive accuracy further. 

 

Figure 6: Class Activation Maps for three random samples from the test set. (a) is SFH, and the 

model correctly classified it as SFH. (b) is MFH, but the model classified it as SFH. (c) is a Non-

residential building, but the model classified it as SFH. 

 In Figure 7 & Figure 8, I juxtapose the actual and predicted total Material Stocks (MS) 

across the urban landscape of St. Paul to examine the spatial accuracy of our deep learning model. 

Despite minor discrepancies, the predictive mapping of our model aligns remarkably well with the 

actual data. While localized deviations exist, they typically remain within the mapping categorical 

threshold, underscoring the model's spatial precision in estimating MS. Complementing this, 

Figure 9 showcases an error distribution map for the total MS within the test set, revealing that the 

preponderance of pixels maintains an error margin below 10%, which significantly attests to the 

model’s high-precision performance. 
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Figure 7: Total Material Stocks Map for Test Set in St. Paul. Point markers represent MS of 

corresponding parcels. The ground truth MS is presented in (a) and the predicted MS is shown in 

(b). 

 

Figure 8: Aggregated Total Material Stocks Map for Test Set in St. Paul. The MS of each tax 

parcel is aggregated to 200mx200m grid level by summing up the MS of parcels within the same 

grid. 
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Figure 9: Error Distribution Map of Total Material Stocks for Test Set. This map visualizes the 

error percentages in the estimated total material stocks across St. Paul, with each pixel representing 

a 200x200 meter area. White pixels indicate regions without test data or with a baseline (ground 

truth) value of zero. 763 pixels is below 10% error, 553 pixels are between 10% and 20% error, 

555 pixels are between 20% to 40% error, and 227 pixels are greater than 40% error. 

In this paper, the CNN method outperforms the ViT method for both the building type 

classification model and the floor area prediction model. The architecture of CNNs incorporates 

strong inductive biases that are well-suited to image data. These biases include translation 

invariance, the idea that same object can be recongnized regardless its position in the image. 

Another bias is locality, which the CNNs make assumption that nearby pixels are more relevant to 

each other. On the other hand, ViTs have fewer inductive biases regarding the spatial structure of 

images. They treat the image more like a sequence of tokens and rely on the self-attention 

mechanism to learn relationships between these tokens. This allows ViTs to potentially capture 

more global and complex patterns without being constrained by the predefined kernel shapes or 

local receptive fields of CNNs. However, this also requires a large number of data to learn from, 
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as they must implicitly learn the spatial hierarchies that CNNs are explicitly designed to capture. 

Therefore, CNNs perform better to classify building type and predict floor area in our study. 

The analysis and predictions involving the classification and floor area estimation models 

for non-residential houses highlight significant challenges. The models' lower performance for 

non-residential properties is attributed primarily to an imbalanced dataset, where the sample size 

for non-residential houses is substantially smaller compared to residential ones. Compounding this 

issue is the fact that a majority of non-residential houses are recorded with zero floor area in the 

original GIS-based dataset provided by the Minnesota government, which significantly skews the 

data. Out of 9,895 non-residential parcels, 9,337 are listed with zero floor area, suggesting 

inaccuracies in the ground truth values assigned for these properties. A meticulous examination of 

aerial and street view images for parcels with zero floor area revealed a mix of open areas and 

actual buildings, indicating potential misclassifications that could be adversely affecting floor area 

prediction accuracy for non-residential houses. This analysis underscores the importance of 

addressing data imbalances and verifying the accuracy of ground truth values to improve model 

performance in classifying and estimating the floor area of non-residential properties. 

The disparity in MS estimation accuracy, particularly concerning steel, necessitates further 

examination. While our model effectively predicts the MS for various building materials with 

commendable precision, the steel estimates deviate significantly from the ground truth, resulting 

in an error of 24.57%. This substantial error is primarily attributed to the challenges our building 

type classification model faces in accurately identifying MFHs and non-residential buildings. 

According to the material intensity MI data utilized in this study, steel usage is exclusive to MFHs 

and non-residential structures. Hence, the capability to precisely recognize these building 
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categories is paramount for accurate steel MS prediction. Unfortunately, the limited representation 

of MFHs and non-residential buildings in our dataset undermines the model’s performance, 

leading to less reliable steel MS estimations. This issue highlights the importance of having a well-

distributed, representative sample across all building types for training purposes. Enhancing the 

model's ability to distinguish these specific structures will be essential to improve the accuracy of 

steel MS predictions and, by extension, the model's overall utility in urban planning and resource 

management. 

5  CONCLUSION 

This research delves into the viability of deploying deep learning models to ascertain MS 

at a comprehensive city-wide level using datasets that are both publicly accessible and prevalent 

across urban environments. We have crafted two sophisticated deep learning models—the building 

type classification and floor area prediction models. These models, particularly the CNNs, have 

proven adept at classifying building types and estimating floor areas within urban settings. 

Leveraging the predictive outputs of these models, we have formulated a methodology to estimate 

MS with a remarkable degree of accuracy, even in scenarios where traditional MS estimation 

techniques may be impractical. 

The implications of this study are manifold, extending the frontier of machine learning and 

deep learning applications within the realms of building construction and urban development. The 

insights provided from this research offer valuable guidance to policymakers, municipal 

authorities, and urban planners as they strategize the design of future cities in alignment with the 

principles of a circular economy on a global scale. Nonetheless, there remains an avenue for 

improvement in the classification accuracy for multi-family homes and non-residential buildings. 
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To enhance the sophistication and reliability of our approach, the incorporation of additional data 

dimensions, such as building footprints or heights, is suggested for future research endeavors. 

Through such enhancements, the predictive capabilities of the models can be refined, thereby 

bolstering the strategic planning of urban infrastructure and resource allocation. 
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APPENDIX 

 

Table A 1: Categorization of Building Types 

Category Building Type in Original Data 

Single-Family Houses "SINGLE FAMILY DWELLING, PLATT"  

"SINGLE FAMILY W/ACCESSORY UNI" 

"TWIN HOME"  

"TOWNHOME - DETACHED UNIT" 

"BED & BREAKFAST" 

"RESIDENTIAL, OTHER"             

Multi-Family Houses "TWO FAMILY DWELLING - SIDE/SI" 

"TWO FAMILY DWELLING - UP/DWN"   

"APARTMENTS 4-6 RENTAL UNITS" 

"APARTMENTS 7-19 RENTAL UNITS" 

"APARTMENTS 20-49 RENTAL UNITS" 

"APARTMENTS 50-99 RENTAL UNITS" 

"APT OR COMPLEX 100+ UNITS"        

"CONDO"                         

"TOWNHOME-INNER UNIT"           

"TOWNHOME - OUTER UNIT"     

"TOWNHOME - TICO"               

"CONDO GARAGE"           

"CONDO STORAGE UNIT"        

"RESIDENTIAL CO-OP"              

"APARTMENT VACANT LAND"           

"APARTMENT MISC IMPROVEMENT" 

"TOWNHOME - VACANT LOT" 

"TOWNHOME - GARAGE ONLY"        

"TOWNHOME - NON-TAX OUTLOT"     

"CONDO VACANT LAND"     

"ASSISTED LIVING APT COMPLEX"    

"NURSING HOME & PRIVATE HOSPIT" 

"FRATERNITY/SORORITY HOUSE"      

"2ND RESID 4+ UNITS, CLASS APT" 

"THREE FAMILY DWELLING, PLATTE" 

"TWO RESIDENCES ON ONE PARCEL"   

Non-Residential Buildings " " (This is empty rows, but they indicate non-residential 

buildings in this dataset)        

"RESIDENTIAL, VACANT LAND, LOT"  
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Code Availability 

The datasets generated and/or analyzed during the current study are available in the GitHub 

repository, 

https://github.com/akiokuyama/Deep_Learning_Model_For_Material_Stock_Estimation 
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