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Abstract
In this paper, the framework for topology optimization considering unilateral contact-constraints of Strömberg
and Klarbring 1 is extended to assemblies. Here, an assembly consists of two or more components that
are connected via joints. The unilateral characteristic of the contact inside each joint is considered, and
the topology of all components of the assembly are optimized simultaneously. Therefore, linear-elastic
material is considered and the augmented Lagrangian approach is used to model the unilateral contact.
For topology optimization, the SIMP-approach is applied to all members of the assembly and different
filtering techniques such as sensitivity filtering, density filtering or projection filtering can be applied on
each member independently. In consequence, the global design space of the optimization consists of the
normalized densities of all members of the assembly. Using the proposed approach, one can optimize a
topology for the whole assembly instead of optimizing all members of the assembly independently. This is
of major importance, since changes in the topology of any member will lead to changes in the force transfer
at the joints, which in consequence influences the optimization of all members of the assembly.
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1 INTRODUCTION

Topology optimization has been successfully applied to many academic benchmarks as well as real world applications. However,
there are still limitations. This is partly due to the fact that the optimized designs are calculated using computer-aided methods,
so that standard model assumptions influence the results of the optimization. Therefore, one must ensure, that the used model
assumptions do not have a significant influence on the optimization. The latter is easier said than done, as in most cases this can
only be checked to a limited extent. At the same time, there are phenomena that can be neglected in a standard finite element
analysis but might be crucial in topology optimization. One example of such a frequently neglected phenomenon is the unilateral
nature of contacts in joints. In most cases, joints, bearings and connections are modeled using ideal boundary conditions. This
assumption works well in most finite element analysis but can result in weak design concepts in topology optimization. This was
concluded by Strömberg and Klarbring1, after they developed a framework for contact-constrained topology optimization.

Another challenging field is simultaneous multicomponent topology optimization. In contrast to standard topology optimiza-
tion, in which each component of an assembly is optimized independent of its surrounding, simultaneous topology optimization
minimizes an objective that is defined for the whole assembly. Thus, if the design of any component of the assembly changes,
the design of others might adapt, since its loading path is effected by the design modification. Therefore, it might not be possible
to decompose the multicomponent optimization into several independent single component topology optimizations2. Hence, the
assembly must be seen as a whole and not as independent components.

In the past, the following questions, among others, were examined in the context of assembly optimization. Where should the
connections between the components be positioned? How should the connection points be modeled or how many connection
points are needed?

Abbreviations: SIMP, solid isotropic material with penalization .
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2 SCHMIDT AND SEIFRIED

For example, Chickermane and Gea2 proposed a straight forward approach to optimize the topology of the components as
well as the layout of the fasteners. Here, a grid of spring elements is introduced to transfer the loads from one to the other
component. In doing so, two design domains are introduced, one for the material distribution and one for the interconnections.
The latter is similar to the RAMP approach3. Several modifications and extensions have been made in order to tackle challenges
such as continuous positioning of joints4,5.

However, for the modeling of the connections between two components generally either spring-like connections (see
Chickermane and Gea2 or Ambrozkiewicz and Kriegesmann5) or even rigid constraints are imposed (see Rakotondrainibe et al6).
Both do not capture the unilateral characteristic of contact, which can have a significant influence on the optimized design1,7.
This is the main objective of this work. In the following, the framework for unilateral contact-constraint topology optimization
of Strömberg and Klarbring1 is extended to multicomponent optimization to investigate the impact of contact-constraints in
multicomponent optimization. Next to multicomponent optimization, the presented method is also a crucial extension to the
single component optimization framework of Strömberg and Klarbring1. Using the proposed method, external loads can also
be applied at the contact supports, which is not possible using the framework of Strömberg and Klarbring1 widening the
applicability of contact-constrained topology optimization in real world applications. Furthermore, different contact laws are
used to draw attention to the importance of accurate contact modeling in topology optimization.

2 EQUILIBRIUM EQUATIONS OF THE CONTACT PROBLEM

As basis for the latter defined topology optimization problem, the equilibrium equations are introduced. In Sec. 2.1, the
equilibrium for the individual linear-elastic members of the assembly are derived. Next, the connecting joint constraints are
introduced in Sec. 2.2, whereas the contact constraints are derived in Sec. 2.3. In the last Section 2.4, the results of the previous
sections are combined and the global equilibrium equations are obtained. In doing so, the unilateral contact-constraints will be
introduced to implicitly couple adjacent members of the assembly.

2.1 Linear-elastic equilibrium

The assembly consists of nComp components, and the equilibrium equations are based on the finite element analysis of each
component j. Here for the topology optimization, a linear elastic constitutive law is considered and the modified SIMP approach8

is applied. Hence, the Young’s modulus Ej
i of the i-th finite element of the j-th component is a function of its normalized density

φj
i ∈ [0, 1]

Ej
i = Ej

min + (φj
i)

p(Ej
max – Ej

min). (1)

Thereby, φj
i are the design variables in the topology optimization and φj

i = 0 represents a void element, whereas φj
i = 1 represents

an element filled with material. For the j-th member of the assembly, the Young’s modulus of the void is defined as Ej
min and the

modulus of the material is Ej
max. The penalization factor is set to p = 3. With the help of the physical Young’s modulus Ej

i, one
can assemble the stiffness matrix Kj = K(φj) of the j-th member of the assembly. Furthermore, the nodal displacement field
dj, the nodal contact forces f j

con and the external forces qj acting at the j-th member of the assembly are introduced. Thus, the
equilibrium equations for each member of the assembly read

K(φj)dj + f j
con – qj = 0. (2)

The Eq. (2) is amended by connecting joint constraints as well as contact conditions in order to compute the nodal contact forces
f j

con.

2.2 Connecting joint constraint

The overall concept of connecting members of the assembly is visualized in Fig. 1, where an assembly of two components -
namely body I and body II - is shown. Furthermore, an enlargement of the lower connecting joint is shown. The normal contact
forces of body I are λI, whereas the normal contact forces of body II are λII. In order to transfer the occurring contact forces
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Connecting joint

Body I Body II

qcj

ccj ccj ccj

qII

qII
dI,λI dII,λII

F I G U R E 1 Assembly connected via unilateral contact-constraints.

from body I to body II, a rigid continuous connecting joint is introduced. Note that, the following procedure is done for all ncj

connecting joints in the assembly.
The overall idea is, that the displacement of the connecting joint ck

cj is computed such that the sum of all contact forces λI/II

and external force acting on the joint qk
cj is zero. Thus, the equilibrium equation for the k-th connecting joint is based on the

contact forces λI/II of adjacent components and its external forces qk
cj. Thus, this formulation allows to apply loads directly at the

connecting joint and the equilibrium equation is

Γk =
nI

con∑
AI=1

(
nI

AIλI
AI

)
+

nII
con∑

AII=1

(
nII

AIIλII
AII

)
+ qk

cj = 0, (3)

where the number of nodes at the contact surface of the body I and II are nI/II
con. In this formulation, the number of nodes at

the contact surface of both components can be different. Therefore, the indices AI/II are introduced. However, the following
computation of the normal direction must be done for all nodes at the connecting joint of all adjacent components, which is why
the body index is dropped to increase the readability and only A is used.

The normal direction of A-th contact node nj
A of the j-th component is shown in Fig. 2. The contact normal direction depends

on the current nodal displacement dj
A of the contact nodes, as well as the joint’s displacement ck

cj. Hence, the normal direction of
the A-th contact node is

nj
A(dj

A, ccj) =
(ck

cj,0 + ck
cj) – (dj

A,0 + dj
A)

∥(ccj,0 + ccj) – (dj
A,0 + dj

A)∥
, (4)

dj
A

nj
A

dj
A,0

ck
cj,0

ck
cj

Rk

ηj
A

F I G U R E 2 Contact kinematics of the A-th contact node at the k-th connecting joint.
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where the undeformed positions of the contact node dj
A,0 and the connection joint ccj,0 are introduced. If only very small

deformations of the contact nodes and the center of the connecting joint are observed, it is sufficient to approximate the normal
direction, since ∥dI/II

A || << 1 as well as ∥ccj∥ << 1 are assumed. In consequence, the normal direction does only depend on the
positioning in the undeformed configuration and is therefore constant. It reads

nj
A ≈

ck
cj,0 – dj

A,0

∥ck
cj,0 – dj

A,0∥
. (5)

The normal directions are used to map the normal contact force vector λj into the nodal domain. The nodal contact forces
introduced in Eq. (2) are

f j
con = (Nj)Tλj, (6)

where the mapping matrix Nj holds the normal directions. Having the equilibrium for the members of the assembly introduced
in Eq. (2) and the connecting joint constraints of Eq. (3), the unilateral contact law must be added in order to finally solve the
non-linear and non-smooth contact problem.

2.3 Contact condition

In order to compute the contact forces λj acting on each member of the assembly, it is necessary to distinguish between contact
nodes, which are in contact and which are not in contact. Note that, the contact conditions introduced in the following must be
imposed for all adjacent members of the assembly. Looking at the example of Fig. 1, the contact conditions must be imposed
connecting-joint wise for the contact nodes of body I and body II. This is done by introducing the contact gap ηA. The Fig. 2
illustrates the deformed configuration of the A-th contact node at the connecting joint.

In doing so, the gap ηA can be computed as

ηj
A = (nj

A)T
(

(ck
cj,0 + ck

cj) – (dj
A,0 + dj

A)
)

– Rk, (7)

where Rk is the radius of the connecting joint and nj
A is the normal direction of Eq. (4). If only small deformations are expected,

the normal direction is computed based on Eq. (5) and in consequence, the Eq. (7) can rewritten as

ηj
A = (nj

A)T
(

gj
A,0 + ck

cj – dj
A

)
– Rk, (8)

where the initial distance between the A-th contact node and the center of the k-th connecting joint is

gj
A,0 = ck

cj,0 – dj
A,0. (9)

In order to link the contact gap ηj
A with the corresponding contact force λj

A, Signorini’s contact conditions9 are introduced. They
read

ηj
A ≥ 0, λj

A ≥ 0, ηj
Aλ

j
A = 0. (10)

The third condition impose, that if there is a gap ηj
A > 0 between the A – th node and the connecting joint, no contact force is

transmitted. Thus, the contact force must be λj
A = 0. Otherwise, the node is in contact with the connecting joint, meaning that the

gap is ηj
A = 0 and therefore, a contact force λj

A > 0 is transmitted. For numerical implementations, Signorini’s contact conditions
can be imposed by non-smooth functions such as

Φj
A = –λj

A + max(0,λj
A – ηj

A) = 0. (11)

Next, Eq. (8) is inserted into Eq. (11) yielding to

Φj
A = –λj

A + max

(
0,λj

A + rR – r
[
(nj

A)T
(

gj
A,0 + ck

cj – dj
A

) ])
= 0, (12)
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where r > 0 is a factor introduced to increase the numerical performance.
If different contact laws, such as the smoothing approaches of Facchinei et al.10 or penalty contact laws11, are used, only the

contact function of given by Eq. (12) is replaced, whereby the methodology remains the same. For contact-constrained topology
optimization of a single component1, it has been shown, that imposing Signorini’s contact conditions in the strong form of
Eq. (12) performs slightly better than the smoothing approach of Facchinei et al.10. The latter is therefore not examined further
in this work.

The most commonly used contact models, are so-called penalty methods11, where a penalty factor is introduced in order to
penalize a deviation from the support. In almost all cases, this method neglects the one-sided characteristic of the contact. This
both-sided contact laws have also been used in multicomponent topology optimization2,5. In this case, the contact function is

Φj
A = –λj

A – kηj
A = 0, (13)

where k > 0 is the penalty factor. If a unilateral characteristic of contact is taken into account, a unilateral penalty approach is
used, its contact function reads

Φj
A = –λj

A – min(0, kηj
A) = 0. (14)

Note that a negative gap ηj
A is equivalent to a penetration. The unilateral penalty contact law has also been successfully applied

in stress-constrained topology optimization12.

2.4 Global equilibrium

In the following, the derivation focuses only on Signorini’s contact conditions Eq. (12). If a penalty contact law is used, only the
derivatives of the used contact law with respect to the state vector must be changed, which is straight forward for the penalty
laws. More precisely, the Eqs. (22) to (24) must be adapted accordingly.

Combining the contact function Eq. (12) with the equilibrium Eq. (2) and the connecting joint constraints of Eq. (3) allows to
compute all displacements dj, all contact forces λj and the displacements of all k connecting joints ck

cj. Therefore, the overall set
of equilibrium equations read

hc(d,λ, ccj,φ) =


{

K(φj)dj + f con(λj, c) – qj

Φj(dj,λj, ccj)

}
–Γk(d,λ, ck

cj)

 = 0, (15)

where the curly brackets must be formulated for each member of the assembly, whereas the connecting joint constraints Γk must
be formulated for all connecting joints. In consequence, the unknown variables are the displacements dj and contact forces λj of
each component, as well as the deformation of the center positions of all connecting joints ccj

x =


{

d

λ

}j

ccj

 . (16)

This set of nonlinear and non-smooth equations (15) can be efficiently solved using a line-search algorithm. In order to apply a
line-search algorithm, its linearization is needed. The linearization is derived for the example of Fig. 1 to make the structure as
clean as possible. Thus, the number of components and number of connecting joints is nComp = ncj = 2. Furthermore, only small
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displacements are assumed and the normal directions are assumed to be constants. The resulting linearization is

ĥc(x,φ) = Jcx – rc =



{
∗ ∗
∗ ∗

}I

0

 0
∂ΦI(x)
∂c1

cj

  0
∂ΦI(x)
∂c2

cj



0
{
∗ ∗
∗ ∗

}II
 0
∂ΦII(x)
∂c1

cj

  0
∂ΦII(x)
∂c2

cj


{

0 –nI
A

}1 {
0 –nII

A

}1
0 0{

0 –nI
A

}2 {
0 –nII

A

}2
0 0


︸ ︷︷ ︸

Ĵc



{
d

λ

}I

{
d

λ

}II

c1
cj

c2
cj


︸ ︷︷ ︸

x

–



{
q
∗

}I

{
q
∗

}II

q1
cj

q2
cj


︸ ︷︷ ︸

rc

= 0. (17)

Here, the curly brackets are

{
∗ ∗
∗ ∗

}j

=

 K(φj) (Nj)T

∂Φj(x)
∂dj

∂Φj(x)
∂λj


j

, (18)

and

{
q
∗

}j

=


qj

0︸︷︷︸
no contact

, r
(

(nj
A)Tgj

A,0 – Rj
)

︸ ︷︷ ︸
in contact

 . (19)

If unilateral contact laws are imposed, the current state of all contact node must be checked. Using Signorini’s contact condition,
a node is in contact, if the argument of the max-function of the contact function Eq. (12) is active

λj
A – rηj

A ≥ 0. (20)

If a unilateral penalty approach is used, the contact gap of Eq. (7) is used to determine the state of the contact node. Hence, a
node is in contact, if the gap is

ηj
A ≤ 0. (21)

Last, the both-sided penalty contact law of Eq. (13) does not distinguish between nodes in contact and nodes that are not in
contact.

Next, the partial derivatives of the contact laws from Eq. (17) and Eq. (18) are introduced. Note that, the contact law Φj
A of

the A-th contact node and j-th component does only depend on its nodal displacement dj
A, its contact force λj

A, as well as the
center of the considered connecting joint ck.

∂Φj
A(dj

A,λj
A, ck)

∂dj
A

=

{
0 , no contact

r(nj
A)T , in contact

, (22)

∂Φj
A(dj

A,λj
A, ck)

∂λj
A

=

{
–1 , no contact

0 , in contact
, (23)

∂Φj
A(dj

A,λj
A, ck)

∂ck =

{
0 , no contact

–r(nj
A)T , in contact

. (24)

Finally, the non-linear equilibrium Eq. (15) and its linearization Eq. (17) are formulated. Given a density distribution φ̃ of all
members of the assembly and a guess for the state vector x̃, a line-search algorithm is used to solve the non-linear equilibrium
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equations and therefore, compute the state vector x. The search direction of the line-search algorithm is

s = (Jc (x̃, φ̃))–1 h(x̃, φ̃). (25)

If not very small deformations are observed, the normal direction of the A-th contact node Eq. (4) is a function of the nodal
displacement dj

A and the center of the considered connecting joint ck. In consequence, the derivatives with respect dj
A and ck of the

normal direction must be considered in Eq. (17) as well. In 2D, the derivatives of the normal direction are symmetric 2x2 matrices

∂(nj
A)

∂(dj
A)

=

–
(∗∗)2(∗∗)2

∥ ∗ ∗∥3

(∗∗)1(∗∗)2

∥ ∗ ∗∥3

(∗∗)1(∗∗)2

∥ ∗ ∗∥3 –
(∗∗)1(∗∗)1

∥ ∗ ∗∥3

 (26)

and

∂(nj
A)

∂(ck)
= –

∂(nj
A)

∂(dj
A)

. (27)

The abbreviation ∗∗ in Eq. (26) and Eq. (27) is the vector between the deformed node A and the center of the connecting joint

∗∗ = (ccj,0 + ccj) – (dj
A,0 + dj

A). (28)

In 3D problems, the connecting joint has the form of a cylinder and its extrusion direction is nk
cj. Therefore, the actual contact

normal direction is obtained by projecting the cylinder surface onto a circle. In doing so, the contact nodes are free to deform
tangential to the connecting joint. The resulting contact normal of the A-th contact node is(

nj
A(dj

A, ccj)
)

3D
=

(∗∗) – (nk
cj)

T(∗∗)nk
cj

∥(∗∗) – (nk
cj)T(∗∗)nk

cj∥
, (29)

and the actual gap is (
ηj

A

)
3D

=
(

nj
A

)
3D

(
(∗∗) – (nk

cj)
T(∗∗)nk

cj

)
– R. (30)

The derivatives of the normal directions in 3D adapt accordingly.

3 COMPLIANCE OPTIMIZATION

In this work, the compliance of the assembly is minimized. The compliance consists of the compliance of each linear-elastic
member of the assembly as well as the compliance of each joint. The latter results from external forces at the joints and their
center displacement. It reads

c =
nComp∑
j=1

(qj)Tdj +
ncj∑
k=1

(qk
cj)

Tck
cj =


{

q
0

}j

qcj


T 

{
d
λ

}j

ccj

 = rTx, (31)

where x is the solution of the contact problem of Eq. (15). The design variables of the optimization are the normalized densities
φj of all elements of all members. They are summarized in the global design vector

φ = [φ1,φ2, . . . ,φnComp ]T. (32)

Additionally, a volume constraint is imposed. One can either constrain the total volume of the assembly

g(φ) =
nComp∑
j=1

(
V(φj)

)
– Vtotal, (33)
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or one constrains the volume of each member of the assembly individually

gj(φ) = V(φj) – V j
0, (34)

where V j
0 is the maximum allowed volume for the j-th member of the assembly. The later results in nComp volume constraints.

The resulting optimization problem reads

min
φ

rTx

s.t.


hc(φ, x) = 0,

g(φ) ≤ 0 or g(φj) ≤ 0,

0 ≤ φj ≤ 1.

(35)

In doing so, one imposes either the global volume constraint of Eq. (33) or the local volume constraint of Eq. (34). Furthermore,
the equilibrium equations of the contact problem hc and the constraint on the design variables must be fulfilled. The optimization
problem is solved using the method of moving asymptotes13. Therefore, the gradients with respect the design variables of the
objective and the constraints are needed.

3.1 Gradient of the compliance

The gradient of the compliance of the assembly can be derived in a similar manner to the single component contact-constraint
topology optimization framework1. The compliance from Eq. (31) consists of the constant external forces vector r and the
state vector x. Thus, only the state vector x holding the displacements dj, the contact forces λj and the displacements of the
connecting joints ccj depends implicitly on the design variables. In order to compute the derivative of the state vector as efficient
as possible, the adjoint vector ζ is introduced. Then, the product of the adjoint vector and the linearized equilibrium equation
(17) is subtracted from the compliance. The linearized equilibrium equations are zero for the solution of the contact problem, so
that the adjoint vector can be chosen freely, if the solution of the contact problem is considered. The extended compliance is

c̃(x) = rTx – ζT
c(x,µz). (36)

In consequence, the gradient of the compliance with respect to the e-th entry of the global density vector φ is

∂c̃(x)
∂φe

=
∂r
∂φe

T

x + rT ∂x
∂φe

– ζT ∂c(x)
∂φe

= rT ∂x
∂φe

– ζT
[
∂Jc(x)
∂φe

x + Jc(x)
∂x
∂φe

–
∂rc

∂φe

]
=
[
rT – ζTJc(x)

] ∂x
∂φe

– ζ̃
T
[
∂Jc(x)
∂φe

x –
∂rc

∂φe

]
. (37)

If the adjoint ζ is chosen such that

rT – ζTJc(x) = 0, (38)

the costly derivative
∂x
∂φe

is eliminated. Hence, the gradient simplifies to

∂c(x)
∂φe

=
∂c̃(x)
∂φe

= –ζT
[
∂Jc(x)
∂φe

x –
∂rc

∂φe

]
. (39)

Furthermore, the vector rc is independent of φ, so that only the derivative of the Jacobian Jc with respect to φ must be computed.
Coming from the single component framework of Strömberg and Klarbring1, the derivative of the Jacobian is straight forward,
since only the stiffness matrices Kj(φj) of each member of the assembly depend explicitly on the design variables. Note that
each entry of the design vector φ describes the density of one finite element of one particular member of the assembly. In
consequence, a member wise approach is very efficient, since all entries of the Jacobian, that are not related to the considered
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member of the assembly must be zero. In doing so, the global design vector φ is subdivided into the density vectors of each
member φj and the gradient computation is done member by member. Following this approach, the gradient of the Jacobian is

∂Jc(x)
∂φj

e
=


∂K(φ)
∂φe

0

0 0


j

, (40)

where the derivative of the stiffness matrix with respect to the e-th element is the derivative of the e-th element’s local stiffness
matrix. In the derivative given by Eq. (40), the SIMP approach Eq. (1) must be considered. In summary, the derivative of the
Jacobian of the single component implementation1 must be done for each member of the assembly, in order to compute the
gradient of the objective with respect to the design variables

∂c(x)
∂φe

=
∂c(x)
∂φj

ê

= (ζ j)T


∂K(φj)
∂φj

ê

0

0 0


j {

d

λ

}j

,

where ζ j is the part of the adjoint vector corresponding to the nodal displacements and the contact forces of the j-th member.
This member-wise concept is valid, since both the contact functions and the connecting joint constraints do not depend explicitly
on the design variables.

3.2 Gradient of the volume constraints

Next to the objective, the gradients of the volume constraints are needed. The constraints are introduced in Eq. (33) and Eq. (34).
If the total volume of the assembly is constrained, the derivative with respect to the density of the e-th element reads

∂g(φ)
∂φe

= Ve, (41)

where the volume of the e-th undeformed element is Ve. Otherwise, the volume of each member of the assembly is constrained.
Thus, instead of only one volume constraint, nComp volume constraints are introduced. The gradient of each constraint is

∂gj(φ)
∂φe

=

{
V j

e ,φe is part of j-th component

0 , else
(42)

For both volume constraints, the gradients with respect to the design variables are independent of the design variables and
therefore constant.

4 NUMERICAL EXAMPLES

The introduced simultaneous multicomponent optimization framework is applied to 2D and 3D examples. First, the single
component benchmark of Strömberg and Klarbring1 is modified, in order to demonstrate the differences between forces that
are applied to the structure or to the contact support structure. In this context, the influence of penalty contact conditions and
Signorini’s contact conditions is also investigated. Next, the L-beam example is analyzed for different two component designs,
where the L-beam is modeled as assembly. At last, the 3D L-beam is considered to proof the scalability of the proposed method.
All shown numerical examples are computed on a standard workstation.

4.1 2D benchmark of Strömberg and Klarbring

The benchmark example of Strömberg and Klarbring1 and the resulting optimized design is shown in Fig. 3. In this benchmark,
the connecting joint is considered as rigid contact support structure, which is fixed in space. The optimization is based on four
load cases, where the applied load acts at the lower right corner of the design domain. The four load cases are q1 = (1000 N, 0 N),
q2 = (–1000 N, 0 N), q3 = (0 N, 1000 N) and q4 = (0 N, –1000 N). In the implementation7, the design domain is discretized
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qx

y

(a) Design space.
(b) Optimized design using Signorini’s contact condi-
tion 7.

F I G U R E 3 Benchmark example of Strömberg and Klarbring 1 for unilateral contact constrained topology optimization.

by 4444 finite elements, resulting in 50 contact nodes at the rigid contact support. The considered linear-elastic material is
characterized by a Poisson’s ratio of 0.3 and a Young’s modulus of 210 GPa. Further, the truncation radius of the used sensitivity
filter8 is 10 mm and the volume fraction is 0.5. A sensitivity filter is used, since the published results of Strömberg and Klarbring1

are also based on this filter. However, other filtering techniques can be applied without any problems. The original benchmark
does not consider adapting normal directions. Thus, the normal directions are considered to be constant and therefore only
very small deformations are assumed. The normal directions are computed based on Eq. (5). All presented optimizations are
terminated after 100 iterations.

The resulting optimization problem of the original benchmark reads

min
φ

n=4∑
i=1

[
1
4
(
qT

i di
)]

s.t.


hc(φ, x)i = 0,

V(φ) – V0 ≤ 0,

0 ≤ φ ≤ 1.

(43)

4.1.1 Modified benchmark using Signorini’s contact condition

In contrast to the original benchmark of Strömberg and Klarbring1, the proposed assembly optimization approach also allows
applying forces at the connecting joint (contact support). Thus, a force transfer at the connecting joint is modeled, which
therefore widens the applicability of contact-constrained topology optimization also for the single component optimization. Note
that, the very efficient framework for contact-constrained topology optimization of Strömberg and Klarbring1 can be seen as
sub-problem of the proposed method, where the connecting joint cannot move. In doing so, the connecting joint constraint is

Γk = ck
cj = 0. (44)

The modified benchmark for the proposed method is shown in Fig. 4a. The same load cases are considered as in the original
benchmark. However, they are now applied at the connecting joint instead of the lower right corner of the design domain. This is
possible, since the center of the connecting joints are not fixed in space anymore. As in the original benchmark, Signorini’s
contact condition is used. The resulting optimization problem is now

min
φ

n=4∑
i=1

[
1
4

(rixi)
]

s.t.


hc(φ, x)i = 0,

V(φ) – V0 ≤ 0,

0 ≤ φ ≤ 1.

(45)

The obtained design using Signorini’s contact condition is shown in Fig. 4b. Next to this, the convergence plots of the original
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benchmark as well as the modified setup are shown in Fig. 5 and both methods converge as expected.
Taking a closer look at Fig. 3b and Fig. 4b reveals, that the optimized design adapts to the modifications of the setup. Hence, it

is crucial to differentiate between the existing contact-constrained topology optimization framework of Strömberg and Klarbring1

and the proposed method of this work also for the single component optimization.

4.1.2 Modified benchmark using penalty approaches

In topology optimization as well as finite element analysis, contact is often modeled using penalty approaches. This is still
nowadays the most common modeling approach, if contact is considered, and therefore, also successfully applied in the assembly
optimization approaches of (see e.g. Chickermane and Gea2, Thomas et al4 or Ambrozkiewicz and Kriegesmann5). Especially
in assembly optimization, it has the advantage that the locations of the connecting joints can be optimized easily, since the both-
sided penalty contact law does not add any non-linearity to the problem and the unilateral characteristic of contact is neglected.
However, the influence of penalty approaches on the final design is not often discussed. Therefore, the influence is investigated
using the modified benchmark of Fig. 4. The penalty factor is set to k = 2000 N/mm for the both-sided and unilateral contact law.

The resulting optimized designs are visualized in Fig. 6 and the convergence history of both optimization is added to Fig. 5.
The optimized design using the standard both-sided penalty approach is shown in Fig. 6a. If this design is compared to Fig. 4b
(using Signorini), major differences are observed. In particular, significantly less material is provided in the vicinity of the
contact structure and some struts are split. Comparing the final design using the unilateral penalty approach (see Fig. 6b) to the
both-sided penalty design (see Fig. 6a), significantly more material is distributed in the vicinity of the contact structure, while
the struts are very similar. Nonetheless, the strut appearance is still very different in comparison to the design computed with
Signorini’s contact conditions (see Fig. 4b).

qcj

ccj

x

y

(a) Design space. (b) Optimized design using Signorini’s contact condition.

F I G U R E 4 Modified benchmark example using the multicomponent method.
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MB both-sided penalty
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F I G U R E 5 Convergence of the performed optimizations of Fig. 3, Fig. 4 and 6. (OB - Original Benchmark, MB - Modified Benchmark)
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(a) Assembly opt. using both-sided penalty contact law. (b) Assembly opt. using unilateral penalty contact law.

F I G U R E 6 Comparison of the optimized designs using penalty contact laws, where forces are applied at the connecting joints.

Furthermore, the compliance is reduced the most for the design using the Signorini’s contact condition. This is shown in
Table 1, where the three final designs of the modified benchmark are evaluated twice. Once, it is evaluated using the contact law
used in optimization and once using Signorini’s contact condition. In comparison to the design of Fig. 4b, the performance of
the design computed with the both-sided contact law is 3.7% worse. Thus, using both-sided penalty contact laws in topology
optimizations results in different designs with noticeable losses in performance. Further, the performance of the design based on
the unilateral contact law is a lot better. Nonetheless, the design is still 1.5% off compared to the design using Signorini’s contact
condition.

These results imply that it is crucial to consider the unilateral characteristic of contact in topology optimization, in order to
obtain good performing final designs. Note that, one could also increase the penalty factor k in order to obtain better results for
the penalty approaches, but the Jacobian (see Eq. (17)) will become more and more ill posted and the computation time will
increase significantly. In this example, the whole optimization using the both-sided penalty method took 501 s, whereas the
unilateral penalty optimization took 505 s. The optimization approach using Signorini’s contact condition takes approximately 4
times longer. Consequentially, the unilateral penalty approach comes at zero extra costs, in comparison to the both-sided penalty
approach, whereas Signorini’s contact condition is the most expensive, while having the best performing design.

4.1.3 Adapting normal direction

Until now, very small deformations were assumed, so that the normal direction of each contact node is not updated and therefore
constant. Here, the modified benchmark is optimized using Signorini’s contact condition and changes of the contact normal
direction are considered. Thus, Eq. (4) is used to update the normal direction while solving the global equilibrium equations.
The final design is shown in Fig. 7 and only minor differences to the design of Fig. 4b are observed. Thus, assuming very small
deformations is reasonable for this example.

4.2 2D L-beam

The L-beam example is visualized in Fig. 8. There, the design space as well as the single component optimized design without
using contact are shown. The dimensions of the design space and boundary conditions are based on Holmberg et al14. The
material parameters are unchanged to Sec. 4.1, while the truncation radius of the sensitivity filter is set to 3.5. Dirichlet boundary

T A B L E 1 Evaluation of the optimized designs from Fig. 4 and Fig. 6 based on the used contact law and Signorini’s contact conditions.

final design Compl. in opt. Compl. using Signorini

Signorini Fig. 4b 56.13 56.13
both-sided pen. Fig. 6a 73.79 58.22
unilateral pen. Fig. 6b 98.62 56.96
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F I G U R E 7 Modified benchmark with adapting contact normal directions.

conditions are imposed at the top and a vertical load of q = (0, –1500 N)T is applied at the top of the tip. The volume fraction is
set to 0.5.

4.2.1 Multicomponent optimization using Signorini’s contact condition

In the following, the L-beam is optimized using the proposed multicomponent optimization approach. Therefore, the L-beam is
decomposed into two beam-like components forming the assembly. In doing so, the red area of Fig. 8a is the overlap of both
components of the assembly. This is where connecting joints can be placed. The radius of each connecting joint is set to 5 mm.
Here, three different setups with a different number of connecting joints are investigated and a global volume constraint with a
volume fraction of 0.5 is imposed.

The obtained optimized designs are shown in Fig. 9 and the convergence plots of all optimized designs are shown in Fig. 10.
It is worth mentioning, that the final compliance of the single component design (Fig. 8b) is the lowest. However, the design with
3 joints (Fig. 9b) and the 4 joint design (Fig. 9c) are close by. More precisely, the compliance of the final design of the single
component compliance optimization is 1935.0 Nmm, whereas the compliance of the 3 joint design is 2013.6 Nmm and the 4
joint design has a final compliance of 2040.3 Nmm. Only the design with 2 connecting joints performs significantly worse, with
a final compliance of 2403.2 Nmm. This shows, that the number of joints as well as their positioning is challenging5. However,
very good performance is observed, if the joints are placed inside struts of the standard compliance optimization results of
Fig. 8b. In this example, this is done for the 3 joint design, which is the best performing assembly.

Another noteworthy observation is the unused fourth contact support in Fig. 9c. Here, also the computed contact forces are
in the order of magnitude of the relative tolerance of the convergence criteria of the line-search algorithm solving the contact
problem. The relative tolerance is set to rtol = 10–8. Thus, no forces are transmitted at this joint. In these examples, the unilateral
characteristic of contact is considered, so that the optimization algorithm has no interests in placing material outside the pressure
zones of the joints. This can be seen at any joint of Fig. 9a to Fig. 9c. As for the unused joint of Fig. 9c, the contact forces of
contact nodes that belong to void elements are always in the order of magnitude of the relative tolerance. Hence, forces are only
transmitted at contact nodes of filled finite elements.

q

Body I

Body II

x

y

(a) Multicomponent design space. (b) Single component opt. design.

F I G U R E 8 Design space and single component reference for the L-Beam.
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(a) 2 connecting joints assembly. (b) 3 connecting joints assembly.

(c) 4 connecting joints assembly.

F I G U R E 9 Optimized designs of the L-beam using Signorini’s contact condition.
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F I G U R E 10 Convergence of the optimizations of the L-beam of Fig. 9. (SC - single component, MC - Multicomponent)

4.2.2 Multicomponent optimization using penalty approaches

The 3 joint design is also optimized using the both-sided penalty and unilateral penalty approach. In these examples, the penalty
factor is set again to k = 2000 N/mm. The obtained optimized designs are shown in Fig. 11. As in the former section 4.1, the
both-sided penalty design results in a different design with a poorer performance, whereas considering the unilateral penalty
law results in an overall similar design to Fig. 9b. Comparing the design using the unilateral penalty law (see Fig. 11b) and
Signorini’s contact condition (see Fig. 9b), differences around the connecting joints are observed at the vertical component,
whereas the struts differ in size significantly at the horizontal member of the assembly. A closer look at the upper right joint of
the horizontal component of Fig. 11a demonstrates the impact of neglecting the unilateral characteristic perfectly. In contrast to
the unilateral designs, the diagonal struts do not go around this connecting joint, so that only tensile forces are transmitted. Thus,
these struts are dysfunctional in practice.

Furthermore, it is worth mentioning that once again the computation time of both penalty methods is very similar, while using
Signorini’s contact condition is only 3 times slower. However, this changes drastically, if the four joint design is computed. If the
both-sided penalty model is used, the line search algorithm suddenly needs a lot more iterations. In consequence, the numerical
costs increase tremendously and exceed by magnitudes the costs of the unilateral penalty law and Signorini’s contact condition.
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(a) 3 connecting joints assembly both-sided penalty. (b) 3 connecting joints assembly unilateral penalty.

F I G U R E 11 Optimized designs of the L-beam using penalty contact laws.

A closer look reveals that the progress of the line search algorithm shrinks drastically compared to the other two contact laws.
In consequence, no optimization can be performed in reasonable time using the both-sided contact law under these conditions.

4.2.3 Adapting normal direction

The former L-beam optimizations are performed assuming very small displacements, so that the contact normal directions can be
approximated using Eq. (5). This assumption is removed and therefore, Eq. (4) is used to compute the normal directions. Thus in
this section, each contact normal direction depends on the nodal displacement of the contact node as well as the displacement of
the center of the connection joint. The optimized designs are shown in Fig. 12 and major differences are observed, in comparison
to the solution assuming very small displacements of Fig. 9b and Fig. 12.

Taking a closer look at the results imposing Signorini’s contact conditions, the vertical component of Fig. 9b and Fig. 12a
are almost identical, while the horizontal component differs significantly inside the red box. The struts differ in size and more
importantly, the strut at the lower connecting joint have a complete different angle of attack. This happens, because the loading
path inside the components changes, if the adapting normal directions are considered. In consequence, the optimized design
adapts.

One has to admit, that the design at the lower connecting joint of the horizontal component might fail in practice, since the
struts might slip from the connecting joint. However, this can be easily solved by introducing a non-design space around the
connecting joint, which is common practice in multicomponent optimization5. Using Signorini’s contact condition, the width of
the non-design space is actually known, since the actual characteristic of contact mechanics are considered and therefore, the
actual loading path inside the component is taken into account during optimization. In consequence, the width of the non-design

(a) Signorini’s contact condition. (b) Both-sided penalty.

(c) Unilateral penalty.

F I G U R E 12 L-beam with adapting contact normal directions.
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(a) Both-sided penalty. (b) Unilateral penalty.

F I G U R E 13 L-beam with adapting contact normal directions and increased penalty factor k = 10000 N/mm.

space depends exclusively on the manufacturing constraints of the used fasteners. Using penalty contact laws, this assumptions
hold only if extremely high penalty factors are used, since the absolute value of the penalty factor and the unilateral characteristic
influence the loading path and therefore, the optimized design.

The optimized design based on penalty contact laws (k = 2000 N/mm) are shown in Fig. 12b and Fig. 12c. Also here, the
optimized design considering the adapting contact normal direction differ significantly from the previous designs assuming very
small displacements of Fig. 11. If the both-sided penalty approach is used, the final design once again includes dysfunctional
struts at the upper two connecting joints (see Fig. 12b). Here, the struts of the horizontal component transmit tension forces,
which is nonphysical in the context of contact. Once again, one can introduce non-design spaces to overcome this problem.
However using both-sided penalty approach, the width of the non-design spaces is not only constraint by the manufacturing
constraints of the fasteners. The underlying model transmits tension forces at the joints. Consequentially, the underlying model
will underestimate the needed material at the joints, which might lead to failure in practice. Thus, the width of the non-design
space must be chosen very conservatively, which in turn has a significant impact on the performance of the optimized design.

In Fig. 13, the penalty factor is increased to k = 10000 N/mm, in order to show the impact of the penalty factor of the both-
sided and unilateral contact law. In doing so, the optimized design should become more and more similar to the design obtained
by Signorini’s contact condition (see Fig. 12a). Especially, the unilateral design transforms towards the design using Signorini’s
contact condition. However, especially the appearance of the struts between the lower and left connection joint is still very
different. At the same time, the computation times increase significantly for both penalty. Now, the both-sided penalty law is
four times slower, than the optimizations using Signorini’s contact condition and the unilateral penalty law is two times slower,
than using Signorini’s contact condition. Furthermore, its worth mentioning, that considering adapting contact normal directions
reduces the computation time by 20%, if Signorini’s contact conditions are imposed, while the computation times of both penalty
methods increase in comparison to the constant contact normal directions.

4.3 3D L-beam

The presented simultaneous optimization approach is also applied to a 3D example of the L-beam. Therefore, the 3 joint design
space is extruded into z-direction and the two components are placed next to eachother. The vertical beam is hold in place at it’s
four upper corners and a load is distributed along the tip of the beam. Furthermore, symmetry is imposed so that the connecting
joints cannot move along the z-axis. In doing so, a total of 242534 finite elements are considered, and each component has 1056
contact nodes. The results are shown in Fig. 14 and Fig. 15. The contact is modeled using Signorini’s contact conditions. Thus,
no penalty approach is used here.

The overall appearance of the vertical component of the 3D design is similar to the 2D design of Fig. 9b. However, there
is also material distributed around the lower connecting joint and some differences are observed at the top. In contrast to the
vertical component, the horizontal component differs significantly from the 2D design. Less struts are used and a ’I-profile’ like
structure is found. Hereby, the width of the inner support differs over the height of the component. Interestingly, the appearance
close to the connecting joint is similar to the 2D design. Due to the applied symmetry constraint, the actual appearance of the
optimized assembly is shown in Fig. 15.



Simultaneous Multicomponent Topology Optimization using Unilateral Contact-Constraints 17

(a) Frontside. (b) Backside.

F I G U R E 14 Optimized design of the L-Beam using Signorini’s contact condition.

F I G U R E 15 Final design including the symmetry.

5 CONCLUSION

In this paper, the general framework for contact-constrained topology optimization of linear-elastic structures of Strömberg and
Klarbring1 is extended to simultaneous optimization of assemblies. Furthermore, external loads can be applied at the connecting
joints extending the single component framework of Strömberg and Klarbring1 significantly. In doing so, different benchmark
examples are shown and the necessity of modeling the unilateral characteristic of contact in optimization is demonstrated.
Neglecting the unilateral characteristic, results in poorer performing optimized design. One might argue, that one will always
introduce a non-design space around the entire connecting joint. Nevertheless, unilateral contact laws must be considered, as
otherwise both the compression and tension zones of the contact surface contribute to the stiffness of the joint. The optimizer
will take advantage of this non-physical assumption, which in practice can lead to dysfunctional joints.

If the unilateral characteristic is considered, a non-design space around a connecting joint is only constrained by manufacturing
constraints such as the needed support for the used fasteners, since the mechanics are captured correctly. Finally, the performance
of the method is efficient, so that also 3D applications can be computed.
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