
Accessing Acute Care Hospitals in the San Francisco Bay after a

Major Hayward Earthquake

Luis Ceferino1,2,*, Charan Kukunoor2, Dan Mao3, Xinlu Xu2, Jingzhe Wu4, and Adam
Zsarnóczay5
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Abstract

Earthquakes can severely disrupt healthcare services for many communities, especially in
dense cities. Here, we study the acute care hospital system in San Francisco Bay, California,
to identify the most impacted communities after a magnitude 7.25 earthquake on the Hayward
Fault. We integrate seismic hazard information with unique granular infrastructure vulnerability
and connectivity data for 76 acute care hospitals with 426 buildings and 16,639 beds. We leverage
the rich data to formulate a coupled risk-network model that anticipates infrastructure failures
and cascading effects affecting healthcare access. We show that the bed capacity within hospital
buildings can be reduced to 49%. In East Bay, Alameda County will concentrate most losses,
preserving only 19% of capacity. We also found that communities will travel disparately longer
to access functioning hospitals, reshaping healthcare access across the entire Bay. The regional
travel time will increase by 27%, but at micro-urban scales, increases are way higher and can be
above 400% in East Bay. This study demonstrates the urgent need to prepare emergency plans
and strengthen the healthcare infrastructure.

Earthquakes wield the power to disrupt healthcare access and affect many communities simul-
taneously, especially in densely populated regions.1 For example, the recent M 7.8 earthquake in
Turkey left tens of thousands without hospital services after damaging more than 50 hospitals.2

In a mass-casualty earthquake,3,4 several thousands of severely injured people can worsen their
health, even up to deadly conditions, if they do not receive timely access to medical services, e.g.,
2005 Pakistan, 2010 Haiti, 2008 China, 2011 Japan, 2023 Turkey.5–10 These communities can lose
healthcare access for many years.11 For example, many communities lost access to their local critical
medical services (e.g., dialysis) for up to five years after the 2003 Bam earthquake in Iran due to
slow reconstruction.12

In the U.S., many communities have lost access to healthcare following previous earthquakes,
even though earthquakes have only been moderate in magnitude. The 1971 M 6.6 San Fernando
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Earthquake severely damaged four major hospitals, which had to be evacuated. Two hospital
buildings collapsed, killing more than 40 people.13 In response to this earthquake, the Alfred
E. Alquist Hospital Seismic Safety Act was enacted in 1973 to create a new, resilient hospital
infrastructure in California. The Legislature noted that “hospitals, that house patients who have
less than the capacity of normally healthy persons to protect themselves, and that must be reasonably
capable of providing services to the public after a disaster, shall be designed and constructed to resist,
insofar as practical, the forces generated by earthquakes, gravity and winds.”13

In 1994, the M 6.7 Northridge Earthquake disrupted 11 hospitals.14 Eight acute care hospitals
in Los Angeles County (9% of the total) had to be evacuated,15 causing accumulated losses of USD
3 billion. Twelve Pre-Alquist Act hospital buildings received red tags after engineers considered
them too dangerous for reentry. Post-Alquist Act hospital buildings experienced less structural
damage, but non-structural damage was still extensive.16 These large disruptions of healthcare
services after the moderate Northridge Earthquake led to the California Senate Bill 1953. The Bill
requires retrofitting a large part of the acute care infrastructure by 2030 to create a path to make
existing buildings from acute care hospitals resilient.17,18 Notably, many hospitals do not have the
financial resources to comply with the ordinance and are unlikely to meet the deadline.19

In response to these high vulnerabilities, this paper investigates the effects of future earthquakes
on healthcare access in the entire San Francisco Bay, California. Significant research efforts have
been devoted to understanding and modeling disruptions to healthcare services after earthquakes
but with a main focus on individual facilities. Some researchers focused on characterizing failures in
healthcare infrastructure components using structural engineering, performance-based analyses, and
fault trees.20–23 These researchers model damage to structural and non-structural components of
the infrastructure supporting healthcare services within buildings to evaluate the post-earthquake
functionality of hospitals. Other researchers have focused on characterizing the dynamics of medical
processes in an earthquake emergency, but also at the single-building scale.24–27 They use discrete
event simulations and flow models to assess patient waiting and treatment times, explicitly accounting
for patient surges and the available medical resources after earthquakes.

However, hospitals do not behave as isolated units, especially in large cities. When an earthquake
disrupts a hospital, network effects cascade the impacts to entire cities, e.g., earthquakes in Chile, New
Zealand, and Japan.21,28–31 Network effects propagate and exacerbate impacts in two fundamental
ways. First, failures in a few hospitals can overload hospitals in the entire network, affecting
communities within and beyond the damaged hospital’s catchment area. Logically, people who lose
their local hospital must travel longer to find healthcare services. Longer travel times result in a
longer time to treatment, which can have drastic (and even lethal) consequences on the health of
critically injured people, e.g., crush syndrome and cardiac arrest.32–34 In addition, communities
whose local hospitals do not fail will also wait longer for treatment since their functioning hospitals
must receive patients from other communities in the city, especially those whose local hospitals
failed. Second, failures in a few hospitals can also overload the healthcare network’s supporting
infrastructure, such as the transportation network.35,36 More injured people will seek medical
services in fewer hospitals, increasing traffic across the city, especially in emergency corridors,
highways, and roads leading to the functioning hospitals. Because fewer hospitals are functional, the
reliance on the supporting transportation infrastructure also increases. Thus, emergency responders
must identify the key transportation links to ensure they work effectively after the earthquake and
avoid significant delays in travel times for many patients. While these two cascading effects start
during the emergency, they continue until the entire hospital infrastructure is recovered, in many
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cases for years.11,12

Researchers have recently developed a few models for capturing these network effects in large
regions. These models have been applied to different regions and hazards, e.g., earthquakes,
hurricanes, wildfire, and pandemics.11,37–39 These models vary in computational and formulation
complexity. While these models can, in principle, be extended to any region, data scarcity becomes a
fundamental problem, requiring different reformulating approaches to adjust to specific case studies.

This paper investigates failures and network effects on healthcare access in the Bay after
earthquakes by carefully formulating a large-scale risk-network model that leverages granular and
rich data from California’s hospital infrastructure (see Methods). Investigating post-earthquake
healthcare in the Bay addresses fundamental knowledge gaps in disaster emergency research
because, unlike the past few studies on hospital networks,11,37–39 we can focus on urban and diverse
communities exposed to earthquakes only within a few kilometers from them. In addition, the
rich Bay’s infrastructure data provide this study with a unique testbed to analyze the disparate
and granular effects of earthquakes on public health across urban communities. Thus, this study
offers insights into post-earthquake healthcare access for many cities with diverse communities and
vulnerable hospitals exposed to earthquakes within or near their geographical extents, e.g., cities in
the U.S., Japan, and Turkey with active shallow seismic faults.

Our model to study California combines state-of-the-art disaster risk analysis with a simplified
network model to cleanly study post-earthquake healthcare access with computational efficiency,
allowing for assessing thousands of potential scenarios of earthquake disruption (see Methods). Our
results leverage unique information with granular categorizations of structural and non-structural
vulnerabilities of 76 acute care hospitals’ 426 buildings to identify the facilities more likely to lose
functionality after an M 7.25 earthquake on the Hayward Fault. This research serves as a first-cut
assessment to help cities identify the communities with access to health services most significantly
affected, considering the complex network effects in healthcare and supporting infrastructure within
cities.

Results

The Bay is home to more than 7M people in Northern California, and as a major city, it has a
large demand for healthcare. Seventy-six acute care hospitals provide the Bay’s communities with
inpatient medical care and other related services for surgery, acute medical conditions, or injuries
(usually for a short-term illness or condition). These hospitals are critical for emergencies such as
those after moderate and large earthquakes.

Much of the Bay’s acute care infrastructure portfolio is exposed to extreme seismic hazards
due to the proximity to seismic faults. Figure 1 shows that most hospitals are bounded by the
San Andreas and the Hayward Fault, where major earthquakes (> 7.0) can occur. The Laguna
Honda Hospital and Rehabilitation Center and the University of California, San Francisco (UCSF)
Medical Center are the largest acute care hospitals, with 780 and 580 beds. Both are located in
San Francisco, less than 2 km from each other, showing that medical resources can be concentrated
in small regions in the Bay. The three zip codes with the most beds are Palo Alto, San Francisco
(where the two largest hospitals are), and San Jose, with 1410, 1360, and 932 beds, respectively.
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Figure 1: Seismic hazard and hospital exposure and vulnerability in the San Francisco Bay, California.
Upper left: Acute care hospital inventory and all major active faults. Upper right: Bed count per zip code
and M 7.25 rupture scenario on the Hayward Fault. Lower Left: Histogram of hospital buildings’ structural
performance category (SPC) and their years of construction. Lower right: Lower left: Histogram of hospital
buildings’ non-structural performance category (NPC) and their years of construction.

Acute Care Vulnerability in the San Francisco Bay

We found that a significant part of the acute care portfolio is seismically vulnerable due to structural
or non-structural deficiencies (Figure 1). To quantify the extent of vulnerabilities, we compiled
information from 426 buildings belonging to the 76 acute care hospitals in the Bay, including
structural typologies, year of construction, number of stories, and seismic vulnerability ratings.18,40,41

Supplementary Note 1 and Supplementary Figure 1 describe and summarize the hospitals’ years
of construction, structural typologies, and the number of stories. The Methods section establishes
how to use this information to model seismic vulnerability, as these building features indicate
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buildings’ dynamic properties, strength, and ductility. Here, we describe the Structural Performance
Categories (SPC) and Non-structural Performance Categories (NPC), established by California’s
Department of Health Care Access and Information (HCAI) to characterize structural and non-
structural deficiencies.42 Each hospital building receives vulnerability ratings (SPC or NPC) ranging
from 1 to 5, from the most to the least vulnerable. Supplementary Tables 1 and 2 fully describe
SPC and NPC.

Many buildings have high structural vulnerabilities (Figure 1). 16 (4%) hospital buildings have
an SPC of 1. All of them were built before 1974 and have a high collapse probability for earthquakes
that regular buildings designed with modern codes would withstand (i.e., earthquakes with a return
period of 475 years).43 None of these buildings were supposed to provide acute care services by
2020. 87 (20%) hospital buildings have an SPC of 2; 65 were built before 1974, and 20 between 1974
and 1994. They meet pre-1973 standards for regular buildings but not the standards for hospitals.44

SPC-2 buildings need to be upgraded by 2030. Only SPC-3, SPC-4, and SPC-5 buildings can
be used after 2030. SPC-5 buildings have the highest structural ratings and are equivalent to an
essential facility in modern building standards,43 i.e., these buildings have to be strong enough to be
immediately occupiable after design earthquakes (return period of 475 years) and cannot threaten
the occupants’ lives even in maximum credible earthquakes (return period of 2,475 years).43 163
(38%) buildings are SPC-5, and 145 were built after 1994.

We found that non-structural vulnerabilities are even more widespread. 220 buildings (52%)
have an NPC of two or below (Figure 1). 64 were built before 1974, and 123 between 1974 and
1994. NPC-2 buildings have proper anchorage and bracing only in a few non-structural components,
mainly for building access. They should have had to be upgraded by 2002 to be operational for acute
services. NPC-4 buildings have all their non-structural components properly anchored, and after
2030, all buildings should meet this standard. 131 buildings are NPC-4, and 117 were built after
1994. NPC-5 buildings have additional requirements for 72 hours of continuous hospital operations,
but only 2 are in this category. Notice that a hospital building designed with modern codes43 may
fall below NPC-5 even if all non-structural components within the building are secured since on-site
supplies for continuous acute care operations (e.g., water tanks) can be outside the building.

Earthquake Scenario and Projected Building Damage

We studied an earthquake scenario of M 7.25 on the Hayward Fault in East Bay (Figure 2). The
Hayward Fault has accumulated energy for over a century. The last large earthquake (M 6.8)
occurred in 1868, causing widespread damage throughout East Bay. The earthquake’s magnitude
was based on an established case study that informs resilience policy-making in the Bay.45

We computed the rupture geometry (see Methods) and found that 10 acute care hospitals with
2167 beds (13% of the Bay’s total) are located only 5 km away from the rupture. We then estimated
the shaking intensities across the Bay (See Methods). Our predictions show that many hospitals will
experience violent shaking at a scale not seen in over a century. On average, we predict 51 hospitals
will experience peak ground accelerations above 0.2g (Figure 2). In contrast, the M 6.9 Loma Prieta
Earthquake, the largest temblor in the Bay since the devastating M 7.9 San Francisco Earthquake
in 1906, only exposed 14 hospitals to these shaking levels (Figure 2). For further comparison,
Supplementary Figure 2 shows that the recent 2014 M 6.0 Napa Earthquake only exposed a few
hospitals to large shaking levels (e.g., only three out of 76 above 0.2g), while the M 7.9 San Francisco
Earthquake exposed most of the portfolio to these shaking levels (e.g., 72 out of 76).

We then predicted structural and non-structural damage on the entire portfolio of 426 buildings
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Figure 2: Earthquake disruption simulations. Upper left: Median peak ground accelerations (PGA) due to
the M 7.2 earthquake scenario. Upper right: PGAs due to the largest earthquake in more than a century
in the Bay. Lower left: Estimated damage probabilities on buildings’ structural components for different
SPCs (1 to 5). Lower right: Estimated probabilities of damage on buildings’ non-structural components for
different NPCs (1 to 5)

belonging to the acute care hospitals because both are critical to the continuous operations of
healthcare services. We use different damage thresholds as tipping points for service disruption,
capturing disruptions at various early stages of damage (see Methods). Hereafter, we denominate
the probability of exceeding the threshold “probability of damage” or “probability of failure” of
structural and non-structural components for simplicity. Our results show that more than 212 (50%
of the total) and 287 (67% of the total) buildings will have probabilities of damage above 0.25 for
structural and non-structural components, respectively.

Many hospitals are close to the Hayward Fault and have high infrastructure vulnerabilities
(Figure 2). From the 212 buildings with 0.25 or higher probability of structural damage, 152 (72%)
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buildings are either 20 km or less from the rupture or have an SPC of 1 or 2. Of the 287 buildings
with 0.25 or higher probability of structural damage, 256 (89%) buildings are either 20 km or less
from the rupture or have an NPC of 1, 2, or 3. Supplementary Figure 3 compares building fragilities
for different structural and non-structural vulnerabilities for reinforced concrete wall buildings,
highlighting how this earthquake’s shaking can easily damage buildings, especially for low SPC and
NPCs.

Post-earthquake Hospital Capacity

Our risk analysis model predicts 8,501 beds will be lost throughout the Bay (see Methods). This
means that only 49% of beds will be functional (with a standard deviation of 17%). These losses are
significant and highly heterogeneous across the Bay. Figure 3 and Table 1 show our results at the
hospital, county, and regional scales. These predictions are based on a threshold of slight damage,
i.e., a hospital loses functionality if its structural or non-structural components exceed this threshold
(see Methods). Previous earthquakes have shown hospital buildings often lose functionality at these
early stages of damage.21,28–31 Figure 3 and Supplementary Table 3 show the sensitivity of the
predictions to the higher damage thresholds, i.e., if doctors decide to keep healthcare operations
in buildings exceeding moderate and extensive damage. Across the Bay, the functionality would
decrease to 77% and 92% in these cases, respectively, highlighting that building functionality is
strongly connected with the damage threshold. However, evidence shows that hospitals are disrupted
at earlier stages of damage;21,28–31 thus, we used slight damage as the threshold for this study.

Table 1: Predicted post-earthquake capacity of functional beds for different Bay counties for a threshold
of slight damage. Supplementary Table 3 shows similar results for a threshold of moderate and extensive
damage. The numbers in parentheses indicate the percentage in proportion to the pre-earthquake capacity

County Pre-earthquake Post-earthquake
Mean Std. Dev.

Alameda 3,221 612 (19%) 513 (16%)

Contra Costa 1,749 812 (46%) 423 (24%)

Marin 627 239 (38%) 188 (30%)

Napa 351 238 (68%) 85 (24%)

San Francisco 3,618 2,245 (62%) 862 (24%)

San Mateo 1,444 886 (61%) 862 (24%)

Santa Clara 4,323 2,200 (51%) 919 (21%)

Solano 722 481 (67%) 168 (23%)

Sonoma 584 424 (73%) 108 (18%)

Total 16,639 8,138 (49%) 2,818 (17%)

We predict the earthquake will significantly impact Alameda County because the Hayward
Fault is close to its many communities and vulnerable hospitals (Table 1). Their functional beds
decrease to 19% of the pre-earthquake levels (from 3,221 to 612) with a standard deviation of 16%.
With 1.6 million people, Alameda is the second largest populated county in the Bay. Thus, the
decrease in healthcare capacity will impact many communities. The second most affected county is
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Marin, located in the Northern area surrounding the earthquake rupture. Marin’s bed capacity will
decrease to 38%, but with 251k people, their population is significantly smaller than Alameda’s.
Thus, Alameda’s healthcare system will be the most affected by far.

Figure 3: Post-earthquake functionality of the acute care hospital network. Upper left: Probability
distribution of functional beds in acute care aggregated in the Bay for three thresholds of disruption: slight,
moderate, and extensive. Upper right: Spatial distribution of beds (pre and post-earthquake) across the
Bay for the slight damage threshold. Lower left: Expected functionality ratio for each hospital for the
slight damage threshold, indicating those hospitals with the top share of low SPCs (i.e., one and two) and
NPCs (i.e., one, two, and three). Lower right: (De-aggregated) percentages of buildings with structural and
non-structural damage given that the hospital has high functionality loss (i.e., more than 50%).

Figure 3 shows the functionality ratio, i.e., the ratio between the expected number of functional
beds after the earthquake and the pre-earthquake conditions (see Methods), as a function of the
distance to the rupture. Hospital functionality is significantly lower within 20 km from the rupture,
making counties like Alameda particularly at high risk. The average functionality ratio is 24%, 53%,
and 83% for hospitals within 20km, between 20 and 40 km, and beyond 40 km, respectively. Figure
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3 highlights the hospitals with a high share of buildings with poor SPCs and NPCs to underline that
those physical vulnerabilities cascade to significant reductions in hospital capacity. For example,
hospitals with the top share of poor SPCs have a 25% smaller functionality ratio than the others, i.e.,
39% versus 52%. Hospitals with the top share of NPC buildings have a 30% smaller functionality
ratio than the others, i.e., 44% versus 63%.

Figure 3 also points to the relative contribution of structural and non-structural components to
hospital disruptions. We analyzed all simulations that led to hospital functionality ratios below 50%
to evaluate the percentage of buildings with structural and non-structural damage (see Methods).
Figure 3 shows that the contributions vary per the distance to the rupture. Within the first 20 km,
hospitals with large disruptions have, on average, 62% and 73% of their buildings with structural
and non-structural damage, respectively. At larger distances, however, the relative contributions
of non-structural damage increase. For example, beyond 40 km, hospitals with large disruptions
have, on average, 26% and 42% of their buildings with structural and non-structural damage,
respectively. While the relative contributions from the structural components were slightly smaller
than non-structural components, with a ratio of 0.84 (62% versus 73%) within the first 20 km,
the ratio of 0.36 (26% versus 42%) beyond 40 km indicates that non-structural components can
be a main cause of large hospital disruptions even is the building’s structure remains undamaged.
Earthquakes can damage non-structural components over large geographical extents because the
buildings’ dynamics can amplify peak floor accelerations, even at long distances.

Acute Care Accessibility

We predict that the earthquake scenario will radically change healthcare access in the Bay. We
coupled the risk model with a network model to assess the cascading effects of earthquakes on
healthcare access across the Bay (see Methods). Patients must travel to the next closest hospital if
hospitals cannot provide healthcare services, such as those that lose all beds. We also assumed that
partially operating hospitals can still provide some healthcare services. We focused on modeling
network effects on the hospital and transportation infrastructure for healthcare access.

First, we evaluate network effects on hospitals through travel times and capacity-demand ratios.
Our predictions show that the average travel times to the closest acute care hospitals across the
Bay increase from 5.9 to 7.4 minutes. This equals a 27% increase with a standard deviation of 97%
of the average travel times in pre-earthquake conditions. However, as in the hospital bed capacity,
variations of travel times are strikingly different across counties. Patients from Alameda will increase
their travel times by 88% (from 4.8 to 9 minutes) due to the significant decrease in their healthcare
capacity (Table 2). Marin and Contra Costa patients will increase their travel times by 31% As
stated earlier, Alameda and Contra Costa are the second and third most populated counties in the
Bay, with 1.7 M and 1.2 M people. Thus, these results highlight that healthcare access will radically
change for many.

We found that neighborhoods are even more disproportionately impacted by the earthquake
at micro-urban scales. At zip code levels, we observe larger variations in travel time (Figure 4).
Communities in the worst zip code increase their travel times by almost five times (from 2.1 to
10.1 minutes), and the eighth zip code is still heavily impacted by the earthquake as its travel time
increases by a considerable factor of 4.2 (from 4.2 to 11.6 minutes). Three zip codes in the top
eight list have populations of 82, 71, and 35k people. The one with 35k people is in Richmond
(Contra Costa County), whereas the ones with 82k and 71k are in Fremont (Alameda County),
demonstrating that the earthquake will reshape access to acute care throughout the entire East Bay
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Figure 4: Access to functional acute care hospitals in the Bay Area. Upper left: Rations of post- and
pre-earthquake travel times to closest acute care hospitals. Upper right: Variations in travel time at the
zip code level and their populations, highlighting the communities most impacted. Lower left: The Ratio
between relative demands and capacities before the earthquakes. The ratio between relative demands and
capacities after the earthquakes. The ratios above two are highlighted in dashed circles. Notice that the
relative capacity is calculated by normalizing the number of beds to pre-earthquake conditions in both cases

from the South part to the North along the earthquake rupture. The neighborhood in Richmond
exemplifies the mechanisms by which many of these communities significantly worsen their access
to healthcare. Richmond is heavily populated with a single local hospital (number 1 in Figure 1).
The hospital is only 5.1 km from the rupture. If the local hospital is lost, communities must travel
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Table 2: Travel times (in minutes) to reach to the closest functional acute care hospital before and after the
earthquake for different Bay Area counties. The post-earthquake travel times’ mean and standard deviation
values as a percentage of the travel time before the earthquake are included in parentheses.

County Pre-earthquake Post-earthquake Population (thousands)
Mean Std. Dev.

Alameda 4.8 9.0 (188%) 3.8 (79%) 1,682

Contra Costa 7.8 9.6 (122%) 2.0 (26%) 1,166

Marin 7.8 10.2 (131%) 3.4 (43%) 251

Napa 6.9 7.3 (106%) 1.8 (26%) 138

San Francisco 2.8 3.2 (113%) 0.9 (31%) 874

San Mateo 5.3 5.7 (106%) 0.8 (15%) 764

Santa Clara 5.7 6.5 (113%) 1.3 (22%) 1,936

Solano 7.0 7.5 (106%) 1.3 (18%) 453

Sonoma 9.2 9.6 (104%) 0.9 (9%) 489

Total 5.9 7.4 (127%) 5.7 (97%) 7,753

south outside Richmond to Berkeley or Oakland. However, if these hospitals also fail, given their
proximity to the rupture, Richmond communities will have to travel longer from East to West Bay
to reach San Rafael.

To systematically evaluate how failures of hospitals cascade beyond their catchment area, we
assessed the ratio between the relative demand and capacity (see Methods). We computed the
relative number of functional beds per hospital and divided it by the relative demands for healthcare,
i.e., if the ratio is close to one, the hospital capacity will match the relative demands for healthcare
in the Bay. We found that many hospitals had high ratios before the earthquake, highlighting
disparities in healthcare access and worse conditions in East Bay. Nineteen hospitals (25%) had
ratios above two (Figure 4); five are in Alameda, and three are in Contra Costa counties, both
in East Bay (Supplementary Table 4). In contrast, in West Bay, San Mateo has no hospital with
such ratios. We found that the earthquake exacerbates these disparities. After the earthquake, 44
hospitals will have ratios above two, 2.3 times as many as in pre-earthquake conditions. However,
in Alameda, sixteen hospitals go above this threshold, 3.2 times as many as in pre-earthquake
conditions. These effects propagate even to regions with fewer hospital disruptions since they also
have to absorb patients from other catchment areas. For example, in Santa Mateo County in West
Bay, 33% of their hospitals will have ratios above two after the earthquake, even though no hospital
had such ratios before.

Second, we network effects on the transportation infrastructure because it supports healthcare
access (see Methods). Figure 4 shows the relative volume of travels with destination to the closest
acute care hospitals. Figure 4 also shows the road usage for pre-earthquake conditions. The thickness
represents the road usage volume, and in brown, we point to the roads with usage above the 90th
percentile to highlight those most important. Before the earthquake, unsurprisingly, we observed
that the most important roads were close to the hospitals. The road importance increases for
those areas that are highly populated (e.g., the two hospitals in Fremont serving the communities
including those in zip code with 4th, 6th, and 8th largest increases in travel time) and that have
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fewer hospitals (e.g., the two hospitals in Richmond serving the communities including the zip code
with the largest increases in travel time).

Figure 5: Mobility to reach the closest functional acute care hospital in the San Francisco Bay. left: Travel
volumes to reach the closest acute care hospital before the earthquake, indicating the hospitals serving the
zip codes with the 1st, 4th, 6th, and 8th top rations of travel time variations. Right: Projections of travel
volumes to reach the closest acute care hospital after the earthquake.

Figure 4 also shows the volumes of travel after the earthquake, highlighting in brown the roads
above the threshold defined in pre-disaster conditions. We observe that patient mobilizations will
undergo significant changes after the earthquake. Many roads will experience large volumes over
longer distances than pre-earthquake conditions. For example, Figure 4 clearly shows how people in
the Richmond communities must travel longer as the brown lines connect with the local hospital
with significantly lower intensity, and instead, the ones that connect them to hospitals in neighboring
become thicker and longer. More strikingly, Figure 4 clearly shows that these effects are heavily
pronounced for many communities in East Bay that will have to travel to the West Bay in search of
acute care hospital services. Three main bridges connect East with West Bay through the Oakland-
San Francisco Bay Bridge, the San Mateo-Hayward Bridge, and the Dumbarton Bridge. Figure
4c shows that no patient has to cross these bridges to reach their closest acute care hospitals.
However, if hospitals in East Bay fail, the travel volume in these bridges becomes highly important,
reaching values 7.8, 3.2, and 4.2 times higher than the roads with the largest volumes of travel (90th
percentile) if no hospitals fail.

Discussion

We present a modeling framework to investigate the post-earthquake access to acute care hospitals.
The framework combines probabilistic risk analysis with network modeling to investigate disruptions
of healthcare services across multiple Bay Area communities. Using novel data, we rigorously study
the entire Bay Area’s acute care portfolio with 76 hospitals (and 426 buildings), considering their
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infrastructure risks, healthcare capacity, and interdependencies, coupled with the transportation
system (see Methods).

First, we find that services within hospital buildings will be highly disrupted. We predict that, in
total, 51% of beds will be lost due to building damage, reducing the acute care capacity from 16,639
to 8,138 beds. In Alameda County, we predict the effects to be more pronounced, with only 19%
of functional beds, reducing its capacity from 3,221 to 612 beds. These results strongly highlight
the need for substantial preparedness to face future earthquakes in the Bay Area. We modeled
physical failures within buildings to study potential scenarios where the buildings’ components will
not be non-operational. Encouragingly, previous earthquakes have shown that medical personnel
can adapt to emergencies by reconfiguring spaces that remain functional (or safe) after earthquakes.
For example, the large Christchurch Hospital moved its triage area to the parking lot after the 2011
New Zealand Earthquake.46 Similarly, the Mustafa Kemal University Hospital’s personnel in Turkey
moved their surgery activities from the upper floors to the first story initially. Later, the personnel
moved their entire emergency department to the parking lot.35 If hospitals in the most affected
areas (e.g., Alameda County) prepare in advance to use different exterior spaces or interior spaces
that remain safe, e.g., by ensuring that there is enough space or that water and power can still
work for the exterior parts of the building, these hospitals may be able to recover, at least, some
partial functionality, instead of altogether dropping most of their capacity. In an emergency, quickly
recovering capacity is essential. Many patients may require immediate treatment, especially those
from neighborhoods close to the earthquake source, since they may be most affected.

Second, our results suggest that structural and non-structural building components must be
retrofitted to improve post-earthquake healthcare access. While retrofits have typically focused on
the main structure, past earthquakes show us that non-structural component failures frequently
cause loss of hospital functionality after earthquakes. For example, the Christchurch Hospital had
no structural damage after the 2011 Earthquake. However, damaged backup generators disrupted
intensive care units, the radiology department, and emergency services.28,46 Similarly, researchers
surveyed affected hospitals after the 2016 Kumamoto Earthquake. They found that 80% of the
facilities had water connection failures (but minimal or no structural damage) that disrupted critical
services such as hemodialysis and sterilizations.30,31 In California, hospitals with SPCs of 2 or lower
and NPCs of 3 or lower are mandated to be retrofitted by 2030. Meeting this deadline would be
a tremendous achievement for the resilience of hospitals. However, hospitals are unlikely to meet
this resilience goal as they have already manifested that they are under financial stress and that
the investments to achieve this goal are massive, as 24% and 69% of buildings have SPCs of 2 or
below and NPCs of 3 and below.19 If the goal is unachievable by 2030, Bay Area hospitals can still
enhance the system’s resilience by investing strategically in retrofitting those hospitals that serve
larger catchment communities. In addition, retrofit costs are often higher for structural components
than non-structural components since a structural retrofit often requires adding strength, (often)
stiffness, and ductility to the core structural system. In contrast, non-structural components can
often be strengthened by adding anchors to different equipment and elements without significant
interventions to the building’s backbone. Our results show that non-structural component failures
frequently cause functionality loss, especially at large distances from the ruptures. Thus, targeting
non-structural components, especially for those buildings that are already structurally sound (e.g.,
SPCs of 3 and higher), seems to be an effective way to enhance post-earthquake access to healthcare
over large regions.

Third, our results suggest significant and highly heterogeneous changes in hospital access after
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the earthquake, with substantial implications in the short and long term. The average travel time
to the closest hospital increases by 27%, from 5.9 to 7.4 seconds. We predict that Alameda County
will be affected the most, with an overall increase of 88%, but with zip codes that can experience
even four or five times longer travel times than pre-earthquake conditions. These longer travel
times will redefine the access to acute care services and medical equipment needed to treat critically
injured patients after an earthquake. For example, people with severe exposed fractures, a common
trauma injury in buildings that collapse, will require x-ray machines and surgery that can be found
in acute care hospitals. Similarly, acute care hospitals often have dialysis machines that can be vital
to treating patients with kidney failures from crush syndrome, a condition that develops if trapped
people in collapsed buildings have crushing injuries to skeletal muscle for a long time before being
rescued. Thus, our results suggest that Alameda communities will travel disproportionally longer
to access these critical services, which can have lethal consequences for many people because the
earthquake scenario in the Hayward Fault is also likely to cause high-severity injuries there. To
mitigate these disproportionate impacts, the Bay Area needs to elaborate emergency response plans
to rapidly deploy temporary healthcare facilities that help alleviate the deficit for healthcare in an
emergency in the East Bay. In addition, the Bay Area’s plans need to consider long-term public
health. Hospitals require a long time to be repaired, especially if both structural and non-structural
components are compromised; thus, disruptions can affect communities for years. Non-earthquake
emergencies, e.g., from accidents or sudden illnesses like cardiac arrests, require rapid delivery of
healthcare treatment. Thus, even in the long term, Alameda communities will face disproportionate
access to healthcare. Reconstructing and repairing the hospital infrastructure strategically and
promptly will be fundamental to protecting many communities.

Fourth, our results highlight the strong coupling between the transportation and the hospital
networks. We modeled disruptions to different hospitals and demonstrated the differential importance
of roads for healthcare access before and after the earthquake. We show that roads leading to
hospitals become more crowded over long distances. Such large volumes will require traffic plans,
especially in a post-earthquake scenario, when many people must reach emergency treatment
simultaneously. Our analysis did not include failures in the transportation system to study the
impact of hospital vulnerabilities on healthcare access cleanly. However, recent studies on the
vulnerability of the transportation system indicate that earthquakes can also make several bridges
fail in the Bay Area, further exacerbating healthcare access. Studies indicate that many communities
in Alameda County are at risk of experiencing delays in traveling time by car as many bridges could
collapse.47 As the Bay Area relies heavily on car traffic, these studies and our findings suggest that
healthcare access could be greatly impacted by an earthquake. We found that many communities in
East Bay will have to travel to the West Bay to access acute care hospitals using the Bay Bridge,
San Mateo-Hayward Bridge, or the Dumbarton Bridge. Studies indicate that smaller bridges serving
as access points to these three critical bridges are either at moderate or high collapse risks due
to earthquakes.47 The San Mateo-Hayward Bridge has even been pointed out to be at high risk.
Thus, many communities may be unable to cross the West Bay after an earthquake. Thus, planning
for an earthquake emergency in the Bay Area requires considering the vulnerabilities of multiple
infrastructure systems. Retrofitting bridges will have an important effect in mitigating the impacts
of earthquakes on healthcare access, but for that, the retrofit program needs to consider the relative
importance of different bridges across the city.
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Methods

Risk Formulation: For single to multiple buildings

We utilize an extension of the performance-based earthquake engineering (PBEE) framework, initially
established to assess earthquake consequences in an infrastructure unit, and analyze multiple hospital
buildings.48–50 Under Markovian (conditional independency) assumptions described in canonical
PBEE formulations,49,50 we find the probability distribution of an earthquake consequence, e.g.,
economic losses or fatalities, as

PDV,DS,IM (dv, ds, im) = PDV |DS(dv|ds)PDS|IM (ds|im)PIM (I ′m), (1)

where P () is a probability distribution (or mass) function, and DV is a random variable
representing an earthquake consequence (also called a decision variable). For example, DV can track
repair costs in buildings. In this case, DV will be a positive number with an upper bound of dvu,
i.e., the total replacement cost of the building. In other applications, DV has a different variable
space, e.g., DV ∈ Z for the number of injured people in a building.3,4 DS is an ordinal random
variable that evaluates structural damage in an infrastructure unit, and typically DS ∈ {None,
Slight, Moderate, Extensive, Complete}. Finally, IM is a random variable representing an intensity
measure of shaking at the building site, and generally, IM ∈ R≥0. Note that earthquake shaking
on the Earth’s crust has a physical upper bound, but such a bound is not generally modeled since
extremely high shaking cannot produce a bigger DS than Complete, thus barely impacting seismic
risk analysis. Frequently, DS and IM are marginalized from PDV,DS,IM (dv, ds, im) (e.g., through
summation and integration) to find PDV (dv).

48–50

Lee and Kiredmjian51 first formalized the extension of the PBEE formulation to multiple
infrastructure units,52–54,54,55 focusing on transportation infrastructure. After finding marginal
distributions of damage in single units, they formulate joint distributions of damage for all units
by defining spatial correlations and their decay for distant sites. However, in the last two decades,
empirical studies have better characterized spatial correlation on shaking (i.e., IM) rather than
building damage.56–59 To account for it, Ceferino et al.3 first formulated an extension of regional
PBEE incorporating earthquake shaking’s spatial correlation, defining fully the set of conditional
independencies in state-of-the-art regional risk models and applications.60–63 Ceferino et al.3 defined
the regional model for earthquake casualties, and here we apply it to hospital functionality in a
region.

We redefine the traditional PBEE notation to keep the equations concise in the extension to a
regional analysis with many buildings. We denote a random variable X’s probability distribution
PX(x) = π(x). Similarly, for a multi-variate vector X, we denote its probability distribution
PX(x) = π(x), where x is a specific realization of X. Using this notation, we define the damage
ordinal variable D, instead of DS, and call Ds

k and Dn
k the structural and non-structural damage

of building k. Thus, we are interested in the damage vector D = {Ds
1, D

n
1 , . . . , D

s
m, Dn

m}, where
m is the total number of buildings in the region. We also define the shaking variable I, instead
of IM , and call Isk and Ink the shaking measure affecting structural and non-structural damage of
building k. For example, Isk can be the peak ground acceleration or spectral acceleration affecting
the structural components, and Ink is the peak floor acceleration affecting acceleration-sensitive
non-structural components, e.g., ceilings. Thus, we are interested in the shaking intensity vector
I = {Is1 , In1 , . . . , Ism, Inm}, where m is the total number of buildings in the region. We extend
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the Markovian (or conditional independence) assumptions from single buildings49,50 to multiple
buildings3 to estimate the joint probability distribution of damage and intensity vectors as

π(d, i) = π(d|i)π(i) (2a)

π(d|i) =
m∏
k=1

π(dsk|isk)π(dnk |ink), (2b)

where d = {ds1, dn1 , . . . , dsm, dnm} and i = {is1, in1 , . . . , ism, inm} are specific realizations of D and
I, respectively. Eq. 2b assumes damage is independent at different buildings conditioned on
their respective shaking intensities; thus π(d|i) can be estimated as the product of probability
distributions of damage in each building. However, unconditional damages will be correlated
through the joint probability distribution of shaking in the region, π(i). Similarly, we assume
that structural and non-structural damage (Ds

k and Dn
k ) within a building k are conditionally

independent given their respective shaking intensities (Isk and Ink ). Yet, these two random variables
of damage will be correlated since these shaking intensities in the building are also correlated,
e.g., peak ground acceleration and peak floor acceleration. Figure 6 illustrates and summarizes all
conditional dependencies through a probabilistic graphical model.

Figure 6: Probabilistic graphical model (Bayesian network) representing the joint distribution of the risk
model to assess structural and non-structural damage from earthquake ground motion intensities.

We assess the building functionality vector F = {F1, . . . , Fm}, where Fm is a Bernoulli random
variable that assesses whether the hospital building k will work (Fk = 1) after the earthquake. We
model Fk as a deterministic function of the structural and non-structural damage of the building as
an input. Thus, under a change of variables, Eq. 2 becomes

π(f, i) = π(f |i)π(i) (3)

where f = {f1, . . . , fm} is a specific realization of F . Figure 7 illustrates and summarizes
all conditional dependencies through a probabilistic graphical model. Note that a probabilistic
formulation that links damage to functionality could also be incorporated, introducing an additional
term to Eq. 3, similar to Eq. 1. Thus, our approach admits such extensions.

Hospitals can rapidly lose functionality at early stages of structural and non-structural damage,
as observed in the 2023 M 7.8 Kahramanmaras Earthquake in Turkey,10 2011 M 6.1 Christchurch
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Figure 7: Probabilistic Graphical Model representing the joint distribution of the risk model to assess
hospital functionality from earthquake ground motion intensities.

Earthquake in New Zealand,21 and 2010 M 8.8 Maule Earthquake in Chile.64 We consider that
damage thresholds, ds and dn, for the structural and non-structural components trigger the disruption
of hospital functionality, i.e., if either fails, the hospital loses functionality. We can estimate the
probabilities of not exceeding these thresholds as psk = π(Ds

k ≤ ds|Isk = isk) and pnk = π(Dn
k ≤

dn|Ink = ink), respectively, which can be evaluated with earthquake fragility functions. Thus, we can
model functionality as the intersection of both random events, i.e., the structural and non-structural
components work after the earthquake. Since Ds

k and Dn
k are conditionally independent, the Fk is a

Bernoulli random variable with probability pskp
n
k . Accordingly,

π(f |d) =
m∏
k=1

[
pskp

n
k

]fk[
1− pskp

n
k

]1−fk
(4)

The functionality of the hospital relies on the structural and non-structural components as
described in Eq. 4. The hospital portfolio has various levels of SPC and NPC that control the final
functionality of the hospital.

We are also interested in the probability distribution of the total number of functional beds Bt

in the region, which can be estimated as

Bt =

m∑
k=1

βkFk (5)

where βk is the number of beds (all functional before the earthquake) at the hospital building k.
We are also interested in estimating the distributions of the total number of functional beds Bh in
hospital h as each hospital can have multiple buildings with beds. Let kh be the set containing all
indexes of the buildings belonging to the hospital h. Thus,

Bh =
∑
k∈kh

βkFk (6)

In addition, we want to evaluate the contributions of structural and non-structural damage in
buildings to the loss of functionality on the hospital campus. We can model the expected number of
buildings with structural damage in a hospital campus given that the hospital only has a portion ϕ
of functional beds as
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E
( ∑

k∈kh

1{Ds
k > ds}

∣∣∣∣Bh < ϕ
∑
k∈kh

βk

)
=
∑
k∈kh

π(Ds
k > ds ∩Bh < ϕ

∑
k∈kh

βk)

π(Bh < ϕ
∑

k∈kh
βk)

(7)

Similarly, we can evaluate the number of buildings with nonstructural damage in a hospital
campus given that the hospital only has a portion ϕ of functional beds as

E
( ∑

k∈kh

1{Dn
k > dn}

∣∣∣∣Bh < ϕ
∑
k∈kh

βk

)
=
∑
k∈kh

π(Dn
k > dn ∩Bh < ϕ

∑
k∈kh

βk)

π(Bh < ϕ
∑

k∈kh
βk)

(8)

Approaches for numerical solutions

Regional seismic risk analysis is a hyper-dimensional problem. π(f , i) in Eq. 3 can be analytically
evaluated because π(f |i) and π(i) have closed-form expressions.57–59,65 However, π(f) cannot be
analytically evaluated because it requires the marginalization of correlated random variables, i.e., in
i, which involves integration without closed-form solutions. Conducting marginalization operations
through numerical integration (e.g., Reimann integration) also becomes computationally intractable,
even for a few buildings.3 Thus, modern seismic risk analysis models are often solved using Monte
Carlo to find regional earthquake consequences, such as π(f).

Risk modelers also compute the distribution of aggregated earthquake consequences, such as
total repair costs in regions. In our analysis, we seek to estimate the probability distribution π(bt),
the sum of functional beds from different hospital buildings. π(bt) cannot be solved analytically,
and numerical integration is computationally intractable even for a few buildings.3 Thus, we
often solve these high-dimensional problems with Monte Carlo. Other techniques can also find
π(bt) with high computational efficiency when the number of buildings is large enough through
approximations of π(bt|i). Ceferino et al.3,4 utilized techniques arising from the Central Limit
Theorem (CLT) to show both theoretically and empirically when and why these approximations
can be accurate and computationally efficient. Later, Heresi and Miranda55 empirically showed that
similar approximations work under mild correlation conditions in seismic risk models.

Since hospitals have different numbers of buildings, from a few to many, this study uses Monte
Carlo to solve our risk model instead of the approximations from CLT. We leveraged the Natural
Hazards Engineering Research Infrastructure (NHERI) SimCenter’s R2D tool66,67 to set up and
compute π(i) and π(d, i) in Eq. 2. We used R2D to generate 5,000 realizations of i and d. We
used them to compute f , Bh for each hospital, and Bt in the entire region.

Earthquake Rupture and Shaking Modeling

We study an M 7.25 earthquake scenario on the Hayward Fault. Similar scenarios have been
extensively studied to inform resilience policy-making in the Bay Area.45 The rupture geometry was
obtained from the Uniform California Earthquake Rupture Forecast (UCERF) 2.68 The earthquake
ruptures the Hayward South and North sections over a total length of ∼110 km.

Estimates of shallow shear wave velocities (averages at the top 30 m of soil) are utilized over
the entire Bay Area.69 With this information, we built the joint probability distribution of shaking
intensities π(i) in R2D. We utilized a state-of-the-art ground motion model70 for shallow crustal
earthquakes to estimate medians and logarithm standard deviations of i. i’s uncertainty is divided
into two components.71 The first component captures between-event uncertainty and affects the
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entire region equally, but it varies per intensity measure type, e.g., peak ground acceleration versus
spectral acceleration. The first component captures correlation across different intensity measures.72

The second component captures within-event uncertainty and affects the entire region and intensity
measure types differently. This component captures spatial correlation and correlation across
different intensity measure types. We use a computationally efficient method to account for the
second component.59 As stated earlier, we sampled 5,000 realizations of i and show expected values
E(i) for the entire region (Figure 1). Notice that for illustration purposes, we show E(i) for the
entire Bay Area (+10, 000 locations), but for the hospital network’s risk analysis, we only need to
quantify i at the 426 building locations.

Vulnerability modeling

This paper utilized building-level lognormal fragility functions to determine damage to structural and
non-structural components. For example, to determine the likelihood of not exceeding a structural
damage threshold ds in building k as a function of the shaking intensity measure, we use fragility
functions like

π(Ds
k ≤ ds|Isk = isk) = Φ

(
log(isk)− log(α)

β

)
(9)

where Φ is the standard normal cumulative distribution function.73 The parameters α and
β define the fragility function and vary according to the damage threshold ds and the building’s
structural type and vulnerability (e.g., SPC rating) for building k. α equals the shaking intensity
(e.g., PGA) that exposes the building to a 50% probability of damage of at least ds. β is a normalizing
factor that defines the width of the transition range between shaking with low and high damage
probability, and it is a measure of aleatory uncertainty in the vulnerability analysis. In the limit,
when β → 0, Eq. 9 becomes equivalent to a deterministic assessment, where the building would fail
after a fixed shaking threshold. An analogous equation is used for non-structural damage.

We assess structural damage for the variety of structural systems types and five levels of structural
vulnerability (Figure 1 and Supplementary Figure 1). We used and adapted structural fragility
functions developed in HAZUS,74 also available in R2D,75 to obtain this wide variety of fragility
functions. Following the definitions of SPC ratings (Supplementary Table 1), we mapped SPC
1, and 2 to pre-code and moderate-code fragility functions for regular buildings from HAZUS,74

i.e., we used those α and β values for Eq. 9. Note that SPC 1 and 2 category does not comply
with the structural provisions of the Alquist Act. In contrast, SPC 3, 4, and 5 comply with the
Alquist Act. Fragility functions for SPC 5 buildings are obtained by increasing all the α values
for high-code structures by 50% higher PGAs. These adjustments were made to represent that
hospitals designed to meet the Alquist Act (SPC 5) according to the ASCE7-16 building code
are designed to withstand 50% higher seismic loads than regular buildings, i.e., an importance
factor of 1.5.76 SPC 3 buildings are steel structures that comply with the Alquist Act but are
pre-Northridge. We used regular building fragility functions to represent the vulnerability of SPC
buildings as pre-Northridge’s non-ductile connections as it takes ∼30% less seismic demands to
make them reach moderate and extensive levels of damage,77 i.e., 0.7 × 1.5α =∼ α. Finally, we
modeled SPC 4 buildings with 1.25α to represent that these buildings have lower performance than
SPC 5 buildings (1.5α). SPC 4 buildings comply with the Alquist Act but can have some structural
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conditions that make them more prone to damage, e.g., lack of weak beam/strong column, presence
of short captive columns.78

We followed a similar approach for the fragility functions of buildings’ non-structural components
(Supplementary Table 2). We mapped NPC 1, 2, and 3 to pre-code, moderate-code, and high-code
fragility functions for acceleration-sensitive non-structural components from HAZUS.79 For NPC 4
and 5, we adjusted the fragility functions of high-code fragility functions by increasing the median
PFA to reach different damage states by 25% and 50%, respectively. Unlike structural components,
we defined the same fragility functions for all building types because hospitals have similar non-
structural components, e.g., equipment for acute care. However, as stated earlier, the input PFA for
each hospital building differs and depends on the structural type since we use spectral acceleration
as a proxy.

After defining these fragility functions for the portfolio of hospital buildings, we computed
realizations of building damage utilizing R2D.80 As mentioned, we generated 5,000 samples of the
buildings’ structural and non-structural damage for each ground-shaking simulation. Figure 2 shows
π(Ds

k > ds) and π(Dn
k > dn), the distribution of damage for the structural and non-structural

components. As stated earlier, we initially tested multiple thresholds of damage, ds and dn (e.g.,
slight, moderate, extensive damage) to evaluate hospital disruptions (Figure 3). However, we used
the slight damage threshold for most of the analysis later in the study since most hospitals lose
functionality at quite early stages of damage.

At each building k, we used the Peak Ground Acceleration (PGA) as the shaking intensity
random variable Isk to estimate structural damage. While spectral accelerations can also be used
to improve damage predictability through the inclusion of structural properties, such as period of
vibration,4 we did not follow this approach here since fragility spectral acceleration-based fragility
functions are not available for the diversity of building typologies in the San Francisco Bay.

We used Peak Floor Acceleration (PFA) as the shaking intensity random variable Ink to estimate
non-structural damage at building k. We focused on PFA because acceleration-sensitive non-
structural components (e.g., ceilings and shelves) often fail before drift-sensitive non-structural
components. In addition, acceleration-sensitive components, such as x-ray equipment, are often
more critical for the functionality of the hospital. PFA varies along the building height, and the total
non-structural damage depends on the distribution of non-structural components in the building
stories, but such data are often unavailable. Thus, we utilize a proxy for a representative PFA equal
to the spectral acceleration at the building’s period of vibration. Further studies can enhance the
fidelity of this analysis if higher-resolution information for non-structural components is available,
e.g., on each floor.

Network Model: Acute care Accessibility Modeling

We denote G = (v, e) a graph, where v is the set of |v| vertices and e the set of |e| edges. This
graph will represent the infrastructure system of hospitals and roads supporting healthcare access
in the Bay Area. Let p ∈ p be a vertex representing the location of a patient needing acute care
and p be the set of all patient vertices. Also, let h ∈ h be a vertex representing the location of
an acute care hospital and h be the set of all hospital nodes. In this case, p ⊆ v, and h ⊆ v.
e = {(u, v)|u, v ∈ v} is the set of |v| edges representing different roads connecting different locations
(vertices) in the region. We denote τ(u, v) ∈ R≥0 the travel time between vertices u and v.

To analyze healthcare access, we evaluate the shortest travel times for a patient in node p to
reach any hospital vertex in the set h. We modeled hospital h as a source vertex and found the
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shortest paths to all vertices p ∈ p simultaneously, resulting in a shortest-path tree problem. This
approach is faster than computing multiple shortest for each pair h and p, separately. Thus, for
each vertex h, we find

min
(u, v) ∈ e

∑
τ(u, v)x(u, v) (10a)

s.t.
∑

v:(u,v)∈e

x(u, v)−
∑

v:(v,u)∈e

x(v, u) = bu, ∀u ∈ v (10b)

bu = |p| for u = h (10c)

bp = −1 for u ∈ p (10d)

bu = 0 for u ̸= h, p (10e)

x(u, v) ∈ {0, 1}, ∀(v, u) ∈ e (10f)

This optimization problem seeks to find the minimum travel time from vertex h to all vertices
in p simultaneously. This optimization problem can also be interpreted as a special network flow
problem where we seek to find a directed path with minimum cost from a source node h to multiple
destinations. τ(u, v) can be interpreted as edge flow cost, and the shortest path problem can be
seen as sending a flow unit to each destination in p. We solve Eq. 10 to find the shortest travel
time t∗(p, h) from each node in p to each (hospital) vertex h (Figure 8). We can use multiple
algorithms to solve Eq. 10, including Dijkstra and Bellman-Ford.81 For reference, the computational
complexity of the classical Dijkstra’s algorithm is O(|v|2) and Bellman-Ford is O(|v||e|). Note that
these algorithms will find the shortest paths to all vertices in v, and not just on p, at once.

After finding t∗(p, h) from all h ∈ h, we compute the minimum travel time t∗(p) to any hospital
by comparing the different options each patient p has. Thus,

t∗(p) = min
h ∈ H

t∗(p, h) (11)

In a pre-earthquake scenario, all hospitals will be functional; thus, Eq. 11 finds the shortest time
to reach an acute care hospital p (Figure 8). In an earthquake, the number of functional hospitals
can be reduced. Thus, we adjust Eq. 11 to

T ∗(p) = min
h ∈ H

t∗(p, h) (12)

where h = {h|Bh > 0 ∀h ∈ h}. Thus, h is a set with a random selection of elements, i.e.,
hospital vertices. Eq. 12 couples the network model to the risk model because the condition of
hospital h to be in h is to have at least one functional bed. From Eq. 8, this condition implies
that at least one building is functional. While this may be an optimistic condition, as some large
campuses will need more than one building, we use it to showcase how to couple network models
with risk models to assess post-earthquake healthcare access. Thus, T ∗(p) is a random variable. We
solve Eq. 12 using the 5,000 Monte Carlo simulations obtained before.

Bay Area’s Transportation System

We study the entire San Francisco Bay, where the transportation network is massive, with |v| =1.5
million vertices and |e| = 2.8 million edges. The edges in the graph represent the roads in the
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transportation system, whose information was obtained from the San Francisco Region Roadways82

and OpenStreetMap (OSM).83 We incorporated directional and travel time data into the network
models using OSM’s OSMnx library.84 We couple the transportation network data to the hospital
and the patient data. The 76 hospitals are embedded in the network models by identifying the
network’s vertices closest to the hospital locations, forming the set h. In addition, we obtained
population data at 1,613 zip codes. We assume the number of patients is proportional to the
population. To form the set p, we identify the network’s vertices closest to the census tract’s
centroids (Figure 8).

Figure 8: Shortest paths from patient vertices (p ∈ p) to hospital vertices (h ∈ h) before the earthquake in
the San Francisco county. The transportation network is shown in brown lines, the shortest paths in green
lines, hospital vertices in blue dots, and patient vertices in red dots.
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