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Deep Reinforcement Learning (RL) has emerged as a promising technique 

for automating configuration design because of its capacity for sequential 

decision-making. However, it faces challenges in learning stability when 

complex engineering simulations compose the reward function. This 

diminishes the practicality of deep RL for configuration design. To address 

this challenge, this work integrates configuration design heuristics in a 

deep RL framework to enhance stability and efficiently converge to high 

performance solutions. Specifically, we shape the reward based on 

symmetry, a deep-rooted heuristic that is widely applicable and frequently 

used in engineering design practice. This approach is empirically tested on 

a truss design problem wherein the RL agent employs a symmetry 

detection method during the design process. The results reveal that the 

proposed symmetry-guided approach consistently yields high-performance 

symmetric configurations, outperforming a naïve approach in terms of 

stability while also demonstrating an alignment with intuitive human 

design principles. 

1 Introduction 

Engineering design often entails navigating complex, non-differentiable, 

high-dimensional design spaces involving various objectives and 
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constraints. Deep Reinforcement Learning (RL) [1–3] has emerged as a 

promising technique within this landscape through its capacity for 

sequential decision-making, effectively managing design choices over time 

to achieve a solution [4–9]. It also offers several other advantages like 

adaptivity and transfer across design tasks [10,11]. However, RL faces 

significant challenges in ensuring learning stability and convergence [2], 

particularly when rewards are derived from complex engineering 

simulations. This work aims to address this gap by integrating heuristic 

rewards into the RL framework, enhancing the stability of the learning 

process. We specifically shape the rewards based on the symmetry of 

design configurations, demonstrating how this approach not only improves 

stability and convergence but also aligns with intuitive human design 

principles. 

The design of engineered systems involves the abstract arrangement of 

components, the selection of specific components, and the assignment of 

parameter values to the components. In some cases, design also 

encompasses the synthesis of new components; however, when no new 

components are synthesized, the design problem reduces to a configuration 

design problem [12], which is the focus of this work. Graph-based 

representations and methodologies like graph grammars are pivotal tools 

for configuration design, offering a structured approach to explore design 

spaces [13–16]. Specifically, nodes in a graph can represent components or 

subsystems while edges represent connectivity between them. A graph 

grammar provides a ruleset for how these graphs can be manipulated in a 

formalized manner. More recently, Graph Neural Networks (GNNs) [17] 

have showcased significant effectiveness in handing graph-based design 

representations [18–22]. 

In the realm of configuration design, RL emerges as a promising 

technique for exploring complex design spaces encapsulated within graph-

based representations [4,5,8]. The sequential decision-making capability of 

RL algorithms aligns with the often iterative nature of design tasks 

wherein the impact of design choices unfolds over a sequence of steps. 

Specifically, the algorithms can refine the policy to guide the RL agent 

towards high-performance regions of the design space in a manner which 

directs each action towards long-term gains. This synergy can be further 

enhanced through structured exploration facilitated by domain-specific 

graph grammars [6]. Furthermore, the scalability of RL algorithms is 

practically achievable using GNNs as function approximators [6,18,19]. 

While RL offers numerous possibilities for advancing engineering 

design, its practical implementation is limited by efficiency challenges, 

encompassing aspects like resource availability, time utilization, learning 

stability and convergence behavior [2]. There has been an increasing 
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interest in addressing these issues in the context of design. For instance, 

several multi-fidelity RL frameworks employing human-inspired 

approaches [23], transfer learning [24], and control variate approaches [25] 

have shown promise in reducing computational time. While these 

techniques effectively leverage reward approximations, there exists an 

opportunity to incorporate a broader spectrum of heuristic rewards, 

relevant across design problems. For instance, symmetry is a commonly 

exploited heuristic in mechanical design due to its ability to balance loads, 

reduce vibrations and improve space utilization [26]. These heuristics can 

be invaluable for improving efficiency in full configuration design 

problems with large graph-based design spaces [27].  

The contribution of this work lies in enriching a foundational RL 

framework for configuration design with a symmetry reward and 

investigating its learning stability in comparison with a naïve approach. 

The rest of this paper is organized as follows. In Section 2, we brief 

configuration design and graph-based frameworks, and discuss GNNs and 

RL in context of design. Further, we discuss the potential of symmetry as a 

configuration design heuristic including some symmetry detection 

techniques. Section 3 begins by detailing a graph convolutional neural 

network-based RL framework for configuration design, setting the stage 

for the autonomous search of complex design spaces. This is followed by 

the formulation of a reward component that utilizes a symmetry detection 

method to bias the agent towards symmetric configurations. In Section 4, a 

truss design case study is described to demonstrate the effectiveness of the 

approach. Section 5 presents the results of this study, including a 

comparison with a naïve RL agent. Section 6 summarizes the contribution 

of the paper and proposes directions for future work. 

2 Background 

2.1 The Synergy Between Configuration Design and Graph-Based 

Frameworks 

Configuration design is the systematic process of selecting and arranging 

predefined components, as well as assigning parameter values to 

synthesize a functional system that optimizes its objectives under various 

constraints [12]. Given an exponentially large design space of possible 

configurations, the choice of representation for the design space is crucial 

for effective optimization. In this regard, graph-based representations 

prove particularly apt [13]. Graphs model the inherent structure within a 

complex system, where vertices symbolize individual components or 
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subsystems, and edges represent relationships such as spatial connectivity. 

This intuitive mapping between a design configuration and a graph allows 

for a formal, structured approach to explore design configurations. 

Moreover, graphs provide a flexible medium that facilitates the frequent 

design iterations common in configuration design. 

From a mathematical standpoint, a configuration design problem can be 

formulated as an optimization problem over a graph 𝐺 = (𝑁, 𝐸), where 𝑁 

denotes the set of nodes and 𝐸 the set of edges. Each node consists of 

component or subsystem information, including various continuous and 

discrete variables like the coordinates, orientation, dimensions, and 

material. For subsystems, it can capture additional holistic attributes such 

as component enumerations, and operational parameters like pressure and 

voltage. Each edge encapsulates a connectivity relationship between two 

components or sub-systems, encompassing continuous and discrete 

variables involving different connectivity types (like fastening, welding). 

The flexibility of graphs is extended by incorporating graph grammars 

[13–16], which are a set of operations that dictate how the graph can be 

modified. These operations formalize the steps by which a design can 

evolve. The simplest types of operations include node addition, node 

deletion, edge addition, edge deletion and tuning node and edge attributes. 

These operations can be parameterized to add more context or conditions 

[28,29]. More complex rules can encapsulate subgraph transformations, 

wherein a whole cluster of connected vertices and edges can be replaced 

by another cluster to yield a better configuration [13]. 

While graph grammar provides a framework for systematically 

generating a wide array of alternatives in the configuration design space, it 

presents challenges especially in complex systems [13,29]. Developing an 

extensive set of rules demands significant expertise, especially for large, 

diverse design spaces. Further, inadequately defined grammar may restrict 

design options, potentially resulting in suboptimal outcomes. Addressing 

these limitations, a grammar derived from GNNs may offer a more 

effective approach. At the core of GNNs is the ability to capture relational 

patterns between graph elements [17], which is critical in configuration 

design where the interplay between components can potentially dictate 

further design operations. Specifically, by learning these relationships, 

GNNs can execute complex combinations of elementary operations across 

the entire graph for a given design configuration. 
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2.2 Configuration Design with Graph Neural Network Based 

Reinforcement Learning Agents 

In context of configuration design, RL algorithms [1] have demonstrated 

their applicability in the sequential decision-making task of searching the 

design space for high-performance configurations [4–9]. Specifically, the 

state space of the Markov Decision Process [1] is the set of all possible 

graphs that represent the design configurations, and the design operations 

are agent actions. At a specific iteration, the agent state is the graph that 

represents the design configuration at that design step. The agent actions 

define the set of design operations to be performed on the graph that 

transforms it to the next configuration represented by another graph. These 

operations can range from elementary ones to more complex subgraph 

transformations. Further, the reward function encapsulates the objectives 

and constraints of the problem. The transition probability function for 

configuration design problems is typically deterministic. Lastly, the policy 

serves as a strategy for design, mapping design configurations to design 

operations with the goal of optimizing the performance of the 

configuration over multiple successive design operations. 

While the sequential decision-making paradigm of RL aligns with 

configuration design, the high dimensionality and complexity of problems 

limits the applicability of traditional RL algorithms. In this regard, the 

incorporation of deep learning within RL frameworks is emerging as 

increasingly crucial. Specifically, deep neural networks have proven useful 

in serving as function approximators for the policy and value functions in 

RL [3]. In context of the application of RL to configuration design, a GNN 

based policy autonomously learns to transform design configurations for 

long-term gains, leading to high-performance configurations. Specifically, 

the reward feedback from evaluating the configurations in simulations 

informs updates to the GNN, progressively enhancing the policy and 

subsequently improving the quality of the designs [6]. 

While deep RL offers numerous possibilities for advancing engineering 

design, its practical implementation is limited by challenges in achieving 

efficiency, encompassing aspects like resource availability (computing 

systems and data needed), time utilization (speed of learning), stability 

(consistency of learning across training runs or episodes) and the resultant 

convergence behavior [2]. To enhance the learning stability of the RL 

agent, this work incorporates a broader spectrum of heuristic rewards that 

are relevant across design problems, essentially shaping the reward 

function. It aims to bias the agent exploration in large graph-based design 

spaces, leading to more stable learning outcomes. Specifically, we enrich a 
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GNN based RL framework with a reward based on symmetry, a deep-

rooted heuristic in engineering design practice. 

2.3 Heuristic-Guided Reinforcement Learning 

Heuristic-guided reinforcement learning is an emerging field that 

combines the strengths of traditional heuristics with the adaptability and 

learning capabilities of RL. Heuristics encompass strategies that guide 

problem-solving processes based on empirical evidence, expert 

knowledge, and theoretical insights which are critical in managing 

complex problems like those in design [30,31]. The integration of 

heuristics in the RL algorithm can bias the learning process towards a 

subset of high-performance solutions, potentially enhancing learning 

stability. One way to do this is to leverage them in the action space to bias 

the action selection towards more promising directions [32]. Shaping or 

regularizing the reward or value functions based on heuristics is another 

avenue to incorporate prior knowledge [33,34]. For instance, Cheng et. al 

[35] start with short-horizon tasks using heuristic rewards and gradually 

shift to longer horizons with less reliance on these rewards. 

Symmetry is a pervasive and powerful heuristic that transcends 

disciplines, from biology, mathematics, ML to engineering. In biology, 

symmetric structures are favored due to their lower informational encoding 

requirements, which leads to greater mutation resilience [36]. Symmetry is 

also a fundamental principle in engineering, employed as a heuristic to 

address several design challenges [37]. It is particularly applicable for 

problems with explicit symmetric characteristics (e.g., symmetric 

boundary and loading conditions in structures [38]), problems where low 

sensitivity in behavior is desired (e.g. symmetric ribs in wheels are less 

prone to vibration while driving [39]), problems where cost is an objective 

(e.g. symmetric gears are easier to manufacture and assemble [39]), 

problems seeking aesthetic appeal (e.g. architectural applications [40]), 

and problems seeking intuitive usability (e.g. user interfaces in consumer 

products [41]). Even in seemingly asymmetrical systems, symmetry could 

still reign on a local scale, thus showcasing the pervasive nature of 

symmetry [40]. Furthermore, heuristics like modularity, often intertwine 

with symmetry, exhibiting how these heuristics could be enveloped within 

the symmetry framework [42]. This common thread of symmetry 

illustrates its integral role as a manifestation of underlying physical 

principles, a natural pattern leveraged by evolution, and a strategic design 

element in human-engineered systems. 

Symmetry is mathematically described as an object's attribute of being 

invariant, when subjected to geometric transformations. It is typically 
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categorized according to the characteristics of the underlying 

transformations and the resultant functionality, primarily falling into point 

group or space group symmetry [26]. Point groups like cyclic and dihedral 

symmetry groups ensure at least one point remains stationary during 

transformation. This is crucial for applications like braking systems that 

require rotational or mirror symmetry. In contrast, space group symmetry 

incorporates translational symmetry and is instrumental in optimizing 

material use in design layouts. 

In addition to exploring the significance and applicability of different 

symmetry types, there has also been extensive research on the automated 

detection of symmetry. This is pursued both as a theoretical challenge to 

analyze intricate geometry and as a tool for applications like model 

compression [40] and capturing design intent [43]. The methodologies for 

symmetry detection vary depending on factors like the data type (feature 

tree [44], projected view/drawings [45], images [46], point clouds [47], 

voxels [48], graphical models [43]), completeness of data (complete or 

approximate [49]), type of symmetry transformation (scaling, reflection, 

rotation, translation or their combinations [50]), scale of symmetry (global 

[44] and/or local/partial [40]), and precision (exact [44] or approximate 

[40]). While there is a very diverse range of detection techniques [40,43–

52], we briefly discuss one for global symmetry detection in graphical data 

structures. It is based on the Graph Edit Distance (GED) [53] between a 

graph and its symmetric transformation. GED is a measure that finds the 

minimal set of edit operations needed to transform one graph into another 

and has been commonly used for graph comparison. The editing operations 

involved in computing GED include insertions, deletions, and substitutions 

for both nodes and edges. The detection of symmetry using GED involves 

the minimization of this distance via an optimization algorithm or picking 

a symmetry element like a reflection axis from a set of candidates for 

which this distance is the minimum. 

3 Methods 

3.1 Foundational RL Framework for Configuration Design 

The RL based design agent in this work aims to address the configuration 

design problem by starting from a seed design graph and iteratively 

modifying the graph to minimize an objective function, while adhering to 

the constraints. The interaction between the agent and the design space, 

particularly as the agent transitions from state 𝑠𝑡 (consisting of the graph 
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𝐺𝑡)  to state 𝑠𝑡+1 (consisting of the graph 𝐺𝑡+1) by performing actions (𝑎𝑡) 

in the form of operations on the graph, is detailed hereinafter. 

The action space of the agent is grounded in a graph-structured set of 

design operations that are derived from a graph convolutional neural 

network, which serves as a policy function approximator for the RL agent. 

At each iteration 𝑡, the policy 𝜋 outputs an action graph 𝑎𝑡, wherein each 

node has an attribute vector.  This includes one element corresponding to 

the first operation of node deletion. This operation also deletes the edges 

connected to the deleted node. The next set of elements correspond to the 

tuning of the continuous and integer variables that define the edge 

attributes. Specifically, the tuning values for edges are obtained through 

aggregation operations (like a summation) on the vector elements 

corresponding to nodes that defined the edge. Further, the next set of 

elements govern the tuning of the continuous and integer variables that 

define the node attributes. The next element governs the addition of a new 

node to the node via an edge, thereby expanding the graph. Lastly, the next 

set of elements determine the attributes of the new node if it has been 

added. These operations (denoted by ⊕) are applied on 𝐺𝑡 to obtain 𝐺𝑡+1. 

Figure 1 shows an example of the action space for a truss design 

problem, wherein the action graph consists of seven elements per node. 

These elements correspond to node deletion (along with the members that 

it connects), two elements for the editing member type and dimension, two 

elements to edit the joint co-ordinates, one element to govern joint addition 

via a member and two elements to determine the co-ordinates of the joint. 

 

 

Fig. 1 Action space of RL agent for a truss design problem 

    Although this example is tailored to trusses, the fundamental nature of 

these graph-based operations makes them adaptable to any problem that 

can be modeled with graphs. In addition to the policy function 

approximator, this work also utilizes a graph convolutional neural network 
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for approximating the value function as illustrated in Figure 2. 

Specifically, it utilizes an attention pooling mechanism for an adaptive 

focus on different parts of the graph. 

 

 

Fig. 2 Value function based on graph convolutional layers and attention pooling 

    Lastly, the agent reward should reflect the quality of the action (𝑎𝑡) that 

transitions the design from state 𝐺𝑡 to 𝐺𝑡+1. This depends on the amount 

by which the objective reduces. Further, when the agent is in the infeasible 

domain, the change in the amounts by which each of the constraints are 

violated would guide the agent to navigate to feasible regions. The specific 

formulations of these reward components are adapted from prior work that 

utilizes deep RL for skeletal design [23]. Lastly, the graphs that result in 

invalid designs (i.e. objectives or constraints not computable) are assigned 

a poor objective value to steer the agent towards valid configurations. 

3.2 Symmetry Reward Formulation 

In addition to the reward components corresponding solution performance, 

we introduce a novel symmetry reward component in this work. This 

component employs a symmetry detection technique that finds the 

minimum GED between the graph representation of the design and 

symmetric transformations. These transformations are obtained by 

mirroring the graph across candidate axes passing through its centroid. 

Specifically, we compute the GED corresponding to each axis by 

preparing a cost matrix of the pairwise distance between nodes and solving 

a linear sum assignment problem [54]. The goal of this problem is to 

assign each node in the original graph to a node in the transformed graph 

such that the sum of all costs is minimized. Based on the solutions of these 

problems, we define the degree of symmetry (𝜂) as follows: 

𝜂 =  − min
𝑇𝑖 ∈ 𝒯 

𝐺𝐸𝐷(𝐺, 𝑇𝑖(𝐺))    (1) 

where, 𝒯 is the set of candidate transformations. 
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Further, we clip the degree of symmetry values below a threshold to ensure 

that the agent does not need to learn from overly complex patterns 

amongst highly asymmetric outliers. Figure 3 shows an illustrative 

example with node attributes as the co-ordinates of truss joints. The GED 

is evaluated between the graph and its mirror symmetry counterpart about 

four candidate symmetry axes, the minimum of which determines the 

degree of symmetry. 

  

Fig. 3 Degree of symmetry metric rooted in graph edit distance 

The degree of symmetry can be further utilized to define a reward 

component to extend the foundation RL framework in Section 3.1 This 

reward component denoted by 𝑅𝜂 is defined as the change in the degree of 

symmetry when the graph transition from 𝐺𝑡 to 𝐺𝑡+1: 

 

(𝑅𝜂)𝑡+1 = 𝑤𝜂  × (𝜂(𝐺𝑡+1) − 𝜂(𝐺𝑡))  (2) 

 

where, 𝑤𝜂 is the weight associated with this symmetry reward component. 

Like the other reward components, invalid configurations are assigned a 

poor value to steer the agent towards valid configurations. 

4 CASE STUDY 

4.1 Truss Design Problem 

In this work, a truss design problem serves as a testbed for evaluating the 

effectiveness of incorporating symmetry in RL-based configuration design. 

A truss is a structure which is designed to bear loads in buildings and 

bridges. The optimization objective in this problem is to minimize the 

mass of the truss while adhering to a target Factor of Safety (FOS), a 

measure of the load-bearing capacity of a structure beyond the expected 
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loads. The specific 2D truss design problem tackled in this work consists 

of two fixed supports at the bottom corners and a vertical load at a node 

midway between them. A target FOS of 1.7 is set for the problem, which is 

a commonly utilized value for the design of steel members [55]. This 

problem permits a huge number of potential solutions – up to 1075 unique 

configurations of trusses with up to 40 joints, without yet accounting for 

the positioning of joints in a continuous space. This enormity underscores 

the problem complexity and the challenge it poses for design algorithms.  

    To set the stage for the symmetry-guided RL framework, the truss 

configurations are represented as graphs, wherein the edges represent the 

members and nodes represent the joints. Further, the node attributes 

include the joint co-ordinates, and the edge attributes consists of a scalar 

size variable. This graph representation defines the agent state. Actions 

include removing a node, editing node and edge attributes and adding a 

new node. Further, the actions that modify the nodes corresponding to the 

fixed joints and loads are masked during the transition to the new state. For 

the symmetry-guided agent, the reward is computed based on the mass 

objective, the FOS equality constraint, and the symmetry reward with their 

weights tuned to yield satisficing designs. For the naïve agent, the same 

reward function is used without the symmetry component. 

4.2 Training and Evaluating the RL agents 

An online one-step actor-critic [1] algorithm with graph convolutional 

neural networks as function approximators is used for training the policies 

of the naïve and symmetry-guided agent. The utilization of an online 

algorithm improves the memory requirements by only having to store the 

most recent graph, while also opening the potential for faster learning due 

to frequent updates. Several random graphs that may or may not be 

feasible trusses are used as seed designs in the training episodes, each with 

a maximum length of 20 iterations. To bound the design space and ensure 

stable learning, the episodes are terminated whenever a configuration with 

less than 4 or more than 40 nodes is encountered. A common set of seed 

designs, initial neural networks and hyperparameters are utilized for 

training the agents. To understand the learning stability of the agents, the 

policies were periodically frozen during training for further evaluation, the 

results of which are discussed hereinafter. 

5 RESULTS AND DISCUSSION 

The naïve and symmetry-guided policies were periodically frozen every 

200 episodes during training, culminating at 3000 episodes where rewards 
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plateaued for both agents. After completion of training, each of these 

policies were evaluated to assess its performance in terms of mass, FOS, 

and the degree of symmetry. This section provides a detailed account of 

this evaluation data including an analysis of the distribution of solutions 

and the stability of the learning process across episodes.  

    Firstly, we investigate the distributions of the final solution qualities and 

visualize a few representative truss designs from this distribution. This 

quality is measured by the weighted sum of the mass objective and the 

FOS equality constraint penalty with the same weights that were utilized in 

the reward formulation. Figure 4 shows these distributions for the naïve 

and symmetry-guided agent. Both the distributions are multimodal in 

nature, which implies that the agents find several local minima in the 

design space. However, the locations and densities of the peaks are 

significantly different for both agents. Figure 5 shows some representative 

trusses corresponding to the labelled peaks in Figure 4. 

 

Fig. 4 Distribution of final solution quality 

    We observe that the symmetry-guided agent has a distinct sharp peak of 

the highest quality (S1), which showcases its ability to find high 

performance solutions. The corresponding truss in Figure 5 meets the FOS 

constraint with a moderate mass value. Moreover, this design is symmetric 

in nature, much like what is observed in trusses designed by human 

designers [38]. The highest quality design corresponding to the naïve 

agent’s peak (N1) also meets the FOS constraint but has a higher mass 

than the design S1. Moreover, it exhibits a lower degree of symmetry 

compared to design S1. The next two peaks for the symmetry-guided agent 

(S2 and S3) are also highly symmetric. However, they do not meet the 

FOS constraint. While these are not immediately usable configurations, 
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their symmetric structure may still be of value to a human designer for 

further exploration. 

    Further, for the naïve agent, we observe that the designs N2 and N3 also 

do not meet the FOS constraint. However, they have higher qualities 

compared to solutions S2 and S3 respectively, albeit with varying 

densities. On one hand the symmetry-guided agent is biased towards 

symmetric solutions, while on the other hand the naïve agent potentially 

needs to explore a larger portion of the design space to find high 

performance solutions. Lastly, both agents yield about 20% of infeasible 

trusses as reflected by the peaks on the far left with a quality of -4.0. The 

symmetry-guided agent has a lower density of infeasible solutions that 

further showcases its superiority in exploring the design space. 

  
Fig. 5 Representative truss design solutions (red line is detected symmetry axis) 

To understand the stability of the learning process, we freeze and evaluate 

the policies periodically. The distribution of mass, FOS and the degree of 

symmetry of this data is visualized in Figures 6, 7 and 8 respectively.  

 
Fig. 6 Evolution of mass across evaluation of frozen policies 
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In Figure 6, the invalid trusses are assigned a mass of 0. At the onset of 

training, a relatively high number of trusses are invalid for both the agents. 

As learning progresses, the mass values start to converge to distinct modes 

for both the agents, much like the peaks that were observed in the overall 

quality distributions. However, we observe minor inconsistencies across 

episodes for the naïve agent. For instance, the lowest mode of mass 

abruptly shifts several kilograms upwards during the last period of 

evaluation. This is indicative of instability in the learning process. 

    Figure 7 showcases the trend for the FOS. Like the previous plot, 

invalid trusses are assigned a value of 0.0. As learning progresses, the 

values start to converge to distinct modes for both the agents, much like 

evolution of mass. A fairly high proportion of configurations meet the 

constraint of 1.7 for both the agents around 2000 episodes. However, the 

behavior of the agents varies significantly as learning progresses. While 

the symmetry-guided agent effectively converges with a high density of 

feasible solutions, the naive agent exhibits high instability in this period. 

  
Fig. 7 Evolution of FOS across evaluation of frozen policies 

(red horizontal line is target value) 

Figure 8 showcases the evolution of the degree of symmetry for both the 

agents. On the top end, a value of 0.0 corresponds to perfect symmetry, 

while on the other end a value of -5.0 corresponds to invalid trusses as well 

as trusses with a degree of symmetry lower than or equal to -5.0. Both the 

agents exhibit increasing symmetry in the middle of the training around 

2000 episodes. This corresponds to the high density of solutions that met 

the FOS constraint for both the agents. Further, the symmetry-guided agent 

shows a very high proportion of symmetric designs until the end of 

learning. However, there is a rapid drop in the case of the naïve agent as it 

is not driven by the symmetry reward. This shows that the symmetry 

reward indeed results in a consistent set of high-performance solutions. 
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Fig. 8 Evolution of degree of symmetry across evaluation of frozen policies 

Overall, the evolution of mass, FOS, and symmetry of both the agents 

highlight the superior stability and convergence behavior of the symmetry-

guided agent in comparison to the naïve agent. While it may be valuable to 

stop the training of the naïve agent early, it is impractical to continually 

evaluate an RL agent and identify this performance drop while training. 

Rather, the symmetry-guided technique provides a more stable approach 

with a tendency to converge without intensive monitoring.  

6 CONCLUSION AND FUTURE WORK 

This research proposes a novel paradigm in the application of deep RL to 

configuration design, particularly involving the use of symmetry heuristics 

in a framework based on graph convolutional neural networks. The 

integration of a reward based on the degree of symmetry of configurations 

has showcased enhanced stability and convergence in the learning process. 

Specifically, an empirical investigation is conducted on a truss design 

problem to substantiate the efficacy of the symmetry-guided RL approach. 

The results demonstrate that the symmetry-guided agent not only 

outperforms its naïve counterpart in terms of stability and convergence but 

also resonates with the natural design inclinations of human experts. 

While the proposed symmetry-guided approach has proven effective for 

a symmetrical truss design problem, engineering problems frequently 

exhibit only partial symmetry [40]. Future work should focus on 

investigating the effectiveness of the approach in such scenarios. Learning 

the symmetry characteristics as an integral part of the design configuration, 

rather than relying on separate detection algorithms, could enhance the 

framework's adaptability. Furthermore, the computational cost of 
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calculating the GED for large solutions can be prohibitively high. A 

potential solution lies in actively learning a surrogate model [56] that can 

be deployed in a variable fidelity framework [23]. A more extensive 

exploration of efficiency metrics like time utilization with such algorithmic 

enhancements remains a valuable pursuit for subsequent studies. 

Future work could also delve into utilizing the symmetry heuristic 

within the action space rather than the reward function of the agent [57]. 

Exploring generalization capabilities of the symmetry-guided approach 

across a spectrum of truss problems is another promising avenue, 

potentially incorporating conditional factors for boundary and load-bearing 

nodes. Beyond trusses, the applicability of this approach to diverse 

domains, such as the design of drones, which often involve heterogeneous 

graph representations, could significantly broaden the impact of this 

research in the field of automated configuration design. 
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