

1

Symmetry Heuristics for Stable Reinforcement

Learning Design Agents

Akash Agrawal

Carnegie Mellon University

Christopher McComb

Carnegie Mellon University

ccm@cmu.edu

Deep Reinforcement Learning (RL) has emerged as a promising technique

for automating configuration design because of its capacity for sequential

decision-making. However, it faces challenges in learning stability when

complex engineering simulations compose the reward function. This

diminishes the practicality of deep RL for configuration design. To address

this challenge, this work integrates configuration design heuristics in a

deep RL framework to enhance stability and efficiently converge to high

performance solutions. Specifically, we shape the reward based on

symmetry, a deep-rooted heuristic that is widely applicable and frequently

used in engineering design practice. This approach is empirically tested on

a truss design problem wherein the RL agent employs a symmetry

detection method during the design process. The results reveal that the

proposed symmetry-guided approach consistently yields high-performance

symmetric configurations, outperforming a naïve approach in terms of

stability while also demonstrating an alignment with intuitive human

design principles.

1 Introduction

Engineering design often entails navigating complex, non-differentiable,

high-dimensional design spaces involving various objectives and

2 A. Agrawal and C. McComb

constraints. Deep Reinforcement Learning (RL) [1–3] has emerged as a

promising technique within this landscape through its capacity for

sequential decision-making, effectively managing design choices over time

to achieve a solution [4–9]. It also offers several other advantages like

adaptivity and transfer across design tasks [10,11]. However, RL faces

significant challenges in ensuring learning stability and convergence [2],

particularly when rewards are derived from complex engineering

simulations. This work aims to address this gap by integrating heuristic

rewards into the RL framework, enhancing the stability of the learning

process. We specifically shape the rewards based on the symmetry of

design configurations, demonstrating how this approach not only improves

stability and convergence but also aligns with intuitive human design

principles.

The design of engineered systems involves the abstract arrangement of

components, the selection of specific components, and the assignment of

parameter values to the components. In some cases, design also

encompasses the synthesis of new components; however, when no new

components are synthesized, the design problem reduces to a configuration

design problem [12], which is the focus of this work. Graph-based

representations and methodologies like graph grammars are pivotal tools

for configuration design, offering a structured approach to explore design

spaces [13–16]. Specifically, nodes in a graph can represent components or

subsystems while edges represent connectivity between them. A graph

grammar provides a ruleset for how these graphs can be manipulated in a

formalized manner. More recently, Graph Neural Networks (GNNs) [17]

have showcased significant effectiveness in handing graph-based design

representations [18–22].

In the realm of configuration design, RL emerges as a promising

technique for exploring complex design spaces encapsulated within graph-

based representations [4,5,8]. The sequential decision-making capability of

RL algorithms aligns with the often iterative nature of design tasks

wherein the impact of design choices unfolds over a sequence of steps.

Specifically, the algorithms can refine the policy to guide the RL agent

towards high-performance regions of the design space in a manner which

directs each action towards long-term gains. This synergy can be further

enhanced through structured exploration facilitated by domain-specific

graph grammars [6]. Furthermore, the scalability of RL algorithms is

practically achievable using GNNs as function approximators [6,18,19].

While RL offers numerous possibilities for advancing engineering

design, its practical implementation is limited by efficiency challenges,

encompassing aspects like resource availability, time utilization, learning

stability and convergence behavior [2]. There has been an increasing

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 3

interest in addressing these issues in the context of design. For instance,

several multi-fidelity RL frameworks employing human-inspired

approaches [23], transfer learning [24], and control variate approaches [25]

have shown promise in reducing computational time. While these

techniques effectively leverage reward approximations, there exists an

opportunity to incorporate a broader spectrum of heuristic rewards,

relevant across design problems. For instance, symmetry is a commonly

exploited heuristic in mechanical design due to its ability to balance loads,

reduce vibrations and improve space utilization [26]. These heuristics can

be invaluable for improving efficiency in full configuration design

problems with large graph-based design spaces [27].

The contribution of this work lies in enriching a foundational RL

framework for configuration design with a symmetry reward and

investigating its learning stability in comparison with a naïve approach.

The rest of this paper is organized as follows. In Section 2, we brief

configuration design and graph-based frameworks, and discuss GNNs and

RL in context of design. Further, we discuss the potential of symmetry as a

configuration design heuristic including some symmetry detection

techniques. Section 3 begins by detailing a graph convolutional neural

network-based RL framework for configuration design, setting the stage

for the autonomous search of complex design spaces. This is followed by

the formulation of a reward component that utilizes a symmetry detection

method to bias the agent towards symmetric configurations. In Section 4, a

truss design case study is described to demonstrate the effectiveness of the

approach. Section 5 presents the results of this study, including a

comparison with a naïve RL agent. Section 6 summarizes the contribution

of the paper and proposes directions for future work.

2 Background

2.1 The Synergy Between Configuration Design and Graph-Based

Frameworks

Configuration design is the systematic process of selecting and arranging

predefined components, as well as assigning parameter values to

synthesize a functional system that optimizes its objectives under various

constraints [12]. Given an exponentially large design space of possible

configurations, the choice of representation for the design space is crucial

for effective optimization. In this regard, graph-based representations

prove particularly apt [13]. Graphs model the inherent structure within a

complex system, where vertices symbolize individual components or

4 A. Agrawal and C. McComb

subsystems, and edges represent relationships such as spatial connectivity.

This intuitive mapping between a design configuration and a graph allows

for a formal, structured approach to explore design configurations.

Moreover, graphs provide a flexible medium that facilitates the frequent

design iterations common in configuration design.

From a mathematical standpoint, a configuration design problem can be

formulated as an optimization problem over a graph 𝐺 = (𝑁, 𝐸), where 𝑁

denotes the set of nodes and 𝐸 the set of edges. Each node consists of

component or subsystem information, including various continuous and

discrete variables like the coordinates, orientation, dimensions, and

material. For subsystems, it can capture additional holistic attributes such

as component enumerations, and operational parameters like pressure and

voltage. Each edge encapsulates a connectivity relationship between two

components or sub-systems, encompassing continuous and discrete

variables involving different connectivity types (like fastening, welding).

The flexibility of graphs is extended by incorporating graph grammars

[13–16], which are a set of operations that dictate how the graph can be

modified. These operations formalize the steps by which a design can

evolve. The simplest types of operations include node addition, node

deletion, edge addition, edge deletion and tuning node and edge attributes.

These operations can be parameterized to add more context or conditions

[28,29]. More complex rules can encapsulate subgraph transformations,

wherein a whole cluster of connected vertices and edges can be replaced

by another cluster to yield a better configuration [13].

While graph grammar provides a framework for systematically

generating a wide array of alternatives in the configuration design space, it

presents challenges especially in complex systems [13,29]. Developing an

extensive set of rules demands significant expertise, especially for large,

diverse design spaces. Further, inadequately defined grammar may restrict

design options, potentially resulting in suboptimal outcomes. Addressing

these limitations, a grammar derived from GNNs may offer a more

effective approach. At the core of GNNs is the ability to capture relational

patterns between graph elements [17], which is critical in configuration

design where the interplay between components can potentially dictate

further design operations. Specifically, by learning these relationships,

GNNs can execute complex combinations of elementary operations across

the entire graph for a given design configuration.

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 5

2.2 Configuration Design with Graph Neural Network Based

Reinforcement Learning Agents

In context of configuration design, RL algorithms [1] have demonstrated

their applicability in the sequential decision-making task of searching the

design space for high-performance configurations [4–9]. Specifically, the

state space of the Markov Decision Process [1] is the set of all possible

graphs that represent the design configurations, and the design operations

are agent actions. At a specific iteration, the agent state is the graph that

represents the design configuration at that design step. The agent actions

define the set of design operations to be performed on the graph that

transforms it to the next configuration represented by another graph. These

operations can range from elementary ones to more complex subgraph

transformations. Further, the reward function encapsulates the objectives

and constraints of the problem. The transition probability function for

configuration design problems is typically deterministic. Lastly, the policy

serves as a strategy for design, mapping design configurations to design

operations with the goal of optimizing the performance of the

configuration over multiple successive design operations.

While the sequential decision-making paradigm of RL aligns with

configuration design, the high dimensionality and complexity of problems

limits the applicability of traditional RL algorithms. In this regard, the

incorporation of deep learning within RL frameworks is emerging as

increasingly crucial. Specifically, deep neural networks have proven useful

in serving as function approximators for the policy and value functions in

RL [3]. In context of the application of RL to configuration design, a GNN

based policy autonomously learns to transform design configurations for

long-term gains, leading to high-performance configurations. Specifically,

the reward feedback from evaluating the configurations in simulations

informs updates to the GNN, progressively enhancing the policy and

subsequently improving the quality of the designs [6].

While deep RL offers numerous possibilities for advancing engineering

design, its practical implementation is limited by challenges in achieving

efficiency, encompassing aspects like resource availability (computing

systems and data needed), time utilization (speed of learning), stability

(consistency of learning across training runs or episodes) and the resultant

convergence behavior [2]. To enhance the learning stability of the RL

agent, this work incorporates a broader spectrum of heuristic rewards that

are relevant across design problems, essentially shaping the reward

function. It aims to bias the agent exploration in large graph-based design

spaces, leading to more stable learning outcomes. Specifically, we enrich a

6 A. Agrawal and C. McComb

GNN based RL framework with a reward based on symmetry, a deep-

rooted heuristic in engineering design practice.

2.3 Heuristic-Guided Reinforcement Learning

Heuristic-guided reinforcement learning is an emerging field that

combines the strengths of traditional heuristics with the adaptability and

learning capabilities of RL. Heuristics encompass strategies that guide

problem-solving processes based on empirical evidence, expert

knowledge, and theoretical insights which are critical in managing

complex problems like those in design [30,31]. The integration of

heuristics in the RL algorithm can bias the learning process towards a

subset of high-performance solutions, potentially enhancing learning

stability. One way to do this is to leverage them in the action space to bias

the action selection towards more promising directions [32]. Shaping or

regularizing the reward or value functions based on heuristics is another

avenue to incorporate prior knowledge [33,34]. For instance, Cheng et. al

[35] start with short-horizon tasks using heuristic rewards and gradually

shift to longer horizons with less reliance on these rewards.

Symmetry is a pervasive and powerful heuristic that transcends

disciplines, from biology, mathematics, ML to engineering. In biology,

symmetric structures are favored due to their lower informational encoding

requirements, which leads to greater mutation resilience [36]. Symmetry is

also a fundamental principle in engineering, employed as a heuristic to

address several design challenges [37]. It is particularly applicable for

problems with explicit symmetric characteristics (e.g., symmetric

boundary and loading conditions in structures [38]), problems where low

sensitivity in behavior is desired (e.g. symmetric ribs in wheels are less

prone to vibration while driving [39]), problems where cost is an objective

(e.g. symmetric gears are easier to manufacture and assemble [39]),

problems seeking aesthetic appeal (e.g. architectural applications [40]),

and problems seeking intuitive usability (e.g. user interfaces in consumer

products [41]). Even in seemingly asymmetrical systems, symmetry could

still reign on a local scale, thus showcasing the pervasive nature of

symmetry [40]. Furthermore, heuristics like modularity, often intertwine

with symmetry, exhibiting how these heuristics could be enveloped within

the symmetry framework [42]. This common thread of symmetry

illustrates its integral role as a manifestation of underlying physical

principles, a natural pattern leveraged by evolution, and a strategic design

element in human-engineered systems.

Symmetry is mathematically described as an object's attribute of being

invariant, when subjected to geometric transformations. It is typically

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 7

categorized according to the characteristics of the underlying

transformations and the resultant functionality, primarily falling into point

group or space group symmetry [26]. Point groups like cyclic and dihedral

symmetry groups ensure at least one point remains stationary during

transformation. This is crucial for applications like braking systems that

require rotational or mirror symmetry. In contrast, space group symmetry

incorporates translational symmetry and is instrumental in optimizing

material use in design layouts.

In addition to exploring the significance and applicability of different

symmetry types, there has also been extensive research on the automated

detection of symmetry. This is pursued both as a theoretical challenge to

analyze intricate geometry and as a tool for applications like model

compression [40] and capturing design intent [43]. The methodologies for

symmetry detection vary depending on factors like the data type (feature

tree [44], projected view/drawings [45], images [46], point clouds [47],

voxels [48], graphical models [43]), completeness of data (complete or

approximate [49]), type of symmetry transformation (scaling, reflection,

rotation, translation or their combinations [50]), scale of symmetry (global

[44] and/or local/partial [40]), and precision (exact [44] or approximate

[40]). While there is a very diverse range of detection techniques [40,43–

52], we briefly discuss one for global symmetry detection in graphical data

structures. It is based on the Graph Edit Distance (GED) [53] between a

graph and its symmetric transformation. GED is a measure that finds the

minimal set of edit operations needed to transform one graph into another

and has been commonly used for graph comparison. The editing operations

involved in computing GED include insertions, deletions, and substitutions

for both nodes and edges. The detection of symmetry using GED involves

the minimization of this distance via an optimization algorithm or picking

a symmetry element like a reflection axis from a set of candidates for

which this distance is the minimum.

3 Methods

3.1 Foundational RL Framework for Configuration Design

The RL based design agent in this work aims to address the configuration

design problem by starting from a seed design graph and iteratively

modifying the graph to minimize an objective function, while adhering to

the constraints. The interaction between the agent and the design space,

particularly as the agent transitions from state 𝑠𝑡 (consisting of the graph

8 A. Agrawal and C. McComb

𝐺𝑡) to state 𝑠𝑡+1 (consisting of the graph 𝐺𝑡+1) by performing actions (𝑎𝑡)

in the form of operations on the graph, is detailed hereinafter.

The action space of the agent is grounded in a graph-structured set of

design operations that are derived from a graph convolutional neural

network, which serves as a policy function approximator for the RL agent.

At each iteration 𝑡, the policy 𝜋 outputs an action graph 𝑎𝑡, wherein each

node has an attribute vector. This includes one element corresponding to

the first operation of node deletion. This operation also deletes the edges

connected to the deleted node. The next set of elements correspond to the

tuning of the continuous and integer variables that define the edge

attributes. Specifically, the tuning values for edges are obtained through

aggregation operations (like a summation) on the vector elements

corresponding to nodes that defined the edge. Further, the next set of

elements govern the tuning of the continuous and integer variables that

define the node attributes. The next element governs the addition of a new

node to the node via an edge, thereby expanding the graph. Lastly, the next

set of elements determine the attributes of the new node if it has been

added. These operations (denoted by ⊕) are applied on 𝐺𝑡 to obtain 𝐺𝑡+1.

Figure 1 shows an example of the action space for a truss design

problem, wherein the action graph consists of seven elements per node.

These elements correspond to node deletion (along with the members that

it connects), two elements for the editing member type and dimension, two

elements to edit the joint co-ordinates, one element to govern joint addition

via a member and two elements to determine the co-ordinates of the joint.

Fig. 1 Action space of RL agent for a truss design problem

 Although this example is tailored to trusses, the fundamental nature of

these graph-based operations makes them adaptable to any problem that

can be modeled with graphs. In addition to the policy function

approximator, this work also utilizes a graph convolutional neural network

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 9

for approximating the value function as illustrated in Figure 2.

Specifically, it utilizes an attention pooling mechanism for an adaptive

focus on different parts of the graph.

Fig. 2 Value function based on graph convolutional layers and attention pooling

 Lastly, the agent reward should reflect the quality of the action (𝑎𝑡) that

transitions the design from state 𝐺𝑡 to 𝐺𝑡+1. This depends on the amount

by which the objective reduces. Further, when the agent is in the infeasible

domain, the change in the amounts by which each of the constraints are

violated would guide the agent to navigate to feasible regions. The specific

formulations of these reward components are adapted from prior work that

utilizes deep RL for skeletal design [23]. Lastly, the graphs that result in

invalid designs (i.e. objectives or constraints not computable) are assigned

a poor objective value to steer the agent towards valid configurations.

3.2 Symmetry Reward Formulation

In addition to the reward components corresponding solution performance,

we introduce a novel symmetry reward component in this work. This

component employs a symmetry detection technique that finds the

minimum GED between the graph representation of the design and

symmetric transformations. These transformations are obtained by

mirroring the graph across candidate axes passing through its centroid.

Specifically, we compute the GED corresponding to each axis by

preparing a cost matrix of the pairwise distance between nodes and solving

a linear sum assignment problem [54]. The goal of this problem is to

assign each node in the original graph to a node in the transformed graph

such that the sum of all costs is minimized. Based on the solutions of these

problems, we define the degree of symmetry (𝜂) as follows:

𝜂 = − min
𝑇𝑖 ∈ 𝒯

𝐺𝐸𝐷(𝐺, 𝑇𝑖(𝐺)) (1)

where, 𝒯 is the set of candidate transformations.

10 A. Agrawal and C. McComb

Further, we clip the degree of symmetry values below a threshold to ensure

that the agent does not need to learn from overly complex patterns

amongst highly asymmetric outliers. Figure 3 shows an illustrative

example with node attributes as the co-ordinates of truss joints. The GED

is evaluated between the graph and its mirror symmetry counterpart about

four candidate symmetry axes, the minimum of which determines the

degree of symmetry.

Fig. 3 Degree of symmetry metric rooted in graph edit distance

The degree of symmetry can be further utilized to define a reward

component to extend the foundation RL framework in Section 3.1 This

reward component denoted by 𝑅𝜂 is defined as the change in the degree of

symmetry when the graph transition from 𝐺𝑡 to 𝐺𝑡+1:

(𝑅𝜂)𝑡+1 = 𝑤𝜂 × (𝜂(𝐺𝑡+1) − 𝜂(𝐺𝑡)) (2)

where, 𝑤𝜂 is the weight associated with this symmetry reward component.

Like the other reward components, invalid configurations are assigned a

poor value to steer the agent towards valid configurations.

4 CASE STUDY

4.1 Truss Design Problem

In this work, a truss design problem serves as a testbed for evaluating the

effectiveness of incorporating symmetry in RL-based configuration design.

A truss is a structure which is designed to bear loads in buildings and

bridges. The optimization objective in this problem is to minimize the

mass of the truss while adhering to a target Factor of Safety (FOS), a

measure of the load-bearing capacity of a structure beyond the expected

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 11

loads. The specific 2D truss design problem tackled in this work consists

of two fixed supports at the bottom corners and a vertical load at a node

midway between them. A target FOS of 1.7 is set for the problem, which is

a commonly utilized value for the design of steel members [55]. This

problem permits a huge number of potential solutions – up to 1075 unique

configurations of trusses with up to 40 joints, without yet accounting for

the positioning of joints in a continuous space. This enormity underscores

the problem complexity and the challenge it poses for design algorithms.

 To set the stage for the symmetry-guided RL framework, the truss

configurations are represented as graphs, wherein the edges represent the

members and nodes represent the joints. Further, the node attributes

include the joint co-ordinates, and the edge attributes consists of a scalar

size variable. This graph representation defines the agent state. Actions

include removing a node, editing node and edge attributes and adding a

new node. Further, the actions that modify the nodes corresponding to the

fixed joints and loads are masked during the transition to the new state. For

the symmetry-guided agent, the reward is computed based on the mass

objective, the FOS equality constraint, and the symmetry reward with their

weights tuned to yield satisficing designs. For the naïve agent, the same

reward function is used without the symmetry component.

4.2 Training and Evaluating the RL agents

An online one-step actor-critic [1] algorithm with graph convolutional

neural networks as function approximators is used for training the policies

of the naïve and symmetry-guided agent. The utilization of an online

algorithm improves the memory requirements by only having to store the

most recent graph, while also opening the potential for faster learning due

to frequent updates. Several random graphs that may or may not be

feasible trusses are used as seed designs in the training episodes, each with

a maximum length of 20 iterations. To bound the design space and ensure

stable learning, the episodes are terminated whenever a configuration with

less than 4 or more than 40 nodes is encountered. A common set of seed

designs, initial neural networks and hyperparameters are utilized for

training the agents. To understand the learning stability of the agents, the

policies were periodically frozen during training for further evaluation, the

results of which are discussed hereinafter.

5 RESULTS AND DISCUSSION

The naïve and symmetry-guided policies were periodically frozen every

200 episodes during training, culminating at 3000 episodes where rewards

12 A. Agrawal and C. McComb

plateaued for both agents. After completion of training, each of these

policies were evaluated to assess its performance in terms of mass, FOS,

and the degree of symmetry. This section provides a detailed account of

this evaluation data including an analysis of the distribution of solutions

and the stability of the learning process across episodes.

 Firstly, we investigate the distributions of the final solution qualities and

visualize a few representative truss designs from this distribution. This

quality is measured by the weighted sum of the mass objective and the

FOS equality constraint penalty with the same weights that were utilized in

the reward formulation. Figure 4 shows these distributions for the naïve

and symmetry-guided agent. Both the distributions are multimodal in

nature, which implies that the agents find several local minima in the

design space. However, the locations and densities of the peaks are

significantly different for both agents. Figure 5 shows some representative

trusses corresponding to the labelled peaks in Figure 4.

Fig. 4 Distribution of final solution quality

 We observe that the symmetry-guided agent has a distinct sharp peak of

the highest quality (S1), which showcases its ability to find high

performance solutions. The corresponding truss in Figure 5 meets the FOS

constraint with a moderate mass value. Moreover, this design is symmetric

in nature, much like what is observed in trusses designed by human

designers [38]. The highest quality design corresponding to the naïve

agent’s peak (N1) also meets the FOS constraint but has a higher mass

than the design S1. Moreover, it exhibits a lower degree of symmetry

compared to design S1. The next two peaks for the symmetry-guided agent

(S2 and S3) are also highly symmetric. However, they do not meet the

FOS constraint. While these are not immediately usable configurations,

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 13

their symmetric structure may still be of value to a human designer for

further exploration.

 Further, for the naïve agent, we observe that the designs N2 and N3 also

do not meet the FOS constraint. However, they have higher qualities

compared to solutions S2 and S3 respectively, albeit with varying

densities. On one hand the symmetry-guided agent is biased towards

symmetric solutions, while on the other hand the naïve agent potentially

needs to explore a larger portion of the design space to find high

performance solutions. Lastly, both agents yield about 20% of infeasible

trusses as reflected by the peaks on the far left with a quality of -4.0. The

symmetry-guided agent has a lower density of infeasible solutions that

further showcases its superiority in exploring the design space.

Fig. 5 Representative truss design solutions (red line is detected symmetry axis)

To understand the stability of the learning process, we freeze and evaluate

the policies periodically. The distribution of mass, FOS and the degree of

symmetry of this data is visualized in Figures 6, 7 and 8 respectively.

Fig. 6 Evolution of mass across evaluation of frozen policies

14 A. Agrawal and C. McComb

In Figure 6, the invalid trusses are assigned a mass of 0. At the onset of

training, a relatively high number of trusses are invalid for both the agents.

As learning progresses, the mass values start to converge to distinct modes

for both the agents, much like the peaks that were observed in the overall

quality distributions. However, we observe minor inconsistencies across

episodes for the naïve agent. For instance, the lowest mode of mass

abruptly shifts several kilograms upwards during the last period of

evaluation. This is indicative of instability in the learning process.

 Figure 7 showcases the trend for the FOS. Like the previous plot,

invalid trusses are assigned a value of 0.0. As learning progresses, the

values start to converge to distinct modes for both the agents, much like

evolution of mass. A fairly high proportion of configurations meet the

constraint of 1.7 for both the agents around 2000 episodes. However, the

behavior of the agents varies significantly as learning progresses. While

the symmetry-guided agent effectively converges with a high density of

feasible solutions, the naive agent exhibits high instability in this period.

Fig. 7 Evolution of FOS across evaluation of frozen policies

(red horizontal line is target value)

Figure 8 showcases the evolution of the degree of symmetry for both the

agents. On the top end, a value of 0.0 corresponds to perfect symmetry,

while on the other end a value of -5.0 corresponds to invalid trusses as well

as trusses with a degree of symmetry lower than or equal to -5.0. Both the

agents exhibit increasing symmetry in the middle of the training around

2000 episodes. This corresponds to the high density of solutions that met

the FOS constraint for both the agents. Further, the symmetry-guided agent

shows a very high proportion of symmetric designs until the end of

learning. However, there is a rapid drop in the case of the naïve agent as it

is not driven by the symmetry reward. This shows that the symmetry

reward indeed results in a consistent set of high-performance solutions.

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 15

Fig. 8 Evolution of degree of symmetry across evaluation of frozen policies

Overall, the evolution of mass, FOS, and symmetry of both the agents

highlight the superior stability and convergence behavior of the symmetry-

guided agent in comparison to the naïve agent. While it may be valuable to

stop the training of the naïve agent early, it is impractical to continually

evaluate an RL agent and identify this performance drop while training.

Rather, the symmetry-guided technique provides a more stable approach

with a tendency to converge without intensive monitoring.

6 CONCLUSION AND FUTURE WORK

This research proposes a novel paradigm in the application of deep RL to

configuration design, particularly involving the use of symmetry heuristics

in a framework based on graph convolutional neural networks. The

integration of a reward based on the degree of symmetry of configurations

has showcased enhanced stability and convergence in the learning process.

Specifically, an empirical investigation is conducted on a truss design

problem to substantiate the efficacy of the symmetry-guided RL approach.

The results demonstrate that the symmetry-guided agent not only

outperforms its naïve counterpart in terms of stability and convergence but

also resonates with the natural design inclinations of human experts.

While the proposed symmetry-guided approach has proven effective for

a symmetrical truss design problem, engineering problems frequently

exhibit only partial symmetry [40]. Future work should focus on

investigating the effectiveness of the approach in such scenarios. Learning

the symmetry characteristics as an integral part of the design configuration,

rather than relying on separate detection algorithms, could enhance the

framework's adaptability. Furthermore, the computational cost of

16 A. Agrawal and C. McComb

calculating the GED for large solutions can be prohibitively high. A

potential solution lies in actively learning a surrogate model [56] that can

be deployed in a variable fidelity framework [23]. A more extensive

exploration of efficiency metrics like time utilization with such algorithmic

enhancements remains a valuable pursuit for subsequent studies.

Future work could also delve into utilizing the symmetry heuristic

within the action space rather than the reward function of the agent [57].

Exploring generalization capabilities of the symmetry-guided approach

across a spectrum of truss problems is another promising avenue,

potentially incorporating conditional factors for boundary and load-bearing

nodes. Beyond trusses, the applicability of this approach to diverse

domains, such as the design of drones, which often involve heterogeneous

graph representations, could significantly broaden the impact of this

research in the field of automated configuration design.

References

1. Sutton, R.S.; Barto, A.G. Reinforcement Learning : An

Introduction; 2018; ISBN 9780262039246.
2. Dong, H.; Ding, Z.; Zhang, S. Deep Reinforcement Learning:

Fundamentals, Research and Applications; Springer Singapore:

Singapore, 2020; ISBN 978-981-15-4094-3.

3. Li, Y. Deep Reinforcement Learning. 2018.

4. Ororbia, M.E.; Warn, G.P. Design Synthesis of Structural Systems

as a Markov Decision Process Solved With Deep Reinforcement

Learning. Journal of Mechanical Design 2023, 145,

doi:10.1115/1.4056693.

5. Liao, H.; Zhang, W.; Dong, X.; Poczos, B.; Shimada, K.; Burak

Kara, L. A Deep Reinforcement Learning Approach for Global

Routing. Journal of Mechanical Design 2020, 142,

doi:10.1115/1.4045044.

6. Fogelson, M.B.; Tucker, C.; Cagan, J. GCP-HOLO: Generating

High-Order Linkage Graphs for Path Synthesis. Journal of

Mechanical Design 2023, 145, doi:10.1115/1.4062147.

7. Raina, A.; Cagan, J.; McComb, C. Learning to Design Without

Prior Data: Discovering Generalizable Design Strategies Using

Deep Learning and Tree Search. Journal of Mechanical Design

2023, 145, doi:10.1115/1.4056221.

8. Whitman, J.; Bhirangi, R.; Travers, M.; Choset, H. Modular Robot

Design Synthesis with Deep Reinforcement Learning. Proceedings

of the AAAI Conference on Artificial Intelligence 2020, 34, 10418–

10425, doi:10.1609/aaai.v34i06.6611.

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 17

9. Jang, S.; Yoo, S.; Kang, N. Generative Design by Reinforcement

Learning: Enhancing the Diversity of Topology Optimization

Designs. CAD Computer Aided Design 2022, 146,

doi:10.1016/j.cad.2022.103225.

10. Lee, X.Y.; Balu, A.; Stoecklein, D.; Ganapathysubramanian, B.;

Sarkar, S. A Case Study of Deep Reinforcement Learning for

Engineering Design: Application to Microfluidic Devices for Flow

Sculpting. Journal of Mechanical Design, Transactions of the

ASME 2019, 141, doi:10.1115/1.4044397.

11. Yonekura, K.; Hattori, H. Framework for Design Optimization

Using Deep Reinforcement Learning. Structural and

Multidisciplinary Optimization 2019, 60, 1709–1713,

doi:10.1007/s00158-019-02276-w.

12. Wielinga, B.; Schreiber, G. Configuration-Design Problem Solving.

IEEE Expert 1997, 12, 49–56, doi:10.1109/64.585104.

13. Voss, C.; Petzold, F.; Rudolph, S. Graph Transformation in

Engineering Design: An Overview of the Last Decade. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing

2023, 37, e5, doi:10.1017/S089006042200018X.

14. Zhao, A.; Xu, J.; Konaković-Luković, M.; Hughes, J.; Spielberg,

A.; Rus, D.; Matusik, W. RoboGrammar: Graph Grammar for

Terrain-Optimized Robot Design. ACM Trans Graph 2020, 39,

doi:10.1145/3414685.3417831.

15. Puentes, L.; Cagan, J.; McComb, C. Heuristic-Guided Solution

Search through a Two-Tiered Design Grammar. J Comput Inf Sci

Eng 2020, 20, doi:10.1115/1.4044694.

16. Oberhauser, M.; Sartorius, S.; Gmeiner, T.; Shea, K. Computational

Design Synthesis of Aircraft Configurations with Shape Grammars.

In Design Computing and Cognition ’14; Springer International

Publishing: Cham, 2015; pp. 21–39.

17. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph

Convolutional Networks. 2016.

18. Almasan, P.; Suárez-Varela, J.; Rusek, K.; Barlet-Ros, P.;

Cabellos-Aparicio, A. Deep Reinforcement Learning Meets Graph

Neural Networks: Exploring a Routing Optimization Use Case.

Comput Commun 2022, 196, 184–194,

doi:10.1016/j.comcom.2022.09.029.

19. Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J.W.; Songhori, E.;

Wang, S.; Lee, Y.J.; Johnson, E.; Pathak, O.; Nazi, A.; et al. A

Graph Placement Methodology for Fast Chip Design. Nature 2021,

594, 207–212, doi:10.1038/s41586-021-03544-w.

18 A. Agrawal and C. McComb

20. Song, B.; McComb, C.; Ahmed, F. Assessing Machine Learnability

of Image and Graph Representations for Drone Performance

Prediction. Proceedings of the Design Society 2022, 2, 1777–1786,

doi:10.1017/pds.2022.180.

21. Zhao, P.; Liao, W.; Huang, Y.; Lu, X. Intelligent Beam Layout

Design for Frame Structure Based on Graph Neural Networks.

Journal of Building Engineering 2023, 63,

doi:10.1016/j.jobe.2022.105499.

22. Su, X.; Wu, C.; Gao, W.; Huang, W. Interior Layout Generation

Based on Scene Graph and Graph Generation Model. In Design

Computing and Cognition’20; Springer International Publishing:

Cham, 2022; pp. 267–282.

23. Agrawal, A.; McComb, C. Reinforcement Learning for Efficient

Design Space Exploration With Variable Fidelity Analysis Models.

J Comput Inf Sci Eng 2023, 23, doi:10.1115/1.4056297.

24. Bhola, S.; Pawar, S.; Balaprakash, P.; Maulik, R. Multi-Fidelity

Reinforcement Learning Framework for Shape Optimization. J

Comput Phys 2023, 482, doi:10.1016/j.jcp.2023.112018.

25. Khairy, S.; Balaprakash, P. Multifidelity Reinforcement Learning

with Control Variates. 2022.

26. Qiu, Q.; Chen, X.; Yang, C.; Feng, P. Classification and Effects of

Symmetry of Mechanical Structure and Its Application in Design.

Symmetry (Basel) 2021, 13, doi:10.3390/sym13040683.

27. McComb, C.; Cagan, J.; Kotovsky, K. Mining Process Heuristics

from Designer Action Data Via Hidden Markov Models. Journal of

Mechanical Design 2017, 139, doi:10.1115/1.4037308.

28. Vogel, S.; Arnold, P. Towards a More Complete Object-Orientation

in Graph-Based Design Languages. SN Appl Sci 2020, 2,

doi:10.1007/s42452-020-2959-x.

29. Kolbeck, L.; Vilgertshofer, S.; Abualdenien, J.; Borrmann, A.

Graph Rewriting Techniques in Engineering Design. Front Built

Environ 2022, 7, doi:10.3389/fbuil.2021.815153.

30. Daly, S.R.; Yilmaz, S.; Christian, J.L.; Seifert, C.M.; Gonzalez, R.

Design Heuristics in Engineering Concept Generation. Journal of

Engineering Education 2012, 101, 601–629, doi:10.1002/j.2168-

9830.2012.tb01121.x.

31. Yilmaz, S.; Daly, S.R.; Seifert, C.M.; Gonzalez, R. Evidence-Based

Design Heuristics for Idea Generation. Des Stud 2016, 46, 95–124,

doi:10.1016/j.destud.2016.05.001.

32. Kanervisto, A.; Scheller, C.; Hautamaki, V. Action Space Shaping

in Deep Reinforcement Learning. In Proceedings of the 2020 IEEE

Conference on Games (CoG); IEEE, August 2020; pp. 479–486.

Symmetry Heuristics for Stable Reinforcement Learning Design Agents 19

33. Bianchi, R.A.C.; Ribeiro, C.H.C.; Costa, A.H.R. Accelerating

Autonomous Learning by Using Heuristic Selection of Actions.

Journal of Heuristics 2008, 14, 135–168, doi:10.1007/s10732-007-

9031-5.

34. Hulse, D.; Tumer, K.; Hoyle, C.; Tumer, I. Modeling Collaboration

in Parameter Design Using Multiagent Learning. In Design

Computing and Cognition ’18; Springer International Publishing:

Cham, 2019; pp. 577–593.

35. Cheng, C.-A.; Kolobov, A.; Swaminathan, A. Heuristic-Guided

Reinforcement Learning. 2021.

36. Johnston, I.G.; Dingle, K.; Greenbury, S.F.; Camargo, C.Q.; Doye,

J.P.K.; Ahnert, S.E.; Louis, A.A.; Designed, A.A.L.; Performed,

A.A.L. EVOLUTION BIOPHYSICS AND COMPUTATIONAL

BIOLOGY Symmetry and Simplicity Spontaneously Emerge from

the Algorithmic Nature of Evolution. 2022,

doi:10.1073/pnas.2113883119/-/DCSupplemental.

37. Montoya, F.G.; Baños, R.; Alcayde, A.; Manzano-Agugliaro, F.

Symmetry in Engineering Sciences II. Symmetry (Basel) 2020, 12,

1077, doi:10.3390/sym12071077.

38. Nasrollahi, A. Optimum Shape of Large-Span Trusses According to

AISC-LRFD Using Ranked Particles Optimization. J Constr Steel

Res 2017, 134, 92–101, doi:10.1016/j.jcsr.2017.03.021.

39. Chen, X.; Qiu, Q.; Yang, C.; Feng, P. Concept System and

Application of Point Group Symmetry in Mechanical Structure

Design. Symmetry (Basel) 2020, 12, doi:10.3390/sym12091507.

40. Mitra, N.J.; Guibas, L.J.; Pauly, M. Partial and Approximate

Symmetry Detection for 3D Geometry. In Proceedings of the ACM

SIGGRAPH 2006; ACM Press: New York, USA, 2006; p. 560.

41. Thimbleby, H. Symmetry for Successful Interactive Systems. In

Proceedings of the Proceedings of the SIGCHI-NZ Symposium on

Computer-Human Interaction - CHINZ ’02; ACM Press: New

York, New York, USA, 2002; pp. 1–9.

42. Modrak, V.; Soltysova, Z. Exploration of the Optimal Modularity

in Assembly Line Design. Sci Rep 2022, 12, doi:10.1038/s41598-

022-24972-2.

43. Li, M.; Langbein, F.C.; Martin, R.R. Detecting Design Intent in

Approximate CAD Models Using Symmetry. CAD Computer

Aided Design 2010, 42, 183–201, doi:10.1016/j.cad.2009.10.001.

44. Jiang, J.; Chen, Z.; He, K. A Feature-Based Method of Rapidly

Detecting Global Exact Symmetries in CAD Models. CAD

Computer Aided Design 2013, 45, 1081–1094,

doi:10.1016/j.cad.2013.04.005.

20 A. Agrawal and C. McComb

45. Li, B.; Johan, H.; Ye, Y.; Lu, Y. Efficient 3D Reflection Symmetry

Detection: A View-Based Approach. Graph Models 2016, 83, 2–

14, doi:10.1016/j.gmod.2015.09.003.

46. Shi, Y.; Xu, X.; Xi, J.; Hu, X.; Hu, D.; Xu, K. Learning to Detect

3D Symmetry from Single-View RGB-D Images with Weak

Supervision. IEEE Trans Pattern Anal Mach Intell 2023, 45, 4882–

4896, doi:10.1109/TPAMI.2022.3186876.

47. Žalik, B.; Strnad, D.; Kohek, Š.; Kolingerová, I.; Nerat, A.; Lukač,

N.; Podgorelec, D. A Hierarchical Universal Algorithm for

Geometric Objects’ Reflection Symmetry Detection. Symmetry

(Basel) 2022, 14, doi:10.3390/sym14051060.

48. Gao, L.; Zhang, L.-X.; Meng, H.-Y.; Ren, Y.-H.; Lai, Y.-K.;

Kobbelt, L. PRS-Net: Planar Reflective Symmetry Detection Net

for 3D Models. 2019, doi:10.1109/TVCG.2020.3003823.

49. Sipiran, I.; Gregor, R.; Schreck, T. Approximate Symmetry

Detection in Partial 3D Meshes. Computer Graphics Forum 2014,

33, 131–140, doi:10.1111/cgf.12481.

50. Buric, M.; Bosner, T.; Skec, S. A Framework for Detection of

Exact Global and Partial Symmetry in 3D CAD Models. Symmetry

(Basel) 2023, 15, doi:10.3390/sym15051058.

51. Nguyen, T.P.; Truong, H.P.; Nguyen, T.T.; Kim, Y.G. Reflection

Symmetry Detection of Shapes Based on Shape Signatures. Pattern

Recognit 2022, 128, doi:10.1016/j.patcog.2022.108667.

52. Zhou, Y.; Liu, S.; Ma, Y. NeRD: Neural 3D Reflection Symmetry

Detector. 2021.

53. Riesen, K. Structural Pattern Recognition with Graph Edit

Distance; Advances in Computer Vision and Pattern Recognition;

Springer International Publishing: Cham, 2015; ISBN 978-3-319-

27251-1.

54. Crouse, D.F. On Implementing 2D Rectangular Assignment

Algorithms. IEEE Trans Aerosp Electron Syst 2016, 52, 1679–

1696, doi:10.1109/TAES.2016.140952.

55. Steel Construction Manual; American Institute of Steel

Construction, 2005; ISBN 156424055X.

56. Ranjan, R.; Grover, S.; Medya, S.; Chakaravarthy, V.; Sabharwal,

Y.; Ranu, S. GREED: A Neural Framework for Learning Graph

Distance Functions. 2021.

57. Labrou, K.; Kotsopoulos, S.D. Making Grammars for

Computational Lacemaking. In Design Computing and

Cognition’22; Springer International Publishing: Cham, 2023; pp.

587–604.

