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Abstract 11

Energy resilience is a vital consideration for ensuring the survivability of modern 12

infrastructure systems. Achieving 100% resilience, however, is often impractical and 13

economically burdensome. In this paper, we propose a smart investment framework 14

that enables decision-makers to determine optimal investments in energy resilience 15

based on available resources and desired levels of resilience. To illustrate the effect- 16

iveness of this framework, we present a case study of a campus microgrid research 17

and testing facility. Using a real-time simulation approach conducted with Typhoon 18

HIL, we evaluate the performance of the microgrid system over 24 hours following 19

four historically significant hurricanes that have affected Louisiana in the past few 20

years. The microgrid is designed to power local loads during outages, providing an 21

effective solution for enhancing energy resilience. Real solar data collected from our 22

1.1 Megawatt (MW) solar facility on the University of Louisiana at Lafayette campus 23

is integrated into the simulation, enabling a realistic evaluation of the system’s per- 24

formance under hurricane-induced disruptions. By employing the proposed smart 25

investment framework, decision-makers can better identify and address resilience 26

challenges. The framework facilitates informed investment decisions by consider- 27

ing available resources and aligning them with the desired level of resilience. This 28

approach avoids over-investment in unnecessary redundancy while ensuring critical 29

systems are adequately protected. Our research contributes to the field by demon- 30

strating the practicality and benefits of a smart investment framework for energy 31

resilience in a real-world scenario. The case study of the campus microgrid research 32

1



facility provides valuable insights for decision-makers in similar contexts, highlight- 33

ing the potential of this framework to guide resilient energy infrastructure planning 34

and investment strategies. 35

1. Introduction 36

Energy resilience assessment is becoming a critical part of contemporary power & energy 37

systems at the design and operation levels, considering the increasing climate change im- 38

pacts and natural disasters. Natural disasters can spread quickly, which affects the power 39

grids heavily and creates a negative impact on society and the economy Bhusal et al., 40

2020; Dugan et al., 2021; Mukhopadhyay & Nateghi, 2017. These unwanted weather con- 41

ditions are the main reasons for the major power outages, which cost billions of dollars as 42

modern civilizations depend on the continuous utilization of power and energy. Different 43

important sectors of the current civilization depend on the availability of electricity Dugan 44

et al., 2021; Hossain et al., 2021. The expenditure of natural disasters is around $25 to 45

$70 billion per year of the President. Council of Economic Advisers, 2013. According 46

to the National Oceanic and Atmospheric Administration (NOAA), 20 natural disasters 47

affected the USA in 2021, and each disaster’s financial damage was over $1 billion ‘NOAA 48

National Centers for Environmental Information (NCEI)’, 2022. Due to natural disasters, 49

power outages have happened more frequently in recent times, for instance, Hurricane 50

Sandy, which occurred in 2012 and caused 8.5 million people to go out of power of the 51

President. Council of Economic Advisers, 2013, the Hokkaido blackout of 2018 caused by 52

an earthquake, blackouts in California in 2019, and the infamous Texas power outages in 53

2021 due to the winter storm Dugan et al., 2021; Kenward, Raja et al., 2014. In 2021, the 54

National Oceanic and Atmospheric Administration (NOAA) named 2020 as the year of 55

extremes. Within the past six years, five major hurricanes have hit Louisiana, including 56

Nate (2017), Laura (2020), Delta (2020), Zeta (2020), and Ida (2021). These hurricanes 57

left thousands of people out of power from a few hours to several days or even months 58

Arora & Ceferino, 2023. In different sets of literature, increasing outages across the US 59

are reported largely as a result of outdated infrastructure and grid consolidation. Despite 60

this fact, replacing the grid anytime soon is highly unlikely, considering it would impose 61

several trillion dollars on the US economy. Therefore, research around responsive and 62

corrective approaches is of great importance to improve the grid’s resilience. 63

Resilience is a fairly new concept in power systems. Although there are different 64

definitions of resilience from various perspectives Arghandeh et al., 2016, a more general 65

definition of resilience refers to the ability of a power system to withstand and absorb high- 66

impact, low-probability (HILP) disturbances and quickly recover from those eventsAli et 67

al., 2023. Withstanding severe disturbances (e.g., hurricanes) is mainly discussed under 68

infrastructure resilience through hardening and related risk assessment activities Moglen 69

et al., 2023; Schweikert & Deinert, 2021. On the other hand, operational resilience is 70
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linked to responsive and corrective control schemes as well as resource adequacy Abianeh & 71

Ferdowsi, 2020; Ferdowsi et al., 2019. In order to improve resilience, it has to be quantified 72

first. There are several methods reported in the literature for resilience quantification. 73

This paper puts an emphasis on operational resilience rather than infrastructure. These 74

two categories are well discussed in Hamidieh & Ghassemi, 2022. 75

Resilience metrics are required as the first step of the investigation to improve re- 76

silience. Several works have been done, and different resilience metrics and approaches 77

are presented in the recent literature. Available resilience metrics can be classified into 78

three main categories: attribute-based, performance-based, and general Daeli & Moha- 79

gheghi, 2023. Attribute-based resilience metrics mainly concentrate on the behavior of 80

a system. Determining this type of metric requires reviewing the system’s performance 81

to measure the degree of the attributes held within it Vugrin et al., 2017. This type 82

of resilience metric basically provides qualitative assessments. Performance-based met- 83

rics can be utilized to evaluate the efficiency of different types of reinforcement tactics 84

installed in the system Vugrin et al., 2017. Performance-based metrics consist of two 85

subcategories metrics: performance metrics and consequence metricsRaoufi et al., 2020; 86

Vugrin et al., 2017. System performance metrics can model the behavior of the power 87

system in accordance with the natural disasters, whereas consequence metrics concentrate 88

on the impacts of power outages and can be quantified in the form of financial impacts, 89

social impacts, and security impacts Raoufi et al., 2020; Vugrin et al., 2017. Several 90

types of performance-based performance resilience metrics are available in the literat- 91

ureRaoufi et al., 2020. Attribute-based metrics are comparatively easier to model as they 92

depend on qualitative or semi-quantitative knowledge and analysis. However, this type of 93

metric cannot analyze the benefits achieved from potential resilience enhancements and 94

the effectiveness of investments. Hence, they are not as explanatory in comparison to 95

performance-based metrics for grid resilience planning and investment strategies Vugrin 96

et al., 2017. Performance-based metrics can be very complex and generally require a 97

large amount of data to model as they model different stages of operation, disruption, 98

and recovery Daeli & Mohagheghi, 2023. However, performance-based metrics are more 99

dynamic than attribute-based metrics: not only can they be utilized to analyze the resili- 100

ence of the system to previous events, but they can also simulate how the system will be 101

affected by future events. General metrics can be utilized to portray different aspects of 102

performance, functionality, impacts, etc. The Figure of Merit (FOM) curve is a common 103

resilience assessment tool in dynamic systems, not necessarily power systems. FOM rep- 104

resents the functionality of a system in terms of the quantity/quality of services delivered 105

by the system. The FOM has been used in different sets of literature for resilience ana- 106

lysis in different engineering systems such as transportation Janić, 2018 and energy Das 107

et al., 2020. In some literature, FOM metric/curve is referred to as trapezoid Force et al., 108

2022 or triangle curve Panteli et al., 2017. The resilience curve and advanced trapezoidal 109

resilience curve can be utilized as a general metric as they both can express different 110
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dimensions of performance or consequences Daeli & Mohagheghi, 2023. In Fig. 1, the 111

resilience curve shows the changes in the resilience of the power network with respect to 112

time. The quality indicator of the resilience curve can be based on attribute-based or 113

performance-based metrics. Although it is very easy to interpret these types of curves, 114

these curves are unable to collect all the different dynamic resilience dimensionsPanteli 115

et al., 2017. 116

Figure 1: Traditional Resilience Curve Bie et al., 2017; Daeli & Mohagheghi, 2023; Lei et al.,
2018; Mishra et al., 2020

While it is very important to measure the resilience of an existing system, it is also 117

very important to investigate the enhancement of the resilience of the system as well 118

as the necessary investment in comparison to the benefits and value it generates to the 119

whole systemAnderson et al., 2020. It is neither practical nor economical to have an 120

energy system that can fully withstand and absorb a wide range of disturbances with a 121

very high level of robustness and continue its service with no interruption. Therefore, 122

effective investment in the area of achievable resilience is of great importance in power 123

systems. In order to achieve a more resilient power system, microgrids with the capability 124

of operating in islanded mode are locally impactful if they can quickly respond to the loss 125

of the main grid and feed the local loads. The extent to which a microgrid can contribute 126

to serving the local loads after the main grid goes down depends on 1) the microgrid’s 127

resourcefulness and 2) the energy management strategy, assuming microgrid assets have 128

survived the severe event. Microgrid is proposed in many academic studies and industry 129

reports as a promising solution to expedite the restoration process Igder et al., 2022 130

and mitigate the duration/frequency of outages Khodayar et al., 2012 and/or impacts of 131

outages Lin et al., 2022. Some of the commonly proposed improvement methods include 132
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prediction Mohammadian et al., 2021, load shedding Li et al., 2017; Sedzro et al., 2018, 133

reconfiguration Choobineh & Mohagheghi, 2015; Ding et al., 2020, and mobile resources 134

Lei et al., 2016. These improvement strategies are more tied to microgrid planning. From 135

the operation’s standpoint, resilience-oriented energy management techniques have been 136

proposed in some research works recently Gholami et al., 2016; Liu et al., 2020. However, 137

the proposed energy management techniques are more in the form of optimization-driven 138

scheduling in microgrids. When it comes to energy resilience, planning and operation are 139

complementary, which is not well discussed in the existing literature. Furthermore, energy 140

planners and decision-makers need to have an insight into the cost of resilience so they can 141

better invest to meet certain requirements and needs. The relationship between resilience 142

improvement and necessary cost is not well investigated in the literature. In Benallal et 143

al., 2023, Bayesian inference-based energy management was proposed to supply priority- 144

based loads in a hybrid microgrid environment. In Ali et al., 2023, authors investigated 145

the comparison between their proposed grid-connected system and renewable energy- 146

based ad-hoc microgrid to supply critical loads (local hospital). Although these research 147

studies investigated supplying the critical load and presented economic analysis using 148

HOMER, the authors did not provide an in-depth analysis of the resilience enhancement 149

on the variation of investment considering multiple natural disasters. A practical long- 150

term planning strategy should be investigated to enhance the resilience of power systems. 151

This research work studies resilience-enabling resource adequacy using resilience met- 152

rics from planning and operation perspectives. High-fidelity real-time simulations are 153

conducted using Typhoon Hardware In Loop (HIL). The case study is the microgrid facil- 154

ity at the University of Louisiana at Lafayette, USA. The cost of resilience is estimated, 155

and operational limitations are identified in different scenarios of multiple hurricanes. This 156

paper serves as a practical guideline for decision-makers, especially for community energy 157

systems. Our proposed planning scheme will give decision-makers a better insight into 158

what investment is required to improve resilience by a certain level. Resilience studies are 159

always scenario-dependent. Therefore, as step zero, a high-impact, low-frequency event 160

must be identified as the disturbance scenario affecting the system. It largely depends on 161

the geographical area for weather-related events. This paper assumes for every scenario 162

of all the hurricanes that the main power grid is down, and the microgrid is expected to 163

serve the loads solely until the main power grid is restored locally. 164

So, the main contributions of this paper are given below: 165

• Introducing a novel framework for optimal energy resilience investments, aligning 166

resources with desired resilience levels to avoid unnecessary redundancy. 167

• Utilizing a high-fidelity real-time simulator evaluating a campus microgrid’s per- 168

formance in powering local loads during outages, with a focus on resilience enhance- 169

ment. 170

• Quantitatively investigating the cost of improving resilience, providing insights into 171
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balancing economic considerations with desired energy infrastructure resilience. 172

The rest of the paper is organized as follows. In section (2), resilience metrics, technical 173

analysis, and economic analysis methods are discussed. Section (3) describes the microgrid 174

as the case study. Results are presented in section (4). Conclusions and future works are 175

presented in sections (5) and (6). 176

2. Case Study 177

Figure 2: Overview of the UL-Cleco AC/DC Microgrid Facility

The case study in this investigation is a microgrid shown in Fig. 2. Load data from 178

a real distribution feeder is scaled and utilized for three different load categories of this 179

microgrid system. To supply the load demand based on their priority, three load categories 180

are classified as critical load 1, critical load 2, and critical load 3. Here, critical load 1 181

represents the highest priority for load serving, also labeled as priority load 1; critical load 182

2 represents the moderate priority for load serving, also labeled as priority load 2; critical 183

load 3 represents the lowest priority for load serving, also labeled as priority load 3. For 184

24 hours, the total load demand for priority load 1, priority load 2, and priority load 185

3 is 681.762 kW, 957.701 kW, and 638.475 kW, respectively. The 24-hour load profiles 186

for different priorities are shown in Fig. 3. The simulation has been done considering 187

24-hour power outages for four hurricanes that hit Louisiana in the past six years. Those 188

hurricanes are Nate (2017), Laura (2020), Zeta (2020), and Ida (2021). For the hurricanes 189
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Laura (2020), Zeta (2020), and Ida (2021), it is considered that the power outages started 190

at 12 am and ran for 24 hours. To investigate from a different dimension, the power outage 191

for Hurricane Nate (2017) is considered to start at 7 am and run for the next 24 hours. 192

To make the investigation more realistic, the solar radiation data corresponding to every 193

hurricane occurring day is collected from the University of Louisiana at Lafayette’s 1.1 194

MW solar PV plant facility Veerendra Kumar et al., 2022. The normalized solar power 195

profile corresponding to each Hurricane day is shown in Fig. 4. 196

Figure 3: Different Priorities Load Data

Figure 4: Solar Radiation Data (Normalized)

The microgrid simulation for every hurricane contains three scenarios utilizing three 197

different configurations of solar PV plant and battery energy storage system (BESS). For 198
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Table 1: Configuration of Three Scenarios for Every Hurricanes

Scenario PV Size BESS Size
(kW)

BESS capacity
(kWh)

1 50kW 50kW 100kWh
2 150kW 150kW 300kWh
3 250kW 250kW 500kWh

scenario (I), the solar PV plant is 50 kW, whereas the rating of BESS is 50 kW and 100 199

kWh. For scenario (II), the solar PV plant is 150 kW, whereas the rating of BESS is 150 200

kW and 300 kWh. For scenario (III), the solar PV plant is 250 kW, whereas the rating 201

of BESS is 250 kW and 500 kWh. Table 1 contains the simulation configurations of the 202

three scenarios for every hurricane. 203

The selection of three different PV sizes helps to investigate in detail for enabling three 204

different PV penetration environments. Solar PV penetration is calculated as the ratio 205

of the peak solar photovoltaic power to the peak load apparent power on the feeder Hoke 206

et al., 2012; Ullah et al., 2021. 207

PV Penetration =
Peak PV Power

Peak Load Apparent Power
(1)

Three PV plant sizing is 50kW, 150 kW, 250 kW, and the peak load apparent power 208

is 161.90 KVA. So, using the equation 1, three scenarios of this study represent 30.88%, 209

92.64%, and 154.41% PV penetration, respectively. For battery capacity, the optimal 210

BESS profit can be generated with 2 kWh of storage capacity per kilowatt peak (kWp) of 211

solar PV system Lund, 2018. So, for three scenarios, BESS size is selected to 100 kWh, 212

300 kWh, and 500 kWh, respectively. The maximum and minimum state of charge (SOC) 213

for BESS are selected as 90% and 10%, respectively. As we know the probable hurricane 214

arriving day from the weather forecast, it is considered that the BESS is charged and the 215

BESS SOC is 90% when the simulation starts. 216

To investigate the real-time performance of the microgrid, Typhoon HIL real-time 217

simulator is used to model and analyze the proposed algorithm. 218

3. Methodology 219

3.1 Resilience Metrics 220

During weather-related power outages, it takes several hours to days to restore the main 221

power grid. The formation of microgrids is an effective solution to provide support during 222

power outages. It is realistically impossible to supply all the loads when the main power 223

grid is not operational. Therefore, the loads can be classified based on their priority. 224

Considering 24 hours of power outage for every natural disaster, the served critical loads 225
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Figure 5: Flowchart of The Microgrid Operation Algorithm

can be calculated and investigated to find out the resilience level of the microgrid. 226

In our proposed resilience metric, resilience will be evaluated based on the amount 227

of energy supplied to the loads, concentrating on the most critical loads. All the loads 228

will be divided into three categories, where the load groups 1, 2, and 3 will be known 229

as priority load 1, priority load 2, and priority load 3. Here, priority load 1 is the most 230

critical load, priority load 3 is the least critical load, and priority load 2 stays in between 231

them. Researchers investigated resilience enhancement using the value of lost load (VoLL), 232

considering critical loads and non-critical loads. Several recent research studies Gao et al., 233

2017; Nazemi et al., 2021; Yao, Wang & Zhao, 2018; Yao, Zhao et al., 2018; Yao et al., 234

2019, 2020 emphasized five times more weight on the most critical loads in comparison to 235

the least critical loads. As priority load 1 is the most critical load and priority load 3 is the 236

least critical load in this study, the weighted factors 5, 2.5, and 1 are assigned for priority 237

load 1, 2, and 3, respectively. So, our proposed resilience metrics can be calculated using 238

the following equation. 239

Resilience, R = 5α1 + 2.5α2 + α3 (2)

In (2), α1 represents conditions of the served load for priority load 1. If priority load 240

1 is served for a time interval, α1 will be considered as 1 whereas,α1 will be considered 241
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as 0 if the load is not served. Likewise, α2, α3 will be 1 or 0 for priority load 2, and 3, 242

respectively. As α1, α2, α3 maximum value can be 1, the maximum resilience that can 243

be achieved is 8.5. Using our proposed resilience metrics, we can evaluate the resilience 244

level of a power grid (concentrating on the amount of energy served on the most critical 245

loads). 246

3.2 Technical Analysis 247

Our proposed algorithm is provided as a flowchart in Fig. 5. The algorithm is designed 248

to satisfy the loads during an outage, concentrating on the most critical load category. 249

This microgrid case study consists of a solar PV plant and battery energy storage system 250

(BESS) to supply different priorities of loads. During the power outage, the solar PV plant 251

and BESS will coordinate to supply the critical loads effectively for a longer duration of 252

hours. During the mid-day or when the solar radiation remains higher for a longer time 253

horizon, it tends to be a more efficient approach to charge the battery to a certain level at 254

first instead of satisfying the less critical load so that the microgrid achieves the ability to 255

supply the critical load 1 during the greater amount of power outage hours. The proposed 256

control system will continuously analyze the solar PV generation, battery state of charge 257

(SOC), and load demands and will take steps accordingly. When there is any solar PV 258

generation, the control system will check the battery SOC conditions and satisfy the load 259

demands based on the battery’s SOC. If the battery SOC is greater than 70%, all the load 260

demands will be fulfilled by solar PV and BESS. If solar PV generation is higher than 261

all the load demands, solar PV will satisfy the power demands by itself, and the extra 262

generated PV power will go to the battery for its charging. If the solar-generated power 263

is less than the power demands of all the loads, solar PV and battery storage systems will 264

satisfy the load demands together. When the battery SOC remains in the range between 265

70% to 40%, only priority loads 1 and 2 will be served, and priority load 3 will be cut 266

off. If solar PV generation is higher than the demands of priority loads 1 & 2, solar PV 267

will satisfy the power demands by itself, and the extra generated PV power will go to 268

the battery for its charging. Otherwise, solar PV and battery storage systems will satisfy 269

the load demands together. When the battery SOC remains between 40% to 10%, only 270

priority load 1 will be satisfied, whereas priority loads 1 & 2 will be curtailed. If solar 271

PV generation is higher than the demands of priority loads 1, solar PV will satisfy the 272

power demands by itself, and the extra generated PV power will go to the battery for its 273

charging. Otherwise, solar PV and battery storage systems will satisfy the load demands 274

together. If the battery SOC is less than 10%, all the priority loads will be curtailed, and 275

the battery will go to charging mode solely. 276

When there is no solar PV generation, the battery will satisfy the loads. If the battery 277

SOC remains higher than 80%, all the loads will be supplied. If the SOC stays between 278

80% to 50%, only the priority loads 1 & 2 will be supplied while priority load 3 will be 279

cut off. When the SOC remains in the range of 50% to 10%, only priority load 1 will be 280
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served, whereas priority loads 2 & 3 will not be satisfied. If the battery SOC go below 281

10%, all the loads will be curtailed. 282

3.3 Economic Analysis 283

This research studies the economic assessment from different perspectives of economic 284

indicators. 25 years is considered as the average life duration of solar PV panels Anusuya 285

et al., 2023; Chowdhury et al., 2020; Tan et al., 2022. A solar PV power generation-based 286

project consists of design, building, and operation of a solar PV power plant for a time 287

period of 20-30 yearsCurtis et al., 2021. In this study, a 24-year time horizon is selected 288

for the economic assessment of this microgrid studyUllah et al., 2023. The time duration 289

of solar PV inverter and BESS is 12 years and 10 years, respectivelyMongird et al., 2020; 290

Ramasamy et al., 2022. In this investigation, 8 years is selected as the time duration 291

of the solar PV inverter and BESS as the advanced features (i.e., Volt-VAR control, 292

Volt-Watt control, etc.) shorten the inverter’s conventional lifetime Gandhi et al., 2018. 293

Cost analyses are provided for all three scenarios of the four hurricanes. Furthermore, the 294

investigation is also extended to analyze the impact of the increased number of Hurricanes 295

in a 24-year time horizon (considering 4 hurricanes in 1 set). 296

The revenue is produced from the selling of solar plus storage power to the priority 297

loads 1, 2, and 3. Using 3, the revenue, R can be found where Ei represents the energy 298

supplied to the priority loads in kWh, and α is the selling price of solar plus storage energy 299

in $/kWh. Inflation factor, d is considered as 2.5% for this investigation Ramasamy et 300

al., 2022. During the hurricane days emergency supply, the value of α is considered as 301

$10/kWh, $5/kWh, and $2/kWh for priority load 1 (most critical load), priority load 2 302

(medium critical load), and priority load 3 (least critical load), respectively Nazemi et al., 303

2021; Yao, Wang & Zhao, 2018; Yao, Zhao et al., 2018; Yao et al., 2019, 2020. For all the 304

remaining regular days, the value of α is considered as $0.10/kWh in this case study. 305

R =
n∑

i=1

Ei · α · (1 + d)i−1 (3)

Equation 4 calculates the expenditure of the solar PV system which is the algebraic 306

summation of the market price of the solar PV panel, CMAR
PV , operation and maintenance 307

cost of the solar, COM
PV , and salvage value of the solar PV, CSAL

PV . Equation 5 calculates 308

the expenditure of the solar PV inverter, which is the algebraic summation of the market 309

price of the inverter, CMAR
INV , operation and maintenance cost of the inverter, COM

INV , salvage 310

value of the solar inverter, CSAL
INV . Equation 6 is used to compute total inverter expenditure 311

for 24 years time period where SINV is the rating of the inverter in kVA, d is the inflation 312

factor, and T INV
R is the lifetime of the inverter. 313

CPV = CMAR
PV + COM

PV − CSAL
PV (4)
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β = CMAR
PV,INV + COM

PV,INV − CSAL
PV,INV (5)

CPV,INV =
n∑

j=1

SINV · β · (1 + d)(
TINV
R
2

)(j−1) (6)

The BESS expenditure is calculated based on its power and energy ratings using 314

equation 7 and 8, respectively. Equation 7 is used to determine the BESS cost for power 315

rating, γ, which is the algebraic summation of the market price of BESS for power rating, 316

CMAR
BESS,P , O&M cost of the BESS for power rating,COM

BESS,P , and the salvage value of 317

BESS for power rating, CSAL
BESS,P . Equations 8 is used to calculate the BESS cost for 318

energy rating, η, and this calculation follows the same approach of the equation 7. η is 319

determined using the market price of BESS for energy rating, CMAR
BESS,E, O&M cost of the 320

BESS for energy rating,COM
BESS,E, and the salvage value of BESS for energy rating, CSAL

BESS,E. 321

In equation 9, BESS cost for 24 years is calculated where the BESS lifetime, TBESS
R , is 322

considered as 8 years, and p is the BESS depreciation rate for each year, 2%. PBESS, 323

and EBESS represent the power capacity and energy capacity of the battery, respectively. 324

To calculate the battery inverter cost, equation 10 is utilized where the cost of the BESS 325

inverter is the algebraic summation of the market price of the BESS inverter, CMAR
BESS,INV , 326

operation and maintenance cost of the BESS inverter, COM
BESS,INV , salvage value of the 327

BESS inverter, CSAL
BESS,INV . 328

γ = CMAR
BESS,P + COM

BESS,P − CSAL
BESS,P (7)

η = CMAR
BESS,E + COM

BESS,E − CSAL
BESS,E (8)

CBESS =
n∑

k=1

[γ · PBESS + η · EBESS] · (1− p)(T
BESS
R −1)(k−1) (9)

δ = CMAR
BESS,INV + COM

BESS,INV − CSAL
BESS,INV (10)

CBESS,INV =
n∑

j=1

SBESS,INV · δ · (1 + d)(
TINV
R
2

)(j−1) (11)

In table 2, all the input parameters of economic analysis and their corresponding values 329

are included. Here, we presented some economic indicators that measure the benefit of 330

solar plus storage systems in power distribution systems for 24 years operation horizon. 331

1. Total cost: the Total cost, C, is the summation of costs for solar PV panel, solar 332

PV inverter, BESS, and BESS inverter expressed in 12. 333

C = CPV + CPV,INV + CBESS + CBESS,INV (12)
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2. Gained profit by solar system’s owner: The profit, P is the difference between 334

the revenue and the total cost calculated using the equation 13. The revenue, R, 335

expressed in the equation 3. 336

P = R− C. (13)

3. Net Profit Margin: The net profit margin NPM , or simply net margin, represents 337

how much net income or profit is generated as a percentage of revenue made by solar 338

system owner. The ratio represents the net profit to revenue for the owner of a solar 339

system facility. 340

NPM =
P

R
(14)

4. Net Present Value: Two terms characterize the net present value (NPV ), the 341

present discounted value of costs PDC in (16) and the present discounted value 342

of revenues PDR in (15) by NPV = PDR − PDC. If we consider Ri to be the 343

(undiscounted) revenues (benefits) of the solar system project during the year i and 344

we consider Ci to be the (undiscounted) costs of the solar system project during the 345

year i, afterward, we can calculate NPV using equation (17). When the NPV is 346

more than zero, the investment plan is considered as profitable from the investor 347

side. 348

PDR =
T∑
i=1

Ri

(1 + d)i−1
(15)

PDC =
T∑
i=1

Ci

(1 + d)i−1
(16)

NPV =
T∑
i=1

(Ri − Ci)

(1 + d)i−1
(17)

5. Revenue-Cost Ratio: The revenue-cost ratio is the ratio of PDR to PDC which 349

is mentioned in (18). When the RCR is greater than one, the investment plan will 350

make revenue for the investor. 351

RCR =
PDR

PDC
=

∑T
i=1

Ri

(1+d)i−1∑T
i=1

Ci

(1+d)i−1

(18)
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Table 2: Different Input Parameters of Economic Analysis

Parameters Value Reference
α 10, 5, 2, 0.1 ($/kWh) Nazemi et al., 2021; Yao, Wang & Zhao, 2018; Yao, Zhao et al., 2018; Yao et al., 2019, 2020
d 2.5% Ramasamy et al., 2022

CMAR
PV 400 ($/kW) Ramasamy et al., 2022
COM

PV 1% ($/kW) Deotti et al., 2020
CSAL

PV 10% ($/kW) Humphreys & Brown, 1990
CMAR

INV 60 ($/kW) Ramasamy et al., 2022
COM

INV 1% ($/kW)
CSAL

INV 10% ($/kW) Humphreys & Brown, 1990
CMAR

BESS,INV 50 ($/kW) Ramasamy et al., 2022
COM

BESS,INV 1% ($/kW)
CSAL

BESS,INV 10% ($/kW) Humphreys & Brown, 1990
CMAR

BESS,P 628 ($/kW) Ramasamy et al., 2022
COM

BESS,P 10 ($/kW) Mongird et al., 2020
CSAL

BESS,P 10% ($/kW) Humphreys & Brown, 1990
CMAR

BESS,E 157 ($/kW) Ramasamy et al., 2022
COM

BESS,E 0.003 ($/kW) Mongird et al., 2020
CSAL

BESS,E 10% ($/kW) Humphreys & Brown, 1990
EBESS 100, 300, 500 (kWh)
PBESS 50, 150, 250 (kW)

p 2%
SINV 55, 162, 275 kVA
T INV
R 8 Years

TBESS
R 8 Years

4. Results and Discussion 352

In this section, the results of the resilience metrics, technical analysis, and economic 353

analysis are presented and analyzed. All the simulation results are collected from the 354

real-time simulator Typhoon HIL for its high-fidelity characteristics. 355

4.1 Resilience Metrics 356

After the completion of microgrid simulation for all the scenarios considering all power 357

outages caused by the hurricanes, the resilience curve of all scenarios for all the power 358

outages is plotted for 24 hours. In Fig. 6, the resilience curve for three scenarios is 359

plotted for a 24-hour power outage due to Hurricane Laura, which runs from 12 am to 360

12 am. From 2 am to 8:45 am and 6:45 pm to 12 am, the resilience value remains zero 361

for scenario 1; during these time intervals, solar PV and BESS cannot serve any load at 362

all. From 12 am to 2 am and 8:45 am to 6:45 pm, different priority loads are satisfied in 363

scenario 1. It is important to mention that scenario 1 resilience value remains zero for a 364

longer period of time in comparison with scenario 2 & 3 (scenarios 1, 2, 3 configuration 365

is already provided in Table 1). Although scenario 2 contains a resilience value of zero 366

from 6 am to 8:15 am and from 9 pm to 12 am, it shows a resilience value of zero for 367

5.25 hours whereas scenario 1 shows it for 12 hours. Scenario 3 shows a higher resilience 368
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trend than scenario 1 and scenario 2 for the significant time duration during the 24-hour 369

time horizon. The resilience values of scenario 3 also show that energy is supplied to the 370

most critical load during the whole 24 hours without curtailing any priority load 1. The 371

lowest resilience value of scenario 3 is 5, whereas the lowest resilience values of scenario 372

1 and scenario 2 stay zero for 12 and 5.25 hours, respectively. Scenario 3 shows the best 373

resilience curve where the solar PV and BESS successfully served the most critical load 374

for a 24-hour time horizon. The results show the extent to which resilience is improved 375

with a certain investment in resources. 376

Figure 6: Resilience evaluation for the hurricane Laura

In Fig. 7, the resilience value for three scenarios is plotted for a 24-hour power outage 377

due to Hurricane Zeta. From 2 am to 9 am and from 6.15 pm to 12 am, the resilience 378

value remains zero for scenario 1. Moreover, scenario 1 resilience value remains zero 379

for maximum outage hours among all three scenarios. Although scenario 2 contains a 380

resilience value of zero from 6 am to 8:45 am and from 9:15 pm to 12 am, it shows zero 381

resilience value for only 5.5 hours whereas scenario 1 holds zero resilience value for 12.75 382

hours, indicating more than 50% improvement in scenario 2. Scenario 3 shows a higher 383

resilience trend than scenario 1 and scenario 2 for the significant time of the 24-hour time 384

horizon. The resilience values of Scenario 3 also show that energy is supplied to the most 385

critical load almost all 24 hours except from 8 am to 8:30 am and from 23:45 pm to 12 AM 386

when the resilience value of scenario 3 becomes 0. It is worth mentioning that scenario 387

3 configuration of solar PV and BESS also served priority loads 2 & 3 much better than 388

scenario 1 & 2. 389

In Fig. 8, the resilience value for three scenarios is plotted for a 24-hour power outage 390

due to Hurricane Ida. From 2 am to 8:45 am and from 6 pm to 12 am (except the in- 391

between time duration of 7:45 pm to 8 pm), the resilience value remains zero for scenario 392
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Figure 7: Resilience evaluation for the hurricane Zeta

1. Moreover, scenario 1 resilience value remains zero for maximum outage hours among 393

all three scenarios. Although scenario 2 contains a resilience value of zero from around 394

6 am to around 8:15 am and from 8:30 pm to 12 am, it shows a resilience value of zero 395

for only 5.75 hours, whereas scenario 1 shows 12.75 hours. Scenario 3 shows a higher 396

resilience value characteristics than Scenario 1 and Scenario 2 for the significant time of 397

the 24-hour time horizon. The resilience values of scenario 3 also show that energy is 398

supplied to the most critical load for all 24-hour power outages without any curtailment 399

of the most critical load. 400

Figure 8: Resilience evaluation for the hurricane Ida
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In Fig. 9, the resilience value for three scenarios is plotted for 24-hour power outages 401

due to Hurricane Nate. From 8 am to 9 am and from 6.15 pm to 7 am, which represents 402

13.75 hours of the 24-hour time period, the resilience value remains zero for scenario 1. 403

Moreover, the scenario 1 resilience value remains zero for the maximum number of outage 404

hours among all the scenarios. Although scenario 2 contains a resilience value of zero 405

from 9 pm to 7 am, it contains a resilience value of zero for 10 hours, whereas scenario 406

1 has zero resilience values for 13.75 hours . Scenario 3 shows a higher resilience value 407

than scenario 1 and scenario 2 for the significant time of the 24-hour time horizon. The 408

resilience values of Scenario 3 also show that energy is supplied to the most critical load 409

successfully from 7 AM to 12 AM, whereas from 12:15 am to 7 am, for 6.75 hours, the 410

resilience value of scenario 3 remains 0. Although scenario 3 of Hurricane Nate could not 411

supply energy to the most critical load for 6.75 hours, which is the worst performance 412

among all scenarios 3 of four hurricanes, still scenario 3 configuration of the power outages 413

caused by Hurricane Nate shows better performance in serving the most critical load 7 414

hours more than scenario 1 and 3.25 hours more than scenario 2. 415

Figure 9: Resilience evaluation for the hurricane Nate

4.2 Technical Analysis 416

In this section, the served amount of different critical loads for all the scenarios of power 417

outages will be described and analyzed. In Fig. 10, the served load of Priority Loads 1, 418

2, and 3 are illustrated for all three scenarios of power outages due to Hurricane Laura. 419

For priority load 1, 35.89% of loads are served in scenario 1, whereas 70.07% loads are 420

served in scenario 2. In scenario 3, all the 100% priority load 1 is served successfully 421

during the whole 24 hours. For priority load 2, 16.15% loads are served in scenario 1, 422

whereas 34.09% loads are served in scenario 2. In scenario 3, 43.25% of priority load 2 is 423
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Figure 10: Served Loads for the Hurricane Laura (In Percent)

Figure 11: Served Loads for the Hurricane Zeta (In Percent)

served. For priority load 3, 4.83%, 20.11%, and 24.93% of loads are served in scenarios 424

1, 2, and 3, respectively. During all three scenarios, there is a trend of increasing served 425

load for all the priority loads. Most importantly, the amount of served loads of priority 426
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Figure 12: Served Loads for the Hurricane Ida (In Percent)

Figure 13: Served Loads for the Hurricane Nate (In Percent)

load 1 doubled in scenario 2 in comparison to scenario 1, whereas scenario 3 shows the 427

best performance by satisfying 100% priority load 1, which is the most critical load. 428

In Fig. 11, the served load of Priority Loads 1, 2, and 3 are depicted for all three 429
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Figure 14: Serving Time Duration of Most Critical Load (In Percent)

scenarios of power outages caused by Hurricane Zeta. For priority load 1, 31.84% loads 430

are served in scenario 1, whereas 69.28% loads are served in scenario 2. In scenario 3, 431

96.55% priority load 1 is served during the whole 24 hours. For priority load 2, 17.37% 432

loads are served in scenario 1, whereas 29.12% loads are served in scenario 2. In scenario 433

3, 39.93% of priority load 2 is served. For priority load 3, 8.94%, 17.76%, and 22.05% of 434

loads are served in scenarios 1, 2, and 3, respectively. During all three scenarios, there 435

is also a similar trend of increasing served load for all the priority loads, like Hurricane 436

Laura. For priority load 1, the amount of served loads of priority load 1 is more than 437

doubled in scenario 2 in comparison to scenario 1, whereas scenario 3 shows the best 438

performance by serving 96.55% priority load 1, which is the main objective of our proposed 439

control system. For the outage caused by Hurricane Zeta, the solar PV plant received 440

solar radiation 45 minutes later in the early morning in comparison to the power outages 441

caused by Hurricane Laura, which is the major reason for satisfying 96.55% most critical 442

load. If the solar radiation would come earlier in the morning, the solar PV plant could 443

start generating solar PV power earlier, and BESS could also go into charging mode, 444

which could help to achieve 100% satisfaction of most critical loads like the previous case 445

study of power outages by Hurricane Laura. 446

In Fig. 12, the served load of Priority Loads 1, 2, and 3 are drawn for all three 447

scenarios of power outages caused by Hurricane Ida. For priority load 1, 32.23% loads 448

are served in scenario 1, whereas 66.53% loads are served in scenario 2. In scenario 3, all 449

the 100% priority load 1 demand is satisfied successfully during the whole 24 hours. For 450

priority load 2, 7.34% loads are served in scenario 1, whereas 30.77% loads are served in 451

scenario 2. In scenario 3, 39.32% of priority load 2 is served. For priority load 3, 0.9%, 452

10.14%, and 20.50% of loads are served in scenarios 1, 2, and 3, respectively. During 453

all three scenarios, there is a trend of increasing served load for all the priority loads. 454
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Most importantly, the amount of served loads of priority load 1 is more than doubled in 455

scenario 2 in comparison to scenario 1, whereas scenario 3 shows the best performance 456

by satisfying 100% of the most critical load demand. For the outage caused by Hurricane 457

Ida, the solar PV plant received earlier solar radiation than Hurricane Zeta but later than 458

Hurricane Laura. So, this helped in satisfying 100% of the most critical load in scenario 459

3, like Hurricane Laura. Although the most critical load is satisfied 100% in scenario 3 460

of Hurricane Ida, the satisfaction of priority load 3 is lowest in comparison to Hurricane 461

Laura and Hurricane Zeta. In comparison to Hurricane Laura and Hurricane Zeta, the 462

lower peak value of solar radiation throughout the power outage caused by Hurricane Ida 463

is the main reason for the lower satisfaction of priority load 3. 464

In Fig. 13, the served load of Priority Loads 1, 2, and 3 are drawn for all three 465

scenarios of power outages caused by Hurricane Nate. For priority load 1, 31.01% loads 466

are served in scenario 1, whereas 53.77% loads are served in scenario 2. In scenario 3, 467

70.6% priority load 1 demand is satisfied. For priority load 2, 10.27% loads are served in 468

scenario 1, whereas 33.83% loads are served in scenario 2. In scenario 3, 43.35% of priority 469

load 2 is served. For priority load 3, 1.64%, 16.53%, and 24.63% of loads are served in 470

scenarios 1, 2, and 3, respectively. During all three scenarios, there is a trend of increasing 471

served load for all the priority loads like all the other hurricanes. Most importantly, the 472

amount of served loads of priority load 1 is 22% higher in scenario 2 in comparison to 473

scenario 1, whereas scenario 3 shows the best performance by satisfying 70.6% priority 474

load 1 demand, which is almost double in comparison to scenario 1. Although the solar 475

PV plant received early solar radiation in morning and received moderate peak solar 476

radiation throughout the power outages caused by Hurricane Nate, the different approach 477

(investigating from 7 am to 7 am next day, unlike the previous 3 hurricanes time duration 478

from 12 am to 12 am next day) played the major reason for satisfying the lowest amount of 479

most critical load among all the four hurricanes. The power outages caused by Hurricane 480

Nate occurred from 7 am to 7 am the next day for 24 hours. Although BESS stays in a 481

healthy condition from 7 am to 7 pm, it can not get any charging opportunities in the 482

next 12 hours. On the other hand, all the previous 3 hurricanes, BESS discharges from 483

12 am to 7 am(when there is no solar PV generation) and gets opportunities for charging 484

for the next 12 hours(from 7 am to 7 pm), which essentially helps BESS to supply in the 485

dark hours(when there is no sunlight, from 7 pm to 12 am). 486

Our proposed algorithm fully prioritizes satisfying the priority load 1 (most critical 487

load) throughout the time horizon. In Fig. 14, the time duration of the served most 488

critical load is presented. For Hurricane Laura, the most critical load is satisfied for 50% 489

hours of the 24 hours in scenario 1, whereas the most critical load is served in scenario 490

2 for 78.13% hours of the 24 hours. Scenario 3 shows the best performance by satisfying 491

the most critical load for the whole 24 hours. For Hurricane Zeta, the most critical load 492

is satisfied for 46.88% hours of the 24 hours in scenario 1, whereas the most critical load 493

is served in scenario 2 for 77.08% hours of the 24 hours. Scenario 3 shows the best 494
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performance by satisfying the most critical load for around 96.88% time of the whole 24 495

hours. For Hurricane Ida, the most critical load is satisfied for 46.88% hours of the 24 496

hours in scenario 1, whereas the most critical load is served in scenario 2 for 76.04% hours 497

of the 24 hours. Scenario 3 shows the best performance by satisfying the most critical 498

load for the whole 24 hours. For Hurricane Nate, the most critical load is satisfied for 499

around 42.71% hours of the 24 hours in scenario 1, whereas the most critical load is served 500

in scenario 2 for 58.33% hours of the 24 hours. Scenario 3 shows the best performance 501

by satisfying the most critical load for 71.88% hours of the 24 hours. Among all the 502

hurricanes, Scenario 3 shows best performance in comparison to Scenario 1 & 2. 503

In Fig. 15, Fig 16, Fig 17, and Fig18, the battery SOC profiles for all the scenarios 504

of the hurricanes are presented. In Fig. 15, the battery SOC for all three scenarios is 505

provided for Hurricane Laura. In scenario 1, the battery SOC stays at 10% for around 10 506

hours, which is the maximum duration of hours in all the scenarios. 10% SOC indicates 507

that no loads are served during that time horizon. In scenario 2, the battery SOC shows 508

better characteristics, and SOC stays at 10% for around 4 hours. The SOC stays at 90% 509

for around 6 hours, indicating that all the loads are served during that time. In scenario 510

3, the minimum SOC never reaches 10% ,and the minimum SOC is 12.05%, which shows 511

that at least priority load 1 is served for the whole 24 hours. The SOC remains 90% for 512

more than 6 hours, indicating that all the loads are served during that time. 513

Figure 15: Battery SOC for the Hurricane Laura

In Fig. 16, the battery SOC for all three scenarios is provided for Hurricane Zeta. In 514

scenario 1, the battery SOC stays at 10% for around 11 hours, which is the maximum 515

duration of hours in all the scenarios. In scenario 2, the battery SOC shows better 516

characteristics, and SOC stays at 10% for around 5 hours. The SOC stays at 90% for 517

around 5 hours, indicating that all the loads are served during that time. In scenario 3, 518

the minimum SOC reaches 10% for less than an hour in the whole 24 hours, which shows 519
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that at least priority load 1 is served for almost all 24 hours. The SOC stays 90% for 520

more than 5.5 hours, indicating that all the loads are served during that time. 521

Figure 16: Battery SOC for the Hurricane Zeta

In Fig. 17, the battery SOC for all three scenarios is provided for Hurricane Ida. In 522

scenario 1, the battery SOC stays at 10% for more than 9 hours, which is the maximum 523

duration of hours in all the scenarios. In scenario 2, the battery SOC shows better 524

characteristics, and SOC stays at 10% for around 5.5 hours. The SOC stays at 90% for 525

around 2 hours, indicating that all the loads are served during that time. In scenario 3, 526

the minimum SOC never reaches 10%, and the minimum SOC is 11.25%, which shows 527

that at least priority load 1 is served for the whole 24 hours. The SOC remains 90% for 528

around 3 hours, indicating that all the loads are served during that time. 529

In Fig. 18, the battery SOC for all three scenarios is provided for Hurricane Ida. In 530

scenario 1, the battery SOC stays at 10% for around 13 hours, which is the maximum 531

duration of hours in all the scenarios. After 1 hour from starting at 7 am, the SOC reaches 532

a maximum of around 60%. In scenario 2, the battery SOC shows better characteristics, 533

and SOC stays at 10% for around 10 hours. The SOC stays at 90% for around 3 hours, 534

indicating that all the loads are served during that time. In scenario 3, the minimum 535

SOC to reaches 10% for less than 7 hours, which shows the best performance among all 536

the three scenarios. The SOC remains 90% for more than 4 hours, indicating that all the 537

loads are served during that time. 538

4.3 Economic Assessment 539

Table 3 presents the investment required for 24 years considering scenarios 1, 2, and 3, 540

respectively. Scenario 1 requires 147.95 thousand US dollars, whereas Scenario 2 requires 541

381.97 thousand dollars, which is more than 2.5 times the investment of Scenario 1. 542
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Figure 17: Battery SOC for the Hurricane Ida

Figure 18: Battery SOC for the Hurricane Nate

Scenario 3 requires the maximum investment among all three scenarios, 739.75 thousand 543

dollars. 544

Table 4 provides the profit produced during 24 years time duration for all three scen- 545

arios considering different numbers of hurricane sets. For one hurricane set (considering 546

4 hurricanes in 1 set) in 24 years, the profit of scenarios 1, 2, and 3 is 280.81, 716.29, and 547

769.29 thousand US dollars, respectively. For five hurricane sets (considering 4 hurricanes 548

in 1 set) in 24 years, the profit of scenarios 1, 2, and 3 is 340.27, 844.45, and 946.85 thou- 549

sand US dollars, respectively. It is visible that the monetary profit is increasing with the 550

increasing number of hurricane sets for all three scenarios, and scenario 3 is the leading 551
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profit generator among all the hurricane sets. 552

Table 3: Investment for Three Scenarios (in thousands US $)

Scenario 1 Scenario 2 Scenario 3
Investment 147.95 381.97 739.75

Table 4: Profit for Three Scenarios of Different Hurricane Sets (in thousands $)

Hurricane
Sets Scenario 1 Scenario 2 Scenario 3

1 280.81 716.29 769.29
2 293.16 742.91 806.17
3 307.05 772.86 847.66
4 322.68 806.55 894.34
5 340.27 844.45 946.85

For the in-depth analysis of the impacts of different numbers of hurricane sets in all 553

three scenarios, three economic indicators, NPV, NPM, and RCR, are utilized for all 554

three scenarios considering the number of hurricane sets from 1 to 5. In Fig. 19, NPV is 555

increasing for all three scenarios with the increasing number of hurricane sets. Among all 556

the hurricane sets, scenario 1 has the lowest NPV in all three scenarios. Although scenario 557

2 has the highest NPV for hurricane sets 1, 2, 3, and 4, scenario 3 achieves almost identical 558

NPV of scenario 2 for hurricane sets 5. In Fig. 20, NPM curves portray the net profit 559

margin for different hurricane sets. For all the different hurricane sets, NPM gradually 560

increases for all three scenarios. Furthermore, scenario 1 is leading scenarios 2 and 3 for 561

all the hurricane sets. Also, NPM curves for scenarios 1 and 2 are close which indicates 562

that both scenarios are generating similar profits relative to their revenues. In Fig. 21, 563

RCR graphs are presented for all three scenarios of different numbers of hurricane sets. 564

For all the hurricane sets, all three scenarios have RCR value greater than 1, and the 565

RCR value increases with the increasing number of hurricane sets. 566

5. Summary and conclusions 567

In conclusion, this manuscript introduces a pioneering Smart Investment Framework, em- 568

powering decision-makers to optimize energy resilience investments by aligning resources 569

with desired resilience levels. Through a real-time simulation of a campus microgrid us- 570

ing Typhoon HIL, the study demonstrates the framework’s practicality, showcasing the 571

microgrid’s effectiveness in powering local loads during outages. A quantitative analysis 572

of resilience improvement costs adds economic depth to the framework, aiding decision- 573

makers in balancing the economic burden with resilience goals. This research contributes 574
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Figure 19: Net Present Value (NPV)

Figure 20: Net Profit Margin (NPM)

valuable insights for resilient energy infrastructure planning, offering a cost-effective ap- 575

proach to enhance resilience without unnecessary redundancy. The case study serves as 576

a valuable guide for decision-makers in similar contexts, emphasizing the framework’s 577

potential in real-world applications. 578

6. What is Next 579

The current framework is entirely cost-driven. As a prospective avenue for further re- 580

search, there is an opportunity to enhance the framework by integrating considerations 581
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Figure 21: Revenue-Cost Ratio (RCR)

of energy equity. This exploration could involve evaluating how the proposed investment 582

framework can be adapted to ensure fair and equitable distribution of energy resources, 583

addressing social and economic disparities. This extension would contribute to a more 584

comprehensive understanding of energy resilience, aligning with broader sustainability 585

goals and promoting inclusivity in resilient energy infrastructure planning. 586
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