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Abstract. The advent of deep learning has had a significant impact
on various sectors of modern society, with artificial neural networks be-
coming the leading models for tackling a wide range of challenges. The
innovation of Neural Architecture Search (NAS) methods, which facili-
tate the automated creation of optimal neural networks, marks a sig-
nificant step forward in this field. However, the large computational
resources and time required for NAS processes are significant limita-
tions. To address these challenges, Once-For-All (OFA) and its advanced
version, Once-For-All-2 (OFAv2), were introduced to develop a single,
comprehensive super-network capable of efficiently deriving specific sub-
networks without the need for retraining, thereby maintaining stellar
performance under varying constraints. Building on this, Neural Ar-
chitecture Transfer (NAT) was developed to improve the efficiency of
extracting such sub-networks from the overarching super-network. This
study introduces Neural Architecture Transfer 2 (NAT2), an evolution of
NAT that refines the multi-objective search mechanisms within dynamic
super-networks to further improve the performance-complexity trade-off
for the searched architectures. Leveraging the advances of OFAv2, NAT2
introduces significant qualitative improvements in the sub-networks that
can be extracted by incorporating novel policies for network initialisa-
tion, pre-processing, and archive updates, as well as a fine-tuning based
post-processing pipeline. The empirical evidence presented here high-
lights the effectiveness of NAT2 over its predecessor, particularly in the
development of high-performance architectures with a reduced number
of parameters and multiply-accumulate operations.
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1 Introduction

Deep learning has revolutionised many fields through the use of artificial neural
networks, which excel at identifying complex patterns without manual feature
engineering. These networks outperform traditional methods in various tasks due
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to their advanced layered architecture, which facilitates superior feature extrac-
tion. Despite these advances, the increasing size of models poses challenges [8].
Neural Architecture Search (NAS) is emerging as a solution to automate the
discovery of optimal neural architectures, minimising the need for domain ex-
pertise while catering to specific datasets and tasks [18]. NAS has evolved to
balance computational efficiency with model performance, with an emphasis on
reducing the complexity of the search process, energy consumption and conse-
quently CO2 emissions. It seeks an optimal balance between model accuracy and
computational requirements, including parameters and operations, especially on
memory-constrained devices [7].

The Once-For-All (OFA) method marked a breakthrough by minimising com-
putational requirements through a versatile super-network that allows the ex-
traction of efficient sub-networks tailored to different constraints, without com-
promising performance [1]. This approach was further enhanced by Once-For-
All-2 (OFAv2), which expanded the search space using state-of-the-art neural
network design techniques, thereby enhancing the capabilities of the super-
network [15]. Focusing on the extraction of sub-networks, the Neural Architec-
ture Transfer (NAT) algorithm was developed to optimise this process through
knowledge transfer and adaptation from pre-trained super-networks, combining
transfer learning with multi-objective evolutionary search [11].

This paper introduces Neural Architecture Transfer 2 (NAT2), which ad-
vances NAT by optimising multi-objective search algorithms for dynamic super-
network architectures. NAT2 uses OFAv2-generated super-networks and incorpo-
rates architectural enhancements such as parallel blocks, dense skip connections,
and early exits as search space. Improvements include new initialisation, pre-
processing and update policies, as well as a novel coding scheme and improved
prediction models. An optional post-processing tuning stage is also introduced
to further refine model performance with minimal additional parameters and
MACs. NAT2 not only outperforms NAT in terms of accuracy, but also achieves
these gains with fewer parameters and MACs, underscoring its goal of creat-
ing architectures that are exceptionally lightweight in terms of parameters and
computational resources. Figure 1 gives an overview of the NAT2 methodology.

The manuscript proceeds as follows: Section 2 reviews NAS and significant
work in image classification, detailing their design motivations. Section 3 explains
the NAT2 methodology, highlighting the novel contributions. Experimental se-
tups, results and comparisons are presented in section 4. Section 5 concludes the
paper by summarising its main contributions.

2 Related Works

Neural Architecture Search (NAS) remains a vibrant area within deep learn-
ing, bridging machine learning techniques with optimisation to automate the
design of complex neural networks. Despite its acclaim, NAS suffers from a lack
of standardised methodologies due to its diverse techniques. Elsken et al. clas-
sifies NAS algorithms based on three main components: the search space, the
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Fig. 1. The NAT2 summary diagram. The proposed algorithm designs customised ar-
chitectures from a very large search space of possible state-of-the-art configurations.
Multi-objective optimisation extends the work of NAT with new encoding and super-
networks management techniques. New predictors provide accurate estimates for effi-
cient evolutionary search. Once the optimal sub-network has been extracted, it can be
further refined by an additional post-processing step for fine-tuning early exits neural
networks.

search strategy, and the performance evaluation strategy, laying a foundation for
understanding the multifaceted nature of NAS [2].

Early NAS efforts, such as NASNet, demonstrated the potential to create
models that outperform human-designed counterparts in tasks such as image
classification by employing a cell-based search approach, albeit at considerable
computational cost [18]. To mitigate these challenges, PNAS introduced a se-
quential model-based optimisation strategy that uses a predictor to efficiently
guide the architecture search process, thereby reducing computational load and
time [6]. Subsequent developments led to the POPNAS series, which refined the
cell-based methodology with predictors to estimate training times, allowing a
shift towards multi-objective optimisation. This balanced search efficiency with
architectural quality, effectively training networks along the Pareto front to op-
timise both search time and model performance [9, 4, 3].

DARTS further improved search efficiency by introducing a continuous search
space, represented as a super-network. This allowed simultaneous optimisation of
model weights and structure by gradient descent, culminating in the extraction
of a subgraph as the final architecture [7]. Lyu et al. introduced a multi-objective
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evolutionary algorithm with a probability stack (MOEA-PS) that focuses on op-
timising both accuracy and time efficiency in the design of deep neural networks.
MOEA-PS incorporates a novel representation and genetic operation control
mechanism to efficiently generate architectures [12]. Ma et al. proposed a novel
classifier-based Pareto evolution approach to address the rank disorder issue in
multi-objective evolutionary NAS. By transforming the NAS process into a clas-
sification task, the authors simplify the search for optimal architectures. The
approach leverages an online classifier for predicting dominance relationships,
coupled with adaptive clustering for reference architecture selection and an α-
domination method to balance sample distribution [13].

2.1 Once-For-All

Once-For-All (OFA) represents a paradigm shift in Neural Architecture Search
(NAS) by introducing a super-network capable of adapting to different architec-
tural configurations without the need for retraining. This innovation addresses
the computational inefficiencies of traditional NAS methods and significantly
reduces the carbon footprint associated with extensive model training processes.
OFA employs a novel Progressive Shrinking (PS) strategy, a comprehensive
method that goes beyond simple pruning by dynamically adjusting model di-
mensions. This approach not only diversifies the architectural space, but also
ensures optimal performance on a variety of hardware platforms with differ-
ent constraints [1]. The core of OFA’s methodology lies in its efficient training
regime, which uses PS to sequentially refine the super-network. Starting with the
most extensive network configuration, it gradually introduces constraints, allow-
ing a wide range of sub-networks to be trained. This strategy is advantageous
because it ensures that smaller networks inherit the most important features
from their larger counterparts, thereby maintaining high levels of accuracy. The
effectiveness of the PS algorithm is evident in its application across different
hardware, where OFA consistently outperforms state-of-the-art NAS methods,
offering significant improvements in latency and accuracy with significantly lower
environmental impact. Significantly, OFA’s approach to model deployment rev-
olutionises NAS by separating the training phase from the architecture search,
thereby eliminating the training overhead for model specialisation. This sepa-
ration enables rapid deployment across multiple scenarios without additional
computational cost. The flexibility and efficiency of the architecture in training
and deployment underscores OFA’s pivotal role in advancing NAS towards more
sustainable and adaptive solutions [1].

2.2 Once-For-All-2

Once-For-All-2 (OFAv2) advances its predecessor by integrating architectural
improvements and a refined training methodology to construct a super-network
capable of efficient deployment across diverse hardware configurations. This evo-
lution maintains environmental sustainability while increasing performance [15].
In particular, OFAv2 incorporates early exits, parallel blocks and dense skip
links into the OFAMobileNetV3 architecture. These features not only increase
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the adaptability and performance of the super-network, but also facilitate the
training of more diverse and efficient sub-networks. The Extended Progressive
Shrinking (EPS) algorithm introduces Elastic Level and Elastic Exit steps tai-
lored to the new architectural elements. Elastic Level allows the dynamic selec-
tion of parallel blocks within levels, thereby increasing architectural diversity.
Elastic Exit, on the other hand, allows the training of sub-networks to be ter-
minated at different stages, optimising efficiency and performance. Together,
these steps enable OFAv2 to improve accuracy over OFA while maintaining its
flexibility and environmental benefits. In addition, OFAv2’s novel approach to
teacher network extraction dynamically updates the teacher network after each
EPS step, ensuring that the most relevant and up-to-date knowledge is trans-
ferred to subsequent training steps. This strategy, in contrast to OFA’s static
teacher network, provides a more nuanced and effective knowledge distillation
process [15].

2.3 Neural Architecture Transfer

Neural Architecture Transfer (NAT) is presented as a NAS technique with an
innovative focus on the rapid generation of task-specific models through a strate-
gic combination of online transfer learning and multi-objective evolutionary
search [11]. At the heart of NAT’s efficiency is the use of a pre-trained super-
network, based on the OFAMobileNetV3 search space, which enables skilful ex-
ploration of architectural designs. This methodology facilitates rapid adaptation
of architectures to different hardware specifications or objectives without the
need for re-training, overcoming the computational and time constraints of tra-
ditional NAS methodologies. NAT’s unique approach is to selectively tune the
sub-networks of the super-network that are expected to align with the efficient
trade-off frontier for the targeted data set, rather than indiscriminately tuning
all possible sub-networks. This focused adaptation not only conserves compu-
tational resources, but also ensures that the generated architectures are highly
optimised for the given objectives. Demonstrated on a wide range of image classi-
fication tasks, including those with limited data availability, NAT has proven its
ability to efficiently deliver models that meet and frequently exceed the state-of-
the-art in mobile environments, while exploiting the comprehensive and versatile
search space provided by OFAMobileNetV3 [11].

3 Method

NAT2, the proposed advanced version of the Neural Architecture Transfer (NAT)
algorithm, incorporates the Once-For-All-2 (OFAv2) technique for generating the
initial super-network search space to generate architectures with high perfor-
mance and lower complexity. It includes modifications to the original algorithm,
sub-network sampling, and performance prediction methods. It introduces a pre-
processing step for initialising a variety of efficient architectures, and a two-stage
post-processing step for fine-tuning these architectures. Components not men-
tioned remain unchanged from the original version.
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Fig. 2. The encodings representing the possible sub-networks within different types of
super-networks have the following structure. R encodes the value corresponding to the
size of the input images. W encodes the value of the width multiplier, which determines
the width of the network architecture. X encodes information about the selected exit,
specifically for super-networks that support early exits. Li encodes the configuration
of the ith IRB/IB block for non-parallel networks. Pi encodes the configuration of the
ith level, i.e. the set of parallel blocks, for parallel networks.

3.1 Expanded Search Space

NAT2 introduces an advanced new encoding method to enhance evolutionary
search within OFAv2 super-networks, refining the encoding technique used by
NAT in OFAMobileNetV3. The original encoding, while fundamental, required
refinement to cover a wider range of architectural possibilities. NAT encoding
uses integer encoded strings of 22 elements, shown in Figure 2 as the “Baseline”.
This compact notation conveys specific details: the first value represents the
resolution of the input image R, and the second specifies the width multiplier
W , which is essential for adjusting filter sizes in the OFA framework. NAT2
continues the approach of generating two super-networks with width multipliers
of 1.0 and 1.2, maintaining the core coding principles of NAT.

In the NAT framework, the 20 encoded values denote combinations of kernel
size K and expansion ratio E for each of the 20 internal Inverted Residual Blocks
(IRB) or Inverted Blocks (IB). NAT2 extends this encoding to parallel blocks
within super-networks by converting these pairs to triplets by adding a new term
A, which ranges from 1 to 7 to cover all permutations of parallel block activation
states. In addition, a special value of 0 indicates the absence of the ith block or
level, effectively reducing the stage depth.Thus, in this extended framework, each
of the 20 Pi values can signify up to 64 unique states, enriching the search space
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without increasing the size of the encoding. This adaptation is illustrated in the
second row of Figure 2, marked “Parallel”.

In order to include early exits within super-networks, thus facilitating the ex-
traction of sub-networks that can make inferences at intermediate stages, NAT2
introduces an additional variable X into the encoding strings, positioned third.
This inclusion is shown in the third row of Figure 2, marked “Early Exits”. The
value of X corresponds to the index of the selected exit point, providing precise
details of the selected early exit in the super-network structure. NAT2’s extended
encoding, shown in the fourth row of Figure 2 under “Early Exits + Parallel”,
combines the adjustments for parallel blocks and early exits. This method greatly
expands the search space relative to the original NAT, with the minor concession
of adding an extra value to the encoding sequence.

3.2 Archive Initialization and Update
NAT2 adopts a novel approach to managing the optimal sub-networks archive
that affects two key phases of the NAT algorithm: archive initiation and expan-
sion. During the initiation phase, NAT2 adopts a different sampling strategy from
NAT, which samples architectures uniformly across the search space, inadver-
tently favouring networks with four levels of depth. This bias in NAT arises from
the coding of skippable IRB blocks, where the use of 0 as a skipping mechanism
disproportionately represents shallower levels. The complexity is compounded
by the introduction of parallel blocks, which increases the encoding variations
for each network level to 64. To address this, NAT2 prioritises uniformity in
the sampling of sub-networks, not indiscriminately across the search space, but
with a focus on level and network depth, as well as block configurations, in-
cluding both parallel and non-parallel forms. This strategy encourages a more
diverse range of architectures within the initial archive, thereby increasing the
predictor’s ability to generalise across a large training dataset.

NAT2 adopts a sub-network replacement strategy, eschewing the incremental
addition of new sub-networks. Instead, NAT2 fills the archive to capacity from
the beginning with a predefined maximum number of architectures. During each
iteration, inferior architectures are replaced by superior ones from the evolution-
ary search, ensuring a constant archive size. This technique aims to improve the
quality of the architectures in the archive, which subsequently improves the per-
formance of the prediction model. This improvement is particularly noticeable
in the early stages, providing a richer dataset for training the predictor, allowing
for more accurate sub-network evaluations in NAT2.

In addition, NAT2 introduces a pre-processing phase during archive initiali-
sation, which involves sampling a set of architectures, As, ten times the intended
size of the archive, fixed at 300. After evaluating and comparing these sampled
sub-networks, only the top As − 2 networks, including the maximum and min-
imum networks, make up the initial archive. This procedure of selecting high
quality architectures from the start promotes better performance in subsequent
sub-networks. However, this preprocessing step initially increases the execution
time, a singular cost that depends on the volume of architectures initially sam-
pled.
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3.3 Performance Predictor

NAT2’s evolutionary search process produces a large number of sub-networks,
and evaluating the performance of each one individually, despite weight shar-
ing, is computationally prohibitive. To overcome this, NAT2 uses a performance
prediction model. This regression-based model is trained online using the en-
codings of the sub-networks in the archive and their top-1 accuracy as training
data. This training allows the predictor to estimate the performance of unseen
architectural encodings, making the evaluation of many sub-networks computa-
tionally feasible.

In NAT2, the range of potential prediction models has been significantly
expanded. Initially, models such as Gaussian Process (GP), Radial Basis Func-
tion (RBF), Multilayer Perceptron (MLP), Classification and Regression Tree
(CART) and Radial Basis Function Ensemble (RBFE) were considered. Further
investigation led to the inclusion of Support Vector Regressor (SVR), Ridge Re-
gressor, K-Nearest Neighbours Regressor (KNN) and Bayesian Ridge Regressor.

In addition, models such as End-to-End Random Forest-based Performance
Predictor (E2EPP) [17], Light Gradient Boosting Machine (LGBM) [5] and Cat-
boost [14] have been added to the list of candidate predictors based on their doc-
umented success. This wide range of machine learning models allows NAT2 to
thoroughly investigate different regression mechanisms, highlighting the critical
role of the predictor in the effectiveness of the algorithm.

3.4 Training Networks with Early Exits

The training regime for super-networks with early exits within NAT2 has been
refined through the Anticipate Ensemble and Prune (AEP) methodology, ad-
dressing early exit orchestration alongside OFAv2 enhancements [16]. It primar-
ily applies the AEP technique to multi-exit networks, using a weighted ensemble
strategy for exits. This approach uses different weighting schemes to equitably
adjust the influence of each exit, thus improving training results [16]. In addition,
NAT2 assimilates ENS-KD, a knowledge distillation strategy from OFAv2 based
on the AEP concept. Unlike conventional approaches that transfer knowledge to
a student network only from the last layer of the teacher, ENS-KD uses data
from all exits of the teacher network. By applying the weighting and aggrega-
tion of the AEP, it enables a more efficient knowledge distillation, resulting in
an enhanced performance of the student network.

During the initial training phases of NAT2 super-networks with early exits,
the maximal networks extracted from the OFAv2 super-network, particularly
those with width multipliers of 1.0 and 1.2, undergo AEP training following the
DESC weighting strategy [16]. This is possible because the maximal network
in an OFAv2 super-network with early exits includes all exits from the super-
network. For the adaptation phase, where the super-network is fine-tuned by
sequentially activating sub-networks, NAT2 uses a training algorithm similar
to the final phase of the Extended Progressive Shrinking (EPS) algorithm [15].
However, whereas EPS gradually reveals elastic parameters and their values,
NAT2 immediately makes all elastic parameter values available for sampling.
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Table 1. The details of the datasets used in this work in terms of number of classes
and splits.

Dataset Classes Train size Validation size Test size
Tiny ImageNet 200 85000 15000 10000
CIFAR10 10 45000 5000 10000
CIFAR100 100 45000 5000 10000

In the adaptation phase, NAT2 differs from its predecessor by replacing stan-
dard knowledge distillation with the ENS-KD technique for early exit super-
networks [15]. To align with the EPS training used in OFAv2, the sub-networks
activated during this phase in NAT2 are configured as single exit networks.

3.5 Post-Processing

In NAT2’s multi-objective optimisation, the most effective sub-networks excel
across different objectives, but may not maximise their classification potential.
To improve accuracy, two different fine-tuning post-processing methods are used.
The first applies to single-exit super-networks and the second to early-exit super-
networks, with both methods consisting of two steps. First, the optimal training
time, e, for each sub-network is determined by fine-tuning on the target dataset
and assessing the performance of the validation set. Subsequently, further fine-
tuning for e epochs with both training and validation sets leads to an evaluation
of the test classification performance. The difference between these methods
lies in the fine-tuning approach. The first method simply fine-tunes single-exit
networks generated by NAT2. The second, using the AEP technique, integrates
all exits above the selected exit for combined fine-tuning [16], typically achieving
higher accuracy with a marginal parameter and MACs increase.

4 Results and Discussion

The experiments aimed to demonstrate the efficiency of NAT2 in producing
architectures with improved or equivalent performance compared to its prede-
cessor, while reducing parameters and MACs. Both NAT and NAT2 models were
pre-trained on the Tiny ImageNet dataset, following the parameter configura-
tions from the original NAT study [11]. Architecture generation and validation
was performed on the CIFAR10, CIFAR100 and Tiny ImageNet datasets, which
characteristics related to splits and number of classes are summarized in Table 1.

At the end of each search, the top four architectures were selected for both
NAT and NAT2. In the case of the search designed to maximise accuracy as
a single objective, only the best performing architecture was returned. All the
found architectures were trained using SGD with a momentum of 0.9 and a
weight decay of 3 · 10−4, starting with a learning rate of 2.5 · 10−3, adjusted by a
cosine annealing scheduler, and a batch size of 256. The warm-up periods used
identical hyperparameters except for an initial learning rate of 7.5 · 10−3.

During the post-processing phase, the architectures were trained with an
initial learning rate equal to 10−4 and AdamW optimizer with weight decay set to
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Fig. 3. The rho correlation achieved by the proposed accuracy predictors. The metric
is evaluated via 10-fold cross-validation and then averaged.

Fig. 4. The inference time achieved by the proposed accuracy predictors. The metric
is evaluated via 10-fold cross-validation and then averaged.

Fig. 5. The rho correlation values achieved by the LGBM accuracy predictor for dif-
ferent training set sizes and encodings.

5x10−4 [10]. The batch size for these experiments was set to 64, and the networks
were trained for a maximum of 150 epochs using a cosine annealing learning rate
scheduler. Early stopping was used, with a patience value of 30 epochs based
on validation loss. For the AEP strategy for early exit architectures, a uniform
weight was used to balance the contribution of exits, as this gave better results
on average. All models were implemented using PyTorch 1.12.1 and experiments
were run on an NVIDIA Quadro RTX 6000 GPU.

4.1 Performance Predictors Analysis
In the first ablation study, predictor models were evaluated with a fixed training
set size of 300, using the encodings from Section 3 for the input features. The
performance of the predictor models was assessed using correlation values de-
rived from the analysis of sub-networks of OFAv2 and OFA configurations. This
study aimed to identify the most accurate predictor of sub-network accuracy, ap-
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Fig. 6. The results of the study of the effectiveness of the OFAv2 super-networks com-
pared to the OFA super-network within the NAT algorithm, based on the proposed
datasets and optimisation strategies. For both sets of experiments, the encodings pro-
posed in Section 3 were used.

plicable to both NAT and NAT2 evaluations. Through 10-fold cross-validation,
models were evaluated and their performances averaged; the best performing
ensemble was selected as the predictor. The comparison, shown in Figure 3, re-
vealed CatBoost and LGBM as top performers with rho correlations above 0.9,
indicating a strong relationship between encoding accuracy and network hetero-
geneity capture. The time efficiency analyses in Figure 4 highlighted the CART,
RIDGE and BAYESIAN models as the fastest, albeit with lower performance.
The balance between rho correlation and fitting time favoured LGBM over the
slightly better but slower CatBoost. Further evaluations varied training set sizes
and encoding methods, with integer encoding outperforming one-hot in perfor-
mance and stability, as shown in Figure 5. These results, obtained with LGBM,
suggest that there is an optimal number of samples beyond which improvements
in rho correlation plateau. The switch from NAT’s growing archive, with initial
size of 100, to NAT2’s fixed-size archive is validated by improved early search
accuracy estimation, highlighting the effectiveness of the method.
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4.2 OFAv2 Super-Networks Analysis

The second ablation study evaluates the effectiveness of the NAT algorithm, aug-
mented with new coding methods and performance predictors. This preliminary
analysis measures the improvements made by our modifications over the origi-
nal model, focusing on performance shifts resulting from initial super-network
modifications, comparing OFA-derived super-networks with those derived from
OFAv2.

The study is summarised in Figure 6, which shows results across different
datasets and optimisation objectives. The CIFAR10 results demonstrate im-
provements across all configurations with the OFAv2-derived super-network. Ac-
curacy optimisation shows a 2% increase in accuracy with OFAv2 compared to
OFA. Multi-objective search results highlight not only increased accuracy, but
also significant reductions in parameters and MACs. For example, architectures
optimised for fewer parameters show a 1% increase in accuracy and a fivefold
reduction in parameters with OFAv2 compared to OFA.

Results from CIFAR100 and Tiny ImageNet, more complex datasets, support
these findings. Accuracy-focused optimisations on these datasets show approx-
imately 5% and 9% improvements with OFAv2. Results from multi-objective
optimisations confirm the increasing effectiveness of the method with increas-
ing problem complexity. These results also highlight the effectiveness of the new
encoding method in capturing complexity and improving model performance.

4.3 Final Results

The concluding experiments aim to juxtapose the NAT baseline model with
its advanced version proposed in this paper, NAT2, evaluating both with and
without the application of the post-processing step. The results of these experi-
ments are presented in Table 2, which includes the evaluation on the CIFAR10,
CIFAR100 and Tiny ImageNet datasets. The results are reported in terms of top-
1 accuracy, number of parameters and number of multiply-accumulate (MAC)
operations. For each multi-objective search, the best architecture in terms of
accuracy and the best architecture in terms of the secondary objective are dis-
played.

In the CIFAR10 dataset, NAT2 with Post-Processing (NAT2 + PP) stands
out with an accuracy of 93.17%, surpassing other configurations. However, this
model is the most resource-intensive, with 12.42 million parameters and 77.82
million MACs. Striking a balance between accuracy and resource efficiency,
NAT2’s “Accuracy Params” strategy yields a model with just 0.27M parameters
and 91.46% accuracy, outperforming all NAT-based models. Similarly, the “Accu-
racy MACs” optimisation results in a model of unparalleled efficiency, achieving
89.67% accuracy with only 6.35M MACs and 0.19M parameters, an advanta-
geous option for highly constrained devices. In various optimisation scenarios,
NAT2 consistently outperforms the original NAT, demonstrating the beneficial
impact of post-processing without significantly compromising model efficiency
or accuracy.
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Table 2. The results extracted from the final set of experiments. For each dataset,
the first column on the left shows the best sub-networks found, grouped by research
objective. For each dataset and metric, the best result is highlighted in bold. For each
dataset, metric and objective, the best result is underlined. For each multi-objective
optimisation, the best model found for accuracy, and the best model for the second
objective of the optimisation are reported. Each NAT2 experiment is also presented in
its post-processed form called NAT2 + PP.

Objective Model Accuracy Params (M) MACs (M)

C
IF

A
R

10

NAT 90.68 6.75 59.97
Accuracy NAT2 93.06 8.74 65.74

NAT2 + PP 93.17 12.42 77.82
NAT 90.73 2.91 30.03
NAT 90.65 2.51 26.74
NAT2 92.69 1.30 34.39

Accuracy & Params NAT2 91.46 0.27 12.52
NAT2 + PP 93.06 1.56 37.75
NAT2 + PP 92.00 0.47 24.28
NAT 89.98 2.40 15.33
NAT 85.66 2.14 7.82
NAT2 91.77 1.09 20.11

Accuracy & MACs NAT2 89.67 0.19 6.35
NAT2 + PP 92.29 1.35 22.75
NAT2 + PP 90.23 0.23 6.92

C
IF

A
R

10
0

NAT 66.93 6.26 55.72
Accuracy NAT2 71.88 9.75 56.60

NAT2 + PP 73.39 11.13 74.28
NAT 66.83 3.62 31.44
NAT 65.56 2.57 26.69
NAT2 70.68 1.36 34.26

Accuracy & Params NAT2 69.50 0.86 21.62
NAT2 + PP 72.03 1.70 31.79
NAT2 + PP 70.54 1.03 23.38
NAT 64.76 2.70 16.05
NAT 58.61 2.26 7.94
NAT2 69.31 1.26 21.34

Accuracy & MACs NAT2 66.29 0.21 8.14
NAT2 + PP 71.02 1.59 24.04
NAT2 + PP 67.90 0.26 8.93

T
in

y
Im

ag
eN

et

NAT 43.06 8.10 61.67
Accuracy NAT2 53.59 1.66 43.43

NAT2 + PP 54.82 2.06 46.94
NAT 43.45 4.05 46.80
NAT 42.99 2.71 28.00
NAT2 51.16 1.44 39.19

Accuracy & Params NAT2 39.92 0.10 5.43
NAT2 + PP 54.31 1.85 41.70
NAT2 + PP 45.03 0.10 5.43
NAT 42.00 2.86 17.01
NAT 38.89 2.39 8.06
NAT2 51.05 1.46 28.41

Accuracy & MACs NAT2 47.24 0.25 5.95
NAT2 + PP 53.91 1.87 31.97
NAT2 + PP 48.96 0.32 6.55
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Moving to CIFAR100, similar performance trends emerge. The NAT2 + PP
configuration achieves the highest accuracy of 73.39%, demonstrating its ability
to handle the complexity of the dataset, well above the 66.93% baseline accuracy
set by NAT. NAT2’s refined optimisation “Accuracy Params” produced a model
with 0.86M parameters with an accuracy of 69.50%, a significant improvement
over NAT-derived models within the same optimisation criteria. Interestingly,
even in a multi-objective optimisation context, NAT2 outperforms the best NAT
models in accuracy while significantly reducing both parameters and MACs.
In particular, the “Accuracy MACs” optimisation model demonstrates NAT2’s
superior efficiency, achieving 66.29% accuracy with the fewest MACs (8.14M)
and minimum parameters (0.21M), highlighting NAT2’s enhanced capability for
efficient model optimisation.

For the Tiny ImageNet dataset, NAT2 + PP again achieves the highest
accuracy at 54.82%, demonstrating the improved classification capabilities of
the model. Using efficiency-based optimisations, NAT2 produces a model with
only 0.10M parameters that achieves an accuracy of 39.92%. Post-processing
this model further improves its accuracy to 45.03% without increasing resource
requirements, demonstrating the effectiveness of the post-processing step. Not
only does this model outperform all NAT-derived models, but it does so with
exceptionally minimal resource usage.

Overall, NAT2 + PP delivers consistently superior accuracy across all datasets
evaluated. By achieving high accuracy with significantly fewer parameters, NAT2
demonstrates its superior efficiency. Furthermore, NAT2’s ability to achieve op-
timal trade-offs between accuracy and computational requirements positions it
as particularly well suited to model searches for memory-constrained devices.
The inclusion of post-processing invariably benefits model performance, allow-
ing the development of architectures that are both lighter and faster than those
generated by NAT, thereby achieving significantly improved accuracy.

5 Conclusions

In this paper, we introduced Neural Architecture Transfer 2 (NAT2), an ad-
vanced Neural Architecture Search (NAS) technique designed to develop archi-
tectures that are not only high-performing but also markedly efficient in terms
of parameters and computational operations. The experimental evidence demon-
strates that NAT2 significantly outperforms its predecessor in both model ac-
curacy and efficiency. Additionally, it has been established that the application
of the proposed post-processing invariably enhances model accuracy, albeit with
an increase in model complexity. Future directions for advancing NAS mod-
els encompass exploring more complex and expansive search spaces, as well as
integrating attention mechanisms. These developments aim to foster solutions
that are viable for real-world application, even on devices subject to stringent
constraints, without compromising on performance.
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