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ABSTRACT8

The Adaptive Regional Input-Output (ARIO) model is popular for quantifying indirect economic losses,9

which stem from business and supply chain interruption. However, refining this model to study new contexts10

is challenging in its basic form due to low-resolution modeling of behavioral parameters and temporally11

static reconstruction rates. This paper presents a refined ARIO, or R-ARIO model that incorporates dynamic12

reconstruction rates, sector-level modeling of behavioral parameters, and explicit modeling of housing losses13

separately from productive capital losses. We perform a global variance-based sensitivity analysis to identify14

the most influential parameters on predicted indirect loss from the R-ARIO model. A case study application15

to the 2016 Kumamoto Earthquake Sequence isolates trends in housing and economic recovery, capturing16

temporal differences in reconstruction demand and uncertainty across economic indicators.17

INTRODUCTION18

Indirect losses stemming from the disruptions in production and supply chains make up a substantial19

portion of post-disaster loss. The 1994 Northridge Earthquake, 2008 Wenchuan Earthquake, and 201120

Tohoku Earthquake generated 7.3, 124, and 211 billion U.S. dollars of indirect loss, respectively (Petak21

and Elahi 2000; Wu et al. 2012; MacKenzie et al. 2012). These losses, amounting to 17%, 35%, and 37%22

of the events’ total post-disaster losses, illustrate that exclusive prediction of direct losses can significantly23

underestimate post-disaster impacts.24

Several macroeconomic modeling tools have been developed to quantify post-disaster indirect loss across25

sectors in a regional economy. Input-output (I-O) models have been traditionally used to model such impacts.26
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These models leverage tables that characterize production inputs and outputs of each sector. However, a27

limitation of basic I-O models is that they cannot quantify supply-side shocks or capture business adaptation28

such as substitution or conservation of inputs by default (Koks et al. 2016; Galbusera andGiannopoulos 2018).29

As a result, I-O models tend to overestimate disaster impacts (Galbusera and Giannopoulos 2018; Hallegatte30

2014). A second approach is to use computable general equilibrium (CGE) models to simulate post-disaster31

impacts by estimating how shocks to the supply and demand of goods and services map to changes across32

economic indicators (e.g., Rose and Liao 2005). Unlike basic I-O models, they account for business33

adaptation behaviors, economies of scale, and nonlinear impact functions. However, without refinement,34

CGE models tend to overestimate resilient response by economic sectors, leading to underestimation of35

disaster impacts (Rose and Liao 2005; Botzen et al. 2019).36

The Adaptive Regional Input-Output model (ARIO) extends basic I-O models by incorporating some37

CGE characteristics to consider changes in productive capacity due to productive capital losses and adaptive38

behaviors by individual sectors (Hallegatte 2008). Examples of adaptive behaviors include overproduction,39

which can be achieved through production recapture (e.g., overtime or extra shifts to compensate for lost40

production) or resource isolation (e.g., modifying operations to run without typical inputs). Both tactics have41

been demonstrated to be highly effective in various post-disaster contexts (Wein and Rose 2011; Haywired42

2019; Wei et al. 2020). The ARIO model has since been improved in Hallegatte (2014) to explicitly model43

inventories and production bottlenecking. The ARIO model was first used to predict economic recovery44

following Hurricane Katrina, and others have used it to evaluate climate change, earthquake, and flood45

impacts (Ranger et al. 2011; Zhang et al. 2017; Liu et al. 2023).46

While the ARIO model and its applications enable the evaluation of post-disaster indirect loss, several47

barriers limit its use in new regions and contexts. First, the ARIO model assumes a constant, temporally48

static reconstruction rate for each sector, leading to identical reconstruction demands across all time steps49

until all productive capital has been reconstructed. While this rate can be modified, it cannot capture50

differences across sectors or time. Second, it does not have an explicit mechanism for handling housing51

losses, which often comprise a substantial portion of the total direct loss. Previous studies have assigned52

all housing reconstruction demand to the real estate sector (Hallegatte 2014; Markhvida and Baker 2023).53

This workaround captures housing-related reconstruction demands but distorts economic recovery for the54

real estate sector because it implies that housing is part of the productive capital of that sector. The extent of55

distortion will vary depending on the amount of damaged housing and productive capital in the real estate56
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sector.57

Finally, ARIO model behavioral parameters are modeled at an economy-level resolution. These58

parameters—which characterize post-disaster adaptability, inventory, overproduction, and heterogeneity—59

significantly influence the predicted indirect loss. One consequence of low-resolution modeling is that a60

single change to one parameter must be applied to all sectors, regardless of inter-sector differences. Mod-61

elers wishing to select these parameters for new study regions must use a "one-size-fits-all" approach. As a62

result, several studies (e.g. Ranger et al. 2011; Zhang et al. 2017; Wang et al. 2018; Markhvida and Baker63

2023) simply adopt the parameters used to model post-Katrina recovery introduced in Hallegatte (2008) or64

Hallegatte (2014), despite transferring them to a non-Katrina context. Furthermore, low-resolution modeling65

makes it more difficult to refine specific parameters since empirical evidence often exists at the sector or66

sector-category level, and it is not clear from sensitivity analyses which sectors contribute the most to the67

variance in the predicted ARIO output. Due to these challenges, past studies have not been able to perform68

sector-level sensitivity analyses or uncertainty quantification.69

To address the abovementioned issues, this paper proposes the R-ARIO model to simulate post-disaster70

economic recovery. The R-ARIO model improves on previous iterations of the ARIO model by introducing71

(i) dynamic reconstruction rates based on sector-specific reconstruction time curves, (ii) explicit modeling72

of housing losses separate from productive capital losses, and (iii) sector-level modeling and uncertainty73

quantification of behavioral parameters. In addition, we propose the use of global sensitivity analyses74

to identify the most important behavioral parameters for further refinement. The R-ARIO model and the75

accompanying sensitivity analysis approach are demonstrated in a case study that explores economic recovery76

following the 2016 Kumamoto Earthquake. As part of the case study, we explore the influence of each model77

enhancement on the predicted indirect loss and illustrate how global sensitivity analyses can be used to78

prioritize future refinement of behavioral parameters.79

THE R-ARIO MODEL80

In this section, we provide an overview of the R-ARIO model and describe its inputs, outputs, and81

architecture. Subsections describe each model improvement in greater detail.82

The R-ARIO model extends the work by Hallegatte (2014) in three ways:83

1. Reconstruction demand ismodeled dynamically throughout the recovery period using time-dependent,84

sector-specific reconstruction rates.85
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2. Housing losses are incorporated into the model explicitly and separately from productive capital86

losses.87

3. Behavioral parameter modeling is performed at the individual sector level to enable parameter88

refinement that accounts for inter-sector differences and enables uncertainty quantification. We89

propose a set of updated parameters that reflect these differences based on documented cases of90

business adaptation.91

Figure 1 illustrates the R-ARIO model workflow, which consists of three main steps.92
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Fig. 1. General overview of the R-ARIO model workflow.

First, a study region and disaster are defined for the analysis. Disasters are based on observed past events93

or hypothetical events (e.g., using simulation-based scenarios). The disaster is used to determine the spatial94

extent of the study, and the amount of capital loss per sector resulting from the damage.95

Next, input data specific to the regional economy (comprised of 𝑁𝑠 sectors) is assembled. The required96

data falls into four categories: pre-disaster economic activity (e.g., value added, exports), monetary losses97

due to direct damage, reconstruction time curves, and behavioral parameters. These are detailed in Table 1.98

Sector-level data encompasses a series of "baseline" inputs used to quantify steady-state economic99
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activity. The first of these inputs is the local input-output (I-O) table, a matrix representing the flow of100

goods and services exchanged between sectors in the defined economy, indicating how the outputs of one101

sector become an input for others. This table is used to derive input-output ratios that control the amount of102

inputs necessary to fulfill productive tasks. Next, value added and fixed assets are provided for each sector.103

Value added represents each sector’s net contribution to the defined economy’s output. It is calculated as104

the difference between a given sector’s total output and the value of intermediate inputs it consumes from105

supplying sectors. Fixed assets represent the value of productive capital leveraged by each sector to produce106

goods and services. Fixed assets are assumed to equal the total replacement value of buildings within a given107

sector. Finally, exports, imports, and local demand are provided. Exports represent the value of goods and108

services produced by each sector within the defined economy that are sold outside the study region. Imports109

represent the value of goods and services produced by each sector outside the study region that are brought110

into the defined economy. Local final demand refers to the total demand for goods and services by final111

consumers.112

Sector-level reconstruction time curves are time-dependent functions representing the reconstruction113

trajectory of damaged buildings within a specific sector. These inputs are used to determine sector-specific114

reconstruction rates of productive capital as part of the first enhancement in this study. User-provided115

reconstruction time curves only account for the time it takes to reconstruct buildings and do not include116

indirect delays that impede the start of repairs or slow work due to a lack of needed inputs. We describe the117

dynamic reconstruction rates below.118

Sector-level direct losses are monetary losses directly attributed to damage from the disaster. These119

inputs control the loss of productive capital and the approximate drop in productive capacity, at the onset of120

the disaster for each sector.121

Finally, sector-level behavioral parameters characterize adaptation and inventory mechanics of each122

sector following the disaster. Like the ARIO model, the R-ARIO model considers five behavioral parameters123

selected by the user to characterize the regional economy. These are discussed in greater detail later.124

Running the R-ARIO model125

At the beginning of each simulation, behavioral parameters are sampled from user-defined distributions126

for uncertainty quantification purposes. Each simulation tracks economic recovery at discrete time steps127

over a user-defined period. At each time step, a three-stage calculation (as shown in Figure 1) is performed128
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TABLE 1. Inputs to the R-ARIO model. Here, 𝑁𝑠 represents the number of sectors in the defined economy,
and (𝑁𝑠 + 1) represents the number of sectors, plus housing. 𝑁step refers to the length of the time domain
used as the x-axis of each recovery curve.

Input Category Size Units Differences in treat-
ment
(R-ARIO versus ARIO)

Local input-output
table

Sector-level
economic
data

𝑁𝑠 × 𝑁𝑠 Monetary value None

Value added Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Exports Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Imports Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Local final demand Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Direct losses Sector-level
direct losses

(𝑁𝑠 + 1) × 1 Monetary value None

Reconstruction
time curves

Sector-level
reconstruction
time curves

(𝑁𝑠 + 1) × 𝑁step Unitless
(Fraction of
damaged capital
reconstructed)

Used to determine
time-dependant recon-
struction time rates in
R-ARIO. Not used in the
ARIO model.

Behavioral parame-
ters

Sector-level
behavioral
parameters

𝑁𝑠 × 5 Varies by
parameter

Modeled at the sector-
level resolution in R-
ARIO. Modeled at the
economy-level in ARIO.

to estimate key economic metrics at the sector level.129

Stage I: Simulate demand130

Demand 𝐷𝑖 (𝑡) for each sector 𝑖 is computed at each time step (𝑡) as the sum of inventory orders, local131

final demand, reconstruction demand due to damaged productive capital, and exports:132

𝐷𝑖 (𝑡) =
∑︁
all 𝑗

𝑂 𝑗 ,𝑖 (𝑡) + 𝐶𝑖 (𝑡) + 𝑅𝑖 (𝑡) + 𝐸𝑖 (𝑡) (1)133
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where:134

𝑂 𝑗 ,𝑖 (𝑡) = Orders (intermediate consumption) from sector 𝑗 to sector 𝑖 at time 𝑡

𝐶𝑖 (𝑡) = Local final demand to sector 𝑖 at time 𝑡

𝑅𝑖 (𝑡) = Reconstruction demand for sector 𝑖 at time 𝑡

𝐸𝑖 (𝑡) = Exports of sector 𝑖 at time 𝑡

135

At each time step, demand 𝐷𝑖 (𝑡) is satisfied by two sources: production and imports. If these two136

sources cannot fulfill demand, sectors begin proportionally rationing (using the ratio between production137

and demand at the current time step) across 𝑂 𝑗 ,𝑖 (𝑡), 𝐶𝑖 (𝑡), 𝑅𝑖 (𝑡), and 𝐸𝑖 (𝑡).138

A key component in the calculation of demand 𝐷𝑖 (𝑡) is reconstruction demand 𝑅𝑖 (𝑡). Fulfillment139

of reconstruction demand drives the restoration of productive capital over time. 𝑅𝑖 (𝑡) is estimated using140

Equation 2:141

𝑅𝑖 (𝑡) =
∑︁
all 𝑗

(𝑅𝐷𝑀 𝑗 ,𝑖 (𝑡) × rate 𝑗 (𝑡)) (2)142

where:143

𝑅𝐷𝑀𝑖, 𝑗 (𝑡) = Reconstruction demand from sector 𝑗 to sector 𝑖 at time 𝑡;

rate 𝑗 (𝑡) = Rate of reconstruction of sector 𝑗’s productive assets at time 𝑡
144

To take into account the time-dependent nature of reconstruction, the R-ARIO model introduces the term145

rate 𝑗 (𝑡), which represents the rate of reconstruction at the current time step, described further below.146

Stage II: Simulate production147

In the absence of supply-side constraints, the production of sector 𝑖 would equal the demand for sector 𝑖148

at each time step. However, the R-ARIO model constrains the estimated production in two ways. It is first149

constrained by production capacity, 𝑃𝑐𝑎𝑝

𝑖
(𝑡), when productive capital is insufficient to meet demand (e.g., in150

cases with significant direct damage to a sector). Production is also constrained by inventories. It is assumed151

that if inventories are lower than their required levels, then production is reduced.152

The final value of production, 𝑃𝑎
𝑖
(𝑡), accounts for both the production capacity and inventory constraints.153

Computing the value of 𝑃𝑎
𝑖
(𝑡) follows three principal calculations. First, each sector’s required inventory154

levels 𝑆𝑟
𝑗,𝑖
(𝑡) are computed. 𝑆𝑟

𝑗,𝑖
(𝑡) represents the amount of input 𝑗 necessary to meet the local production155

level of sector 𝑖 over the duration of inventory 𝑗 , calculated as:156
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𝑆𝑟𝑗,𝑖 (𝑡) =



𝑛 𝑗 ×
(
𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

)
× 𝐴 𝑗 ,𝑖 (𝑡) if 𝐷𝑖 (𝑡) > 𝑃

𝑐𝑎𝑝

𝑖
(𝑡)

𝑛 𝑗 × 𝐷𝑖 (𝑡) ×
𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

𝑃
𝑐𝑎𝑝

𝑖
(𝑡)

× 𝐴 𝑗 ,𝑖 (𝑡) if 𝐷𝑖 (𝑡) ≤ 𝑃
𝑐𝑎𝑝

𝑖
(𝑡)

(3)157

where:158

𝑛 𝑗 = Target inventory level of supplying sector 𝑗 in days of demand

𝑃
𝑐𝑎𝑝

𝑖
(𝑡) = Production capacity of sector 𝑖 at time 𝑡

𝐼𝑖 (𝑡) = Imports of sector 𝑖 at time 𝑡

𝐴 𝑗 ,𝑖 = I-O table coefficients (required units of input from sector 𝑗 to produce unit of sector 𝑖)

159

Next, the maximum possible production of sector 𝑖, 𝑃𝑚𝑎𝑥
𝑗,𝑖

(𝑡), depends upon the actual inventory level of160

input 𝑗 . If required inventory 𝑆𝑟
𝑗,𝑖
(𝑡) is not met, then the maximum possible production 𝑃𝑚𝑎𝑥

𝑗,𝑖
(𝑡) is reduced161

proportionally, taking into consideration inventory substitution effects (heterogeneity):162

𝑃𝑚𝑎𝑥
𝑗,𝑖 (𝑡) =



(
𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

)
×min

(
1,

𝑆 𝑗 ,𝑖 (𝑡)
𝜓 𝑗 × 𝑆 𝑗 ,𝑖 (𝑡)

)
+ 𝐼𝑖 (𝑡) if 𝐷𝑖 (𝑡) > 𝑃

𝑐𝑎𝑝

𝑖
(𝑡)

min

(
𝐷𝑖 (𝑡), 𝐷𝑖 (𝑡) ×

𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

𝑃
𝑐𝑎𝑝

𝑖
(𝑡)

×min
(
1,

𝑆 𝑗 ,𝑖 (𝑡)
𝜓 𝑗 × 𝑆 𝑗 ,𝑖 (𝑡)

)
+ 𝐼𝑖 (𝑡)

)
if 𝐷𝑖 (𝑡) ≤ 𝑃

𝑐𝑎𝑝

𝑖
(𝑡)

(4)163

where:164

𝑃𝑚𝑎𝑥
𝑗,𝑖

(𝑡) = Maximum production of sector 𝑗 to sector 𝑖

𝑆 𝑗 ,𝑖 (𝑡) = Actual inventory of input 𝑗 for sector 𝑖 at time 𝑡

𝑆𝑟 ( 𝑗 , 𝑖) (𝑡) = Required inventory of sector 𝑗 to sector 𝑖 at time 𝑡

𝜓 𝑗 = Production reduction parameter (heterogeneity) of sector 𝑗

165

For each input sector 𝑗 , if the current inventory is greater than or equal to 𝑆𝑟
𝑗,𝑖
(𝑡), no sectoral constraints166

are applied. On the other hand, if a given sector cannot meet the required inventory, then its production is167

reduced using a ratio that considers heterogeneity in disaster losses and impacts. The top and bottom terms168

in Equation 4 account for the case in which the production capacity of sector 𝑖 is insufficient and sufficient169

to fulfill demand, respectively.170
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Finally, the actual production 𝑃𝑎
𝑖
(𝑡) is taken as the minimum of all sectoral constraints:171

𝑃𝑎
𝑖 (𝑡) = min

(
𝑃𝑚𝑎𝑥

𝑗,𝑖 (𝑡), for all 𝑗
)

(5)172

Stage III: Update supply and key economic metrics173

Demand and production are then used to update supply and calculate key economic metrics such as value174

added, which is calculated as production minus intermediate production and imports:175

𝑉𝐴𝑖 (𝑡) = 𝑃𝑎
𝑖 (𝑡) − 𝐼𝑖 (𝑡) −

∑︁
all 𝑗

𝐴 𝑗 ,𝑖 × 𝑃𝑎
𝑖 (𝑡) (6)176

where:177

𝑉𝐴𝑖 (𝑡) = Value added of sector 𝑖 at time 𝑡

𝐼𝑖 (𝑡) = Imports to sector 𝑖 at time 𝑡

𝐴 𝑗 ,𝑖 = Coefficients of the I-O table

178

By repeating the calculations in Stages I through III across all sectors, value added, production, and179

unsatisfied demand can be tracked over time to produce economic recovery curves. Uncertainty across180

different economic metrics can be captured by rerunning the R-ARIO model using different behavioral181

parameter samplings. The resulting recovery curve ensembles for each sector, which consider uncertainty in182

the assumed behavioral parameters, are the final output of the R-ARIO model.183

The following three sections cover the implementation of three R-ARIO enhancements in greater detail.184

Dynamic reconstruction rate185

Reconstruction demand plays a significant role in the economic recovery process, since it is a critical186

component of sector-specific demand 𝐷𝑖 (𝑡), and drives the restoration of productive capital (and hence,187

production capacity) over time. Equation 2 indicates that the reconstruction demand is driven by the188

assumed rate of reconstruction, rate 𝑗 (𝑡).189

Past iterations of the ARIO model (Hallegatte 2008; Hallegatte 2014) assume a constant value of190

rate 𝑗 (𝑡) for all timesteps. The original ARIO model assumed a constant half-year reconstruction time for191

all sectors, and hence, a rate of 10.5 throughout the recovery process. Markhvida and Baker (2023) extended192

this assumption to account for differences in reconstruction speed across sectors by using the time to 95%193
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reconstruction for sector 𝑗 (i.e., 𝜏𝑗 ,95), based on sector-specific reconstruction times. While this allows for194

differing reconstruction processes for each sector, it still employs a constant reconstruction rate equivalent195

to 1
𝜏 𝑗,95
across the recovery period for each sector.196

To account for temporal variations in this rate, the R-ARIO model leverages a "dynamic" reconstruction197

rate for each sector 𝑗 that is updated throughout a simulation based on reconstruction progress (Figure 2b).198
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Fig. 2. In the R-ARIO model, the mapping between rate 𝑗 (𝑡) and reconstruction progress (right) is developed
using the user-provided reconstruction time curve for sector 𝑗 (left).

For a given sector, the mapping between rate 𝑗 (𝑡) and the fraction of damaged productive capital recon-199

structed (Figure 2b) is derived using user-provided reconstruction time curves (Figure 2a). This is done by200

taking the derivative of the reconstruction time curve with respect to time and then mapping it directly to the201

fraction of damaged productive capital reconstructed.202

Explicit consideration of housing losses203

Housing damage can produce a significant portion of post-disaster loss and reconstruction demand in an204

impacted region. Previous applications of the ARIO model typically assigned this reconstruction demand205

to the real estate sector (Hallegatte 2014; Markhvida and Baker 2023). While this approach accounts for206

housing loss in the analysis, it treats their replacement costs as productive capital. Since the ARIO model207

uses the ratio of loss to productive capital to estimate the initial drop in production, this approach can distort208

economic recovery for the real estate sector and cause unintended upstream and downstream ripple effects.209

Rather than assigning housing losses and productive capital to an individual sector, the improved R-ARIO210

approach assigns housing losses to a distinct housing "sector." This sector only generates reconstruction211
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demands, and is assumed to hold no productive capital. The housing sector does not contribute to any212

macroeconomic calculations of inputs, outputs, or production. With this treatment, it is accounted for in the213

analysis without influencing the initial drop in production for non-housing sectors.214

Sector-level behavioral parameter modeling215

Finally, the R-ARIO model utilitzes sector-level behavioral parameter modeling to enable more gran-216

ular refinement, uncertainty quantification, and global sensitivity analysis. Behavioral parameters, which217

characterize sector-level adaptation and inventory mechanics, significantly influence the predicted economic218

recovery and indirect loss. For example, past sensitivity analyses have shown that the choice of inventory219

parameters 𝑛𝑠 and 𝜏𝑠 can move predicted changes in value added shortly after the disaster from moderate (<220

20%) to economic collapse (100%) (Hallegatte 2014).221

The R-ARIO model considers the same five ARIO behavioral parameters that control economic recovery222

dynamics. Time to maximum overproduction (𝜏𝛼) introduces a temporal dimension, defining the duration223

needed for the production system to adjust and reach peak overproduction capacity. Time of inventory224

restoration (𝜏𝑠) quantifies the duration required to restore inventory levels to the predefined target after225

a disruption. The maximum overproduction parameter (𝛼𝑚𝑎𝑥) defines the upper limit of overproduction226

capacity in response to increased demand. Target inventory level (𝑛 𝑗) represents the temporal dimension227

of inventory management, specifying the duration for which available inventory can support production.228

Finally, the production reduction (or heterogeneity) parameter (𝜓) captures the response of businesses to229

disaster impacts, influencing the extent to which production is reduced when inventories are insufficient.230

Past studies (e.g. Ranger et al. 2011; Zhang et al. 2017; Wang et al. 2018; Liu et al. 2023; Markhvida231

and Baker 2023) assign identical parameter values for each sector in the economy, typically using the values232

proposed byHallegatte (2014) and indicated in Figure 3. An exception to this is for sectors with non-stockable233

goods — in those cases, the target inventory level 𝑛 𝑗 is set to 3 days to account for the fact that many sectors234

cannot store long-lasting inventories (e.g., utilities).235

The R-ARIO model includes updated behavioral parameters split across seven major sector categories236

(Figure 3). This proposed set retains some prior values and makes amendments where evidence is available.237

Furthermore, we maintain treatment for "non-stockable" goods for utilities sectors (Hallegatte 2014), as238

described earlier in this section. We use these parameters later as part of the case study.239

For each category-parameter pair, we also define lower and upper bounds (denoted by the blue bars in240
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Figure 3) for use in uncertainty quantification and sensitivity studies. Hence, the parameter values selected241

serve as the central values of their corresponding sampling distribution.
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Fig. 3. Proposed distributions of behavioral parameters for each of the defined sector categories, compared
against the default values in Hallegatte 2014.

242

Overproduction parameters243

We refine overproduction parameters 𝜏𝛼 and 𝛼𝑚𝑎𝑥 (Figure 3a, Figure 3c). First, we reduce 𝜏𝛼 from 12244

months to 6 months for Manufacturing and Beverages + Foods sectors, drawing insights from the accelerated245

deployment of production recapture strategies following events like the 2016 Kumamoto Earthquake (S&P246

Global 2016a; S&P Global 2016b; Maruya et al. 2017). We reduce 𝜏𝛼 from 12 months to 1 month for247

Services sectors. Services typically carry little inventory compared to other sectors, and can adapt rapidly248
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due to high teleworking potential compared to non-services industries (OECD 2021). For Utilities sectors,249

where responsiveness to consumer demand is critical, we reduce 𝜏𝛼 to 3 days to reflect agility in adjusting250

production continuously to match demand, many times throughout the day (e.g., energy utilities). Finally,251

we lower 𝛼𝑚𝑎𝑥 from 125% to 110% across all sectors to better align with empirical industrial productivity252

indices (IIPs) following the 2011 Tohoku Earthquake (Kajitani et al. 2013; Ministry of Economy, Trade and253

Industry (METI) 2018).254

Inventory parameters255

In most cases, we maintain the default values of inventory parameters 𝜏𝑠 and 𝑛𝑠 (Figure 3b, Figure 3d),256

except for Utilities and Services sectors, where we reduce 𝜏𝑠 from 30 days to 3 days. This implies that Utility257

sectors can rapidly replenish their inventories when productive capital remains undamaged. Similarly, for258

Services sectors, we reduce 𝜏𝑠 from 30 days to 14 days to reflect rapid adaptability. Finally, we reduce 𝑛𝑠259

from 90 days to 30 days for Services sectors, because Services sectors carry little inventory compared to260

other sectors.261

Heterogeneity parameter262

Finally, we reduce the heterogeneity parameter 𝜓 from 0.8 to 0.7 for all sectors to reflect recent studies263

of post-shock substitutional elasticity (Figure 3e). Fujiy et al. (2022) suggests that elasticities (the degree264

to which consumers or producers can switch between different goods or services in response to changes in265

prices or availability) are slightly higher (between 0.38 and 0.41) than previously reported in Atalay (2017).266

Such an increase implies that production reductions (that arise when inventories are insufficient) are softened,267

due to increased flexibility. As a result, 𝜓 should decrease to reflect increased input substitutability.268

R-ARIO BEHAVIORAL PARAMETER SENSITIVITY ANALYSIS269

In this section, we describe a Sobol sensitivity analysis (Saltelli et al. 2010) to quantify the influence of270

R-ARIO behavioral parameters on the predicted indirect loss. We apply this approach for the parameters271

assigned to the 𝑁𝑐𝑎𝑡 = 7 sector categories defined in Figure 3.272

First, we select sampling bounds for the behavioral parameters based on the upper and lower bounds in273

Figure 3. Sobol sampling is used to efficiently cover the sample space.274

Next, we generate samples of the behavioral parameters. Each sample of parameters X(𝑘) is a 𝑁𝑐𝑎𝑡 × 5275

matrix, accounting for the five types of behavioral parameters:276
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X(𝑘) =


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𝜏
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𝑠,𝑁𝑐𝑎𝑡

𝛼
(𝑘)
𝑚𝑎𝑥,𝑁𝑐𝑎𝑡

𝜏
(𝑘)
𝛼,𝑁𝑐𝑎𝑡


(7)277

where 𝑘 is an index indicating the sample number, ranging from 1 to 𝑁𝑠𝑖𝑚.278

When using the proposed behavioral parameters introduced in the previous section, 𝑁𝑐𝑎𝑡 = 7, resulting279

in a total of 35 variables in the sensitivity analysis. For sample 𝑘 , we run the R-ARIO model and record and280

the 𝐿𝑜𝑠𝑠 (total indirect loss across the economy) .281

Using the ensemble of 𝑁𝑠𝑖𝑚 samples along with the recorded output, we estimate Sobol indices 𝑆1,𝑖 and282

𝑆𝑇,𝑖 for each of the 𝑁𝑐𝑎𝑡 × 5 variables. Each index uses an 𝑖 subscript to denote one of the 35 variables in283

the analysis (e.g., 𝛼𝑚𝑎𝑥 for the Manufacturing category).284

𝑆1,𝑖 , the first-order Sobol index, measures the contribution in output variance associated with modifying285

a variable in isolation:286

𝑆1,𝑖 =
V𝑎𝑟 [EX∼𝑖 [𝐿𝑜𝑠𝑠 |𝑋𝑖]
V𝑎𝑟 [𝐿𝑜𝑠𝑠] (8)287

where 𝑋𝑖 is R-ARIO behavioral parameter variable 𝑖 (associated with a specific parameter-category pair)288

and X∼𝑖 denotes the set of all variables except 𝑋𝑖 .289

𝑆𝑇,𝑖 , the total-order Sobol index, measures a variable’s first- and higher-order influence on predicting290

the model output. Unlike 𝑆1,𝑖 , 𝑆𝑇,𝑖 measures higher (or total-order) influence that accounts for all levels of291

interaction:292

𝑆𝑇,𝑖 =
EX∼𝑖 [V𝑎𝑟𝑋𝑖

[𝐿𝑜𝑠𝑠 |X∼𝑖]]
V𝑎𝑟 [𝐿𝑜𝑠𝑠] (9)293

The inequality 0 ≤ 𝑆1,𝑖 ≤ 𝑆𝑇,𝑖 ≤ 1 must hold for all cases, in addition to:294

∑︁
𝑖

𝑆1,𝑖 < 1 (10)295

Finally, we use values of 𝑆1,𝑖 and 𝑆𝑇,𝑖 to rank each variable. Any variables that heavily influence indirect296

losses will have high index values. Such variables should be prioritized for subsequent behavioral parameter297

refinement efforts.298
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It is important to note that variables at the sector category level are used here and in the case study to299

illustrate this method. Sector-level analyses can be obtained by expanding X(𝑘) to consider 𝑁𝑠 × 5 variables,300

where 𝑁𝑠 is the number of sectors.301

CASE STUDY: 2016 KUMAMOTO EARTHQUAKE302

An analysis of the 2016 Kumamoto Earthquakes in Japan is used here to demonstrate the R-ARIOmodel,303

identify key drivers of indirect loss, and compare predicted recovery times obtained from variants of the304

model. We begin with an overview of the study region and disaster, followed by a summary of model inputs,305

implementation, and analysis results. Finally, we discuss the application of a variance-based sensitivity306

analysis on the selected behavioral parameters.307

Overview of study region and disaster308

Located in the southern island of Kyushu in Japan, Kumamoto is one of the country’s 47 prefectures and309

home to 1.3% of its population. The capital, Kumamoto City, is home to over 40% of the prefecture’s 1.7310

million population (Figure 4), and serves as a key economic hub. Kumamoto’s 2016 GDP was roughly 6311

trillion yen, just over 1% of Japan’s GDP.

La
tit

ud
e

Longitude

M7.2 M6.2

Mashiki Town
Kumamoto 

City

Population in
100m

 x 100m
 grid cell

50250
km

Fig. 4. Epicenters of major earthquakes (indicated by circles) and population density in the Kumamoto
Prefecture (indicated by shading), along with fault traces for the Futagawa-Hinagu fault zone.

312

The Kumamoto Earthquake sequence occurred along the Futgawa-Hinahgu fault in the Kumamoto313

prefecture, beginning with a 𝑀𝑤 6.2 foreshock on April 14th, followed by a 𝑀𝑤 7.0 mainshock two days314
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later. Multiple significant aftershocks in the following days caused additional destruction. Damage and315

fatalities from the foreshock were concentrated in Mashiki Town, a small suburb north of the fault zone. The316

mainshock exacerbated the damage in Mashiki and extended the radius of influence to nearby Kumamoto317

City. Two hundred seventy-three confirmed casualties have been reported (Kumamoto Cabinet Office 2016).318

Over 198,000 homes in the prefecture experienced some form of damage, with over 20% experiencing319

collapse (Kumamoto Prefecture 2022). As a result, over 60% of losses reported by the Office of the Cabinet320

stemmed from housing. Commerce and industrial assets sustained significant damages, causing cascading321

supply chain disruption across Japan. Damage to buildings and infrastructure in the prefecture produced322

losses of roughly 3.79 trillion yen as of September 14th, 2016 (Kumamoto Cabinet Office 2016).323

Assemble inputs324

Next, we describe the assembly of the necessary input data for the R-ARIO model (Table 1). This data325

falls into four categories: pre-disaster economic data, monetary losses due to direct damage, repair time326

curves, and ARIO behavioral parameters.327

Pre-disaster economic data328

We assemble the input-output table and key economic metrics (e.g., value added, total final demand,329

exports, imports, and local demand) for Kumamoto from official prefectural data (Kumamoto Prefecture330

2020) for the 2015 fiscal year. The input-output table, consisting of 37 productive sectors, is visually331

represented in the electronic supplement, Figure S1. We compute sector-level fixed assets using replacement332

costs provided by Sompo Inc. (Table S1).333

Direct losses334

We derive sector-specific direct losses by aggregating building-level claims data supplied by Sompo Inc335

(Table S2). Total building damage losses across all sectors are 1.76 trillion Yen, and further details regarding336

the treatment of losses can be found in the electronic supplement. We assume that 75% of reconstruction337

demand from these losses are distributed to the construction sector, and the remaining 25% are distributed338

to manufacturing sectors, consistent with past studies (e.g., Hallegatte 2008; Markhvida and Baker 2023)339

Reconstruction time curves340

Sector-specific reconstruction time curves are used to determine the rate of reconstruction at each time341

step in the R-ARIO model. We develop each curve using building-level reconstruction times, which are342

estimated using a proprietary model by Sompo Inc. These times are strictly limited to repairs and do not343
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include impediments to reconstruction progress. Upon converting building-level reconstruction data into344

sector-level reconstruction trajectories, we observe that the time to 95% reconstruction is achieved within345

six months. Trajectories for each sector are illustrated in the electronic supplement, Figure S2.346

Behavioral parameters347

The proposed set of behavioral parameters in Figure 3 is employed for the case study. We tabulate348

assigned sector categories for each of the 37 productive sectors in the electronic supplement, Table S3.349

The impact of the refined set, relative to the default ARIO parameters introduced in Hallegatte (2014), is350

described in the next section.351

R-ARIO model results352

In this section, we describe the R-ARIO-predicted post-earthquake indirect loss, value added dynamics,353

and reconstruction over time at various resolutions. Next, we explore the influence of the R-ARIO model on354

recovery time and quantify the influence of the proposed behavioral parameters on predicted indirect loss.355

Post-earthquake economic loss and recovery at the economy-level356

To examine the impact of the R-ARIOmodel refinements, we simulate regional economic recovery using357

several variants of the model, as listed below:358

• Dynamic Reconstruction + explicit Housing losses + Behavioral Parameter Refinement (DR+H+BPR):359

this is the complete R-ARIO model proposed in this study.360

• Dynamic Reconstruction + explicit Housing losses (DR+H): this is the R-ARIO model introduced361

in this paper, but it uses the Hallegatte (2014) behavioral parameters rather than the proposed refined362

sector-level behavioral parameters.363

• Baseline: this is equivalent to the original ARIO model.364

Indirect losses predicted by the DR+H+BPR model over the first 30 days amount to roughly 88 billion,365

which is within reported estimates by the Cabinet Office during the same period (81 to 113 billion yen). The366

DR+H and Baseline model predictions are also within this range, at 91 and 101 billion yen, respectively.367

Indirect loss estimates over an analysis period of five years following the earthquake, aggregated at the368

economy level, are shown in Figures 5c-e for each case, along with the associated post-earthquake dynamics369

in value added (Figure 5b), and productive capital recovery trajectory (Figure 5a).370
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Fig. 5. Results for each of the three models explored in this case study, based on an ensemble of 1000
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Figure 5a shows the predicted capital recovery, accounting for economic constraints that impede repairs371

of productive capital. Recovery is rapid during the first year following the disaster. The DR+H and372

DR+H+BPR models — which both incorporate dynamic reconstruction — follow very similar trajectories373

and exhibit higher rates of recovery, particularly in the first few months. Across all three models, more374

than 50% of damaged capital recovers within the first six months of the initial shock, and 95% recovers375

within 2 years. Both the DR and DR+BPR models predict a shorter time to 95% recovery of 1.25 years,376

compared to 1.60 years for the Baseline model. The dynamic reconstruction assumption can account for the377

swift progress made during the first month of recovery (reconstruction time curves for Kumamoto sectors378

generally exhibited rapid reconstruction initially), while the baseline model is forced to leverage a constant379

reconstruction rate that cannot capture this progress.380

Figure 5b shows the recovery of value added. Eachmodel predicts an equal initial 19% drop in prefectural381

value added. Value added recovers rapidly in the first year and returns to pre-disaster values at 0.7, 1.0, and382

1.5 years for the DR+H+BPR, DR+H, and Baseline models, respectively. Due to assumed overproduction,383

value added continues to increase, with median trajectories peaking at 2.03, 2.00, and 1.59 percent of pre-384

earthquake value added for the DR+H+BPR, Baseline and DR+H models, respectively. Beyond the peak,385
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value added descends and eventually converges to pre-disaster values. As observed with recovery times,386

DR+H+BPR peaks the quickest, followed by DR+H, and Baseline. Of the three models, the Baseline model387

is the only one to exhibit non-monotonic recovery due to supply-side constraints that impede recovery at388

around six months.389

Figures 5c-e show the total predicted indirect loss over the analysis period. Each realization of value390

added can be integrated across time to obtain a corresponding realization of total indirect loss at the economy391

level. Of the three models, DR+H+BPR predicts the lowest median indirect loss over the entire recovery392

period, at roughly 102 billion yen. Without behavioral parameter refinement, the DR+H and Baseline model393

predict substantially higher median indirect losses of 257 billion yen and 581 billion yen, respectively.394

The significantly higher losses predicted by the DR+H and Baseline are due in part to longer 𝜏𝛼 values395

associated with the default ARIO behavioral parameter settings. Notably, the significant median indirect396

loss predicted by the Baseline model is due to its much longer period of non-recovery compared to the other397

two models. Overall, including behavioral parameter refinement reduces the predicted median indirect loss398

over the recovery period by 155 billion yen when compared to the DR+H model (i.e., the difference between399

median losses in 5c and d).400

Sector-level economic recovery401

The results in Figure 5 can be disaggregated by sector to reveal recovery attributes not visible at the402

aggregate economy level. For each sector, we extract building recovery, production capacity, production,403

demand, and value added over time. Figure 6 shows Construction sector results to demonstrate relationships404

between demand, production capacity, and value added over time. As part of this example, we examine the405

single realization associated with the median indirect loss shown in Figure 5.406

Figure 6a shows that capital is nearly reconstructed within two years of the disaster. This resembles the407

economy-level productive capital recovery trajectory in Figure 5a.408

Figure 6b shows trends in production and demand. Immediately following the disaster, demand for the409

Construction sector dramatically increases. This sharp increase in demand is expected because 75% of all410

reconstruction demand is assigned to the Construction sector. During this same period, the sector loses over411

20% of its pre-disaster production capacity, constraining production, and hence, ability to fulfill demand.412

Within 0.7 years, production capacity is restored to its pre-disaster level but is still unable to meet demand413

and begins moving into overproduction. An extra capacity equivalent to 20% of pre-disaster production is414
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Fig. 6. Results for a single ARIO realization (associated with the 50th percentile indirect loss in Figure 5c)
for the Construction sector.

gradually added to the sector roughly 1.6 years after the disaster. Interestingly, while capacity grows to meet415

elevated demand, actual production (light blue curve) cannot keep up and production plateaus at roughly416

5% over baseline production due to supply-side constraints. During this plateaued period of production,417

demand is rapidly decaying and the Construction sector’s actual production can fulfill all demand by year 2418

(the orange and light blue curves merge). Demand returns to pre-earthquake levels (along with production)419

shortly after. Production capacity, by comparison, is significantly slower to return to baseline.420

Figure 6c shows the amount of unsatisfied demand (the difference between the demand and production421

curves in Figure 6b) over the entire recovery period. By the end of the year 2, the demand unsatisfied returns422

to 0, indicating that all demand can be fulfilled by production beyond this point.423

Finally, the value added trajectory (Figure 6d) quantifies the changes in value added over time, and is424
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used to calculate the indirect losses of the sector (through integration of trajectory over the entire recovery425

period). Value added takes the sharpest loss immediately following the disaster, decreasing by an amount426

equivalent to over 20% of its pre-disaster value. Due to the rapid initiation of overproduction, value added427

is restored to its pre-earthquake value added within 0.7 years of the initial drop. The time to recover value428

added takes roughly 35% of the time to recover all physical capital shown in Figure 6a. This trend, whereby429

sectors achieve quicker recovery of lost value added compared to recovery of damaged productive capital,430

is observed for nearly all sectors in the Kumamoto economy. Value added peaks at roughly 0.8 years after431

the earthquake, plateaus for an additional year, then gradually decreases to its pre-earthquake value before432

year three. Other sector-specific trajectories, including uncertainty bounds, can be found in the electronic433

supplement, Figures S4-S9.434

Sector-level losses435

We integrate sector-specific value added curves for each of the 37 sectors to quantify the absolute total436

loss, and the losses as a fraction of the pre-earthquake value added, broken down by direct and indirect437

sources. Results for each sector can be found in the electronic supplement, Figure S10. To simplify438

presentation, we sum the sector-level 50th percentile indirect losses for each of the seven categories proposed439

in Figure 3.440
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Fig. 7. 50th percentile direct and indirect losses across the seven economic sector categories (plus housing)
in terms of absolute monetary value in trillion yen (left) and fraction of pre- disaster value added.

Figure 7 shows the direct and indirect losses per sector category, in absolute values and as a fraction441

of the total value added across all sectors within a category. The 50th percentile indirect loss across the442
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economy (102 billion yen) is small relative to total losses (1.7 trillion yen). In absolute monetary terms,443

the Services category incurs the greatest indirect loss across all categories, followed by the Beverages +444

Food and Utilities categories. Interpreting these results within the context of the economic recovery yields445

a number of insights.446

The Construction category’s indirect loss (both in absolute terms and as a fraction of its pre-earthquake447

value added) is relatively low compared to other categories. This relatively small loss stems from the448

substantial gains due to overproduction (e.g., that of the kind observed in Figure 6b). Such overproduction449

is expected, since the demand for reconstruction following the disaster is substantial. When integrating the450

value added trajectory to obtain the indirect loss, the initial shock is barely significant enough to counteract451

large gains from overproduction.452

TheManufacturing category (e.g., iron + steel, production machinery, plastic products + rubber products453

sectors) experiences a net gain in value added due to strong overproduction across several sectors, as 25% of454

the reconstruction demand goes to manufacturing sectors. Across a handful of Manufacturing sectors, the455

gain from overproduction counteracts the initial drop in value added.456

The Mining category (which consists solely of the mining sector) also experiences a net gain in value457

added. This result is attributed to a gentle initial drop in value added, and a notably extended duration of458

overproduction. The mining sector is implicitly critical to the reconstruction of economic capital, since it459

is the primary supplier to the electricity, gas, and heat sector (within the utilities category), which supplies460

a significant number of manufacturing sectors (per the I-O table in the electronic supplement). The Mining461

category is among the few sectors to incur zero direct damage in the analysis inputs, which influences the462

observed net gain.463

Influence of ARIO model on recovery time464

Previous sections illustrated how ARIO-predicted recovery in value added, production, and productive465

capital can be disaggregated at the individual sector level. These sector-level trajectories can be used to466

extract time-to-recovery statistics, such as the time to restore lost value added. Such measures can then be467

used to compare recovery performance across sectors. Figure 8 provides a comparison of time-to-recovery468

metrics for the seven sector categories, plus housing. All reported metrics are based on 50th percentile469

recovery trajectories across an ensemble of 1000 simulations. Times represented at the sector category level470

are estimated by averaging times across all sectors within a category.471
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For each sector, we extract theR-ARIO-predicted times to recover 95%of the lost value added, production,472

and productive capital. Across most categories, the median value added is restored to pre-earthquake levels473

within one year. The Manufacturing and Agriculture categories are the quickest and slowest to recover, at474

0.5 and 1.2 years, respectively. Recovery of production is nearly identical to that of value added across475

all categories. Times to recover value added and production for housing are set to zero in Figure 8, since476

housing is not a productive sector.477
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Fig. 8. R-ARIO-predicted time to recover 95% of lost production, R-ARIO-predicted time to recover 95%
of lost value added, R-ARIO-predicted time to recover 95% of damaged productive capital, and time to
reconstruct 95% of damaged capital based on user-provided reconstruction time curves. In all four cases,
sector category averages are shown.

The R-ARIO-predicted time to recover 95% of damaged productive capital accounts for supply and478

reconstruction constraints. Across all sector categories with damaged capital (i.e, not the Mining category),479

Manufacturing sectors experience the swiftest recovery of productive assets on average, at roughly one year.480

The reconstruction time data used to generate reconstruction time curves (and hence, the dynamic recon-481

struction rates used in the R-ARIO model for individual sectors) is generated using a proprietary catastrophe482

model by Sompo Inc. While these repair time curves are useful for enabling dynamic reconstruction rates,483

they do not take into account supply chain disruptions, or the capacity of the construction sector to fulfill484

post-disaster reconstruction demand. Past studies, such as Markhvida and Baker (2023), have demonstrated485

that the resulting sector- and community-level repair times generated by similar models (e.g., HAZUS (Fed-486
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eral Emergency Management Agency (FEMA) 2020)) can be significantly lower than the recovery time487

estimates made by the ARIO model.488

Figure 8 compares R-ARIO-predicted productive capital recovery times and Sompo-provided recon-489

struction times. The average time to repair 95% of damaged capital is 0.28 years, per Sompo-provided490

reconstruction time data (which do not include supply or reconstruction delays). The R-ARIO model pre-491

dicts significantly longer average recovery times, at 1.1 years. The longer estimate provided by the R-ARIO492

model is consistent with documented reports of capital recovery, particularly housing. One year after the493

Kumamoto Earthquake, thousands of households were still residing in temporary housing (Takeda and Inaba494

2022).495

ARIO model parameter sensitivity496

Next, we perform a Sobol sensitivity analysis to understand the relative importance of sector-specific497

behavioral parameters on the predicted indirect losses shown in Figure 5. We compute 𝑆1,𝑖 and 𝑆𝑇,𝑖 using498

equations 8 and 9, respectively. The results, displayed in Figure 9, show several features of the analysis.499

The behavioral parameter variables relating to inventory (particularly 𝑛𝑠) significantly influence the indirect500

losses. While this finding is consistent with the ARIO sensitivity studies in Markhvida and Baker (2023)501

and Hallegatte (2014), our results unveil new sector-specific insights.502
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Fig. 9. (a) First-, and (b) total-order Sobol indices across the seven sector categories and behavioral
parameters, measured with respect to the R-ARIO-predicted indirect loss across the prefecture.

Figure 9a shows that not all category-specific behavioral parameter variables for 𝑛𝑠 exhibit the same503

modeling importance. For example, the 𝑛𝑠 parameter variables for Manufacturing, Services, and Beverages504
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+ Food sectors are significantly more important than for those of other categories, and explain 20%, 14%,505

and 13% of the total first-order variance of the indirect loss, respectively.506

When higher order effects are considered (Figure 9b), the importance of 𝑛𝑠 holds, and sector category507

rankings based on 𝑆1,𝑖 hold true for 𝑆𝑇,𝑖 . Interestingly, inventory parameter 𝜏𝑠 and heterogeneity parameter508

𝜓, which have near-zero first-order indices, have more significant 𝑆𝑇,𝑖 values. Similar to 𝑛𝑠, both 𝜏𝑠 and 𝜓509

parameter settings for Manufacturing, Services, and Beverages + Food sectors have high importance. The510

𝜏𝑠 parameters yield slightly higher 𝑆𝑇,𝑖 values than 𝜓 in most cases.511

Across 35 variables in this analysis, the top 3 variables when ranked using first- and total-order indices512

are associated with the 𝑛𝑠 behavioral parameter. Across all settings of 𝑛𝑠, the value assigned to Services513

category is the most significant in both first- and total-order contexts. While this result motivated our careful514

scrutiny of the 𝑛𝑠 parameter for the Services category, the results in this section suggest that priority for515

future refinements should be considered for the Manufacturing and Beverages + Food categories as well.516

CONCLUSIONS517

This paper presented R-ARIO, a refined ARIO model to simulate post-disaster economic recovery. The518

R-ARIO model incorporates (i) explicit modeling of housing losses separate from productive capital losses,519

(ii) dynamic reconstruction rates based on sector-specific reconstruction time curves, and (iii) sector-level520

modeling of behavioral parameters. The enhancements aim to improve indirect loss estimation, capture521

temporal differences in reconstruction demand, and enable uncertainty quantification, sensitivity studies,522

and refinement at the sector level.523

We proposed a refined set of parameters across seven sector categories that address inter-sector dif-524

ferences, in accordance with available empirical observation and recent studies on post-disaster business525

adaptation. These parameters reflect inter-sector differences and can accommodate context-specific changes526

based on new evidence.527

We used a global sensitivity analysis to evaluate the relative importance of specific behavioral parameters528

at the sector category level and guide subsequent refinement of the most influential parameters. Parameter529

bounds and a parameter sampling procedure are selected. An ensemble of simulated behavioral parameters530

is then generated, along with R-ARIO model outputs for each sample. Finally, Sobol indices are generated531

for each category-parameter pair to indicate the most influential sector-parameter pairs and rule out variables532

with negligible influence.533
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We applied the R-ARIO model to explore economic recovery following the 2016 Kumamoto Earthquake534

in Japan. Indirect losses predicted by the R-ARIO model over the first 30 days following the disaster align535

closely with the 81 to 113 billion yen range estimated by the Cabinet Office. Over a longer five-year analysis536

period, the R-ARIO model predicts a median indirect loss of 102 billion yen. When sector-level behavioral537

parameter modeling is omitted (and older default parameters are used in place of the proposed set) this loss538

more than doubles to 257 billion yen. The dynamic reconstruction assumption is responsible for properly539

modeling the high rate of recovery within the first month following the disaster, which previous, constant540

reconstruction rate assumptions cannot capture. Furthermore, explicit and separate modeling of housing541

losses prevents distortion of economic recovery caused by injecting significant direct damage into the real542

estate sector.543

Using the R-ARIOmodel, aggregate indirect losses amount to 5.4% of the median total (direct + indirect)544

loss of 1.86 trillion yen. We evaluated sector-level indirect loss estimates to unveil trends across specific545

sector categories. Overall, the Services category generated the largest portion of indirect losses in absolute546

monetary terms, followed by Beverages + Food and Utilities categories. The Construction category sees low547

indirect loss (as a fraction of pre-earthquake value added) following the earthquake due to the compensating548

effect of overproduction. On the other hand, the Manufacturing category and the Mining category both549

experience net gains in value added, due to strong overproduction to support reconstruction that counteracts550

initial sector-level shocks.551

Next, we evaluated the economic and productive capital recovery times for each sector category. In552

most cases, the value added recovers within a year, with the Manufacturing category recovering the quickest553

(0.5 years on average) and Agriculture the slowest (1.2 years on average). The average time to recover lost554

production is nearly identical to the time to recover value added for all productive sector categories. When555

comparing R-ARIO-predicted times to restore lost productive capital with user-provided reconstruction time556

curves, we found that the R-ARIO model extends the average time to 95% recovery of productive capital557

(across all sector categories) from 3.5 months to 13.5 months. The longer estimate provided by the R-ARIO558

model, which includes supply chain impacts that impede repairs, is more consistent with documented reports559

of recovery, particularly housing.560

Finally, we applied the proposed sensitivity analysis approach to the Kumamoto case study. Sobol indices561

were generated for the 35 variables (representing behavioral parameter - sector category pairings) considered562

in the analysis. The inventory parameter 𝑛𝑠 for Manufacturing, Services and Beverages+Food categories563
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explains 20%, 14%, and 13% of the total first-order variance in predicted indirect losses, respectively. These564

trends hold for the total-order variance as well. While inventory parameters are most important overall, there565

is significant variability in importance between categories. Therefore, efforts to refine behavioral parameters566

should focus on the subset of variables with significant influence on indirect loss.567
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