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Abstract

Competitive rowing highly values boat position and velocity data for real-time feedback
during training, racing and post-training analysis. The ubiquity of smartphones with
embedded position (GPS) and motion (accelerometer) sensors motivates their possible
use in these tasks. In this paper, we investigate the use of two real-time digital filters to
achieve highly accurate but reasonably priced measures of boat speed and distance
traveled. Both filters combine acceleration and location data to estimate boat distance
and speed; the first using a complementary frequency response-based filter technique,
the second with a Kalman filter formalism that includes adaptive, real-time estimates of
effective accelerometer bias. The estimates of distance and speed from both filters were
validated and compared with accurate reference data from a 10 Hz differential GPS
system with better than 1 cm precision, in experiments using two subjects (an
experienced club-level rower and an elite rower) in two different boats on a 300 m course.
Relative to single channel (smartphone GPS only) measures of distance and speed, the
complementary filter improved the accuracy and precision of boat speed, boat distance
traveled, and distance per stroke by 44%, 42%, and 73%, respectively, while the Kalman
filter improved the accuracy and precision of boat speed and distance per stroke by 51%
and 72%, respectively. Both filters demonstrate promise as general purpose methods to
substantially improve estimates of important rowing performance metrics.

Introduction 1

Non-intrusive collection of data from athletes during practice and competition provides 2

opportunities for evidenced-based performance evaluation and coaching. Traditional 3

kinematic measurement techniques in sports have frequently required elaborate 4

equipment to capture the motion of human body segments and associated sports 5

equipment; see examples in [1]. With the growing functionality and ubiquity of 6

smartphones, athletes and coaches have access to an increasingly capable and 7

sophisticated measurement system that includes the phone’s inertial measurement unit 8

(three dimensional angular rate gyroscope, accelerometer, and magnetometer) and 9

determinants of location (GPS, GLONASS, etc.). Modern smartphone technology 10

provides position measurements that can be sampled up to about 1 Hz with stationary 11

absolute accuracy between 0.5 m to 16 m and stationary RMSE between 14 m to 71 m, 12

making them more precise than accurate [2]. The phones also output acceleration and 13

angular velocity data at rates up to about 200 Hz [3]. 14
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Competitive rowing attempts to maximize average boat speed over a specified race 15

distance. For competitions over such a distance, the time domain race-to-race variability 16

for elite rowers is approximately 1% and this has been proposed as “an irreducible error 17

for any measure of rowing performance” [4]. However, the discrete unit of action and 18

control in rowing is the stroke and this accordingly represents the domain in which 19

many training and racing parameters are communicated and analyzed. For example, 20

rowing speed is represented in the stroke domain as the product of stroke rate and 21

distance per stroke. 22

In Olympic rowing races, the historical speed difference between finish position (first 23

and second; second and third; etc.) has averaged 0.42% [5]. Contextualized in the 24

approximately 200 strokes that it takes to complete a 2000 m race, rowers who generate 25

an additional 5 cm per stroke will ordinarily gain a one place improvement in boat 26

finish. Thus, it follows that the accuracy and precision of distance per stroke 27

measurements must be better than 5 cm in order to generate meaningful insight and 28

feedback. Satellite-based positioning systems (GPS, etc.) do not ordinarily afford this 29

level of accuracy and precision thus limiting their effectiveness in the analysis of any 30

individual stroke. We posit that more accurate and precise measures of boat movements 31

for and within an individual stroke will enable a more direct examination of the causal 32

relationships that exist between rower-oar-boat system mechanics and boat performance. 33

Therefore this study seeks to improve the accuracy and precision of rowing metric 34

measurements. 35

The paper begins with an explanation of the quality of the data available via the 36

smartphone and the accuracy needs of the desired performance metrics. Two methods 37

are then presented for fusing the smartphone position and motion data to generate more 38

accurate position estimates. Finally, the estimates are presented relative to ground 39

truth data collected from a differential GPS (DGPS) system. We close with discussion 40

of the implications and use cases. 41

Related work 42

Real-time water-relative boat speed has traditionally been measured by either a pitot 43

tube or a small impeller attached to the hull. More modern speedometers make use of 44

GPS receivers to calculate Earth-relative speed and distance in the distance, time, and 45

stroke domains. For example, the popular SpeedCoach GPS (Nielsen Kellerman, 46

Boothwyn, PA, USA) outputs metrics like boat speed, stroke rate, distance, and elapsed 47

time based on GPS and/or impeller measurements. The accuracy and utility of these 48

systems are limited by the position estimation accuracy and/or the difficult-to-know 49

and frequently fluctuating current velocity. GPS has been used to measure position 50

during long distance (15,000 m) rowing events [6], and low cost GPS systems have also 51

been shown to be capable of providing real-time speed estimates during rowing [7]. 52

Other references exist to high accuracy (0.1 m s−1 to 0.3 m s−1) GPS measurements 53

for rowing [8] and the use of high accuracy differential GPS [9], but these systems are 54

often impractical for ordinary rowing applications because they require establishing and 55

operating an additional stationary base station. There has been success in creating 56

differential GPS systems from a network of smartphones that improve location 57

estimates to 1 cm accuracy at 1 Hz [10] that might be applicable to rowing. And a 58

differential GPS-tailored Kalman filter has been used for the specific task of rowing 59

position prediction [11]. 60

Researchers have improved the accuracy of position and speed estimates in rowing 61

by incorporating acceleration measures. Accelerometer-derived speed shows strong 62

correlation to impeller-derived speed measurements in still water [12]. GPS and 63

accelerometer sensor fusion have been used to estimate position and velocity during 64
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GPS network downtime. References [13–15] compare GPS accelerometer-derived 65

velocity to high speed video footage, and [16] measures differential GPS and 66

acceleration showing the utility of advanced sensors. 67

A network of IMUs on the rower can capture rowing with similar results to motion 68

capture cameras [17] and real-time accelerometer-based feedback has been found to 69

improve rowing consistency when used on indoor ergometers [18]. Tessendorf et. al [19] 70

use an elaborate IMU sensor array (Xsens, Enschede, Netherlands) to demonstrate the 71

utility of metrics for characterizing on-water rowing performance but this system 72

requires extensive setup time and expertise and is cost prohibitive for the typical rower. 73

Various filters have been used to improve smartphone position estimates for walking 74

in [20], but the large sensor error causes difficulties when applied to this more general 75

problem. 76

Various methods have been proposed to improve measurement results during rowing. 77

The most similar to the present paper is that of Hermsen [21], whose primary goal was 78

to estimate the position, speed, and stroke rate of the boat based on a consumer-grade 79

accelerometer and GPS sensor for real-time wireless transmission and display to viewers 80

of the rowing event. His linear Kalman filter based approach fused data from the two 81

sensors and estimated rowing speed. It found finish times to be 14% more accurate than 82

when estimated with GPS data alone. Although real-time estimates were desired, the 83

solution to handling sensor orientation bias required an offline after-the-fact 84

computation leaving real-time implementation out of reach. 85

Problem Formulation 86

We desire highly accurate estimates of the distance the boat travels along its path 87

during each individual stroke using readily available and easy to use consumer products, 88

i.e., smartphones. High accuracy allows for intra-rower, -race, and -day repeatable 89

comparisons in both distance traveled and boat speed. In competitive rowing, boats 90

move on the order of 6 m per stroke. We have found smartphones to have raw accuracy 91

on the order of 1 m and a precision of 0.8 m by comparison with our differential GPS 92

measurements; see Table 1. Our ultimate goal is to improve this distance accuracy by 93

roughly two orders of magnitude, allowing distance per stroke estimates with up to 94

5 cm accuracy. Additionally, we want these estimates to be able to be calculated in real 95

time and not rely on knowledge of the specific boat and rower, to facilitate simple 96

real-time training feedback to coaches and rowers. Our proposed methods to accomplish 97

this consist of four major components: 98

Data collection A smartphone is rigidly attached to a boat and used to collect GPS 99

data at an average sampling rate of 0.3 Hz and accelerometer data at 100

approximately 100 Hz. (A differential GPS unit is also attached to the boat to 101

measure boat position at 10 Hz for validation purposes, but this is not part of the 102

evaluated method.) 103

Sensor fusion Physics-informed fusion of the raw GPS and accelerometer 104

measurements to estimate position at the accelerometer sampling rate (100 Hz) . 105

Rowing metric computation Stroke transition detection is used to calculate the 106

distance traveled per stroke, stroke rate, and boat speed. 107

Error estimates Estimates from the sensor fusion are compared to “true” values 108

obtained from the differential GPS measurements. 109

Fig 1 provides a schematic of the general flow of data and processing algorithms 110

from the prior list. The primary algorithm, i.e. transforming raw smartphone data to 111
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Fig 1. Data processing pipeline flow chart.
Grey rectangles indicate the real-time algorithm process. White rectangles indicate the
validation process. Parallelograms represent raw data from the sensors.

distance and speed estimates, is implemented for use in a real-time computing situation, 112

but the actual results for the purposes of the paper were computed offline and are 113

available in the accompanying software. In this section we elaborate on the four 114

components listed above, beginning with the characterization of the measurement data. 115

We then motivate the desired accuracy of the metrics, and finally provide the details of 116

the two sensor fusion methods. 117

Accuracy and precision 118

It is worth carefully defining accuracy and precision [2] of repeated measurements of a 119

motionless sensor and of measurements while the sensor is moving. 120

Accuracy specifies how close a given measurement is to the true value. In the case of 121

planar Cartesian horizontal position measurements (x, y) derived from latitude and 122

longitude of a motionless sensor, following [2] we use the Central Error, CE, 123

(i.e. Euclidean distance between the average of a set of measurements, (x̄, ȳ), and the 124

true position, (xs, ys), as a measure of accuracy. 125

CE2
xy = (x̄− xs)2 + (ȳ − ys)2 =

[
1

n

n∑
i=1

(xi − xs)

]2
+

[
1

n

n∑
i=1

(yi − ys)

]2
(1)

Precision characterizes how repeatable measurements are [2]. For measurements
from a motionless sensor the variance about the mean position in the Cartesian
coordinates is a measure of precision, Eq (2).

Var(x) =
1

n

n∑
i=1

(xi − x̄)2, Var(y) =
1

n

n∑
i=1

(yi − ȳ)2 (2)

The Federal Geographic Data Committee recommends using the Root Mean Square 126

Error (RMSE) to characterize error in geographic position measurements [2]. It is 127
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important to note that RSME is related to both accuracy and precision. For example, 128

increases in either the Central Error or the variance of the measurements will increase 129

RMSE: 130

RMSE2
xy =

1

n

n∑
i=1

[
(xi − xs)2 + (yi − ys)2

]
= CE2 +

n− 1

n
[Var(x) + Var(y)] (3)

We have elected to report RMSE values in this paper to follow this convention. We 131

calculate the error between the smartphone measurements (or smartphone derived 132

estimates) and the measurements from the differential GPS, which we define as the 133

ground truth. 134

In this paper, we are primarily concerned with estimates of the distance and speed
along the boat’s nearly straight path during rowing. Here we define the accuracy and
precision of these time varying estimates. We calculate this distance for the smartphone
and DGPS at any given time with

d(ti) = d(ti−1) +
√

[x(ti)− x(ti−1)]2 + [y(ti)− y(ti−1)]2. (4)

The boat speed is estimated from the DGPS data using a backward difference.

vDGPS(ti) =
d(ti)− d(ti−1)

ti − ti−1
(5)

Given the boat position and speed along the path we calculate the RMSE of the two
prior quantities by comparing them with analogous quantities derived from the
differential GPS data to quantify accuracy and precision (Eqs (6) and (7)). In this case
n is taken as the number of samples associated with the larger sample rate of the two
signals and linear interpolation is used to find corresponding samples in the signal with
the smaller sample rate.

RMSEd =

√∑n
i=1 de(ti)

2

n
=

√∑n
i=1[d(ti)− dDGPS(ti)]2

n
(6)

RMSEv =

√∑n
i=1 ve(ti)

2

n
=

√∑n
i=1[v(ti)− vDGPS(ti)]2

n
(7)

For given errors de and ve at every time sample, the mean of the errors ( Eqs (8)
and (9)), and the variance of the errors, (Eqs (10) and (11)) can be computed.

d̄e =
1

n

n∑
i=1

de(ti) =
1

n

n∑
i=1

[d(ti)− dDGPS(ti)] (8)

v̄e =
1

n

n∑
i=1

ve(ti) =
1

n

n∑
i=1

[v(ti)− vDGPS(ti)] (9)

Var(de) =
1

n

n∑
i=1

[de(ti)− d̄e]2 (10)

Var(ve) =
1

n

n∑
i=1

[ve(ti)− v̄e]2 (11)

The central error is then simply

CEde
=
√
d̄2e = |d̄e|, CEve =

√
v̄2e = |v̄e| (12)
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Table 1. Sensor measurement accuracy and precision.
The rows corresponding to the smartphone GPS provide the accuracy (central error,
CE) and precision (standard deviation, SD) of the GPS-derived position relative to
simultaneously collected DGPS position of the moving pair of sensors. The smartphone
accelerometer rows provide a measure of precision of the sensor’s body fixed
acceleration when the smartphone is motionless. Similarly, the differential GPS rows
provide a measure of precision of the motionless rover position relative to the motionless
base station.

Sensor Measurement Value

Smartphone GPS CE of NS position 1.01 m
(Moving, 32 sec) CE of EW position 0.89 m

SD in the NS position 0.81 m
SD in the EW position 0.70 m

Smartphone Accelerometer SD along the X axis 2.67 mg
(Motionless, 96 sec) SD along the Y axis 2.45 mg

SD along the Z axis 1.59 mg

Differential GPS SD in the N-S position 3.2 mm
(Motionless, 57 sec) SD in the E-W position 1.7 mm

The RMSE is related to the mean and variance [2]

RMSE2
d = CE2

de
+ Var(de), RMSE2

v = CE2
ve + Var(ve) (13)

Lastly, we calculate the RMSE of the actual distance per stroke relative to the
estimated distance per stroke for all strokes, or subsets of strokes.

RMSEds
=

√∑m
i=1[dsi − dDGPSsi]2

m
(14)

where ds is the distance per stroke and m is the number of strokes. 135

Data collection 136

Smartphone GPS 137

The smartphone provides global position estimates accessed via the iPhone software 138

development kit. Latitude and longitude are received at a variable sampling rate, 0.1 Hz 139

to 1 Hz, usually at an average of about 0.3 Hz when the sensor is in motion. Once the 140

data is transformed into an Earth-local Cartesian coordinate system with respect to the 141

WGS84 coordinate system [22], the precision of motionless measurements can be 142

determined; see Table 1. For repeated measurements over a short duration (<15 min) 143

we assume that any inherent systematic bias of the GPS relative to true position is 144

constant and does not degrade our distance calculations. Systematic bias can be quite 145

large, e.g. 16 m, but the precision of repeated measurements over a short duration can 146

be at least an order of magnitude smaller [2]. 147

None of the metrics of interest we describe in the prior section requires knowledge of 148

the absolute position of the boat on the earth; instead we require only relative 149

sample-to-sample (x, y) position differences. Using a Piksi differential GPS system 150

(SwiftNav, San Francisco, USA) as a measure of ground truth relative position (with 151

better than 1 cm precision) we characterized the motionless and moving 152

mean-subtracted distribution of smartphone position measurements; see Table 1. 153
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Fig 2. Diagram of a rowed boat at speed pitched with misaligned
bow-mounted smartphone.
The smartphone coordinate system ŷ, ẑ is oriented relative to the coordinate system
aligned with the horizontal ŷ′, ẑ′ by the varying pitch angle θ. The
accelerometer-reported acceleration α differs from the actual ŷ′ component because it
includes a gravitational component. The actual acceleration a of the phone is then
a = α− gẑ′. We desire the magnitude of the acceleration a projected onto the
horizontal plane but we do not know θ at any given time. As described in the text, the
sensed ŷ acceleration differs from the true ŷ′ acceleration by a small bias and a larger
term gθ which accounts for the projection of the gravity vector on the pitched ŷ axis.

The cumulative distance traveled along the boat’s path is calculated from the 154

relative distance between each (x, y) coordinate; see Eq (4). We rely on numerical 155

differentiation (backward differences, see Eq (5)) with respect to the sensor-recorded 156

time stamps to compute speed from the DGPS position measurements. 157

Smartphone acceleration 158

The smartphone accelerometer provides three dimensional body-fixed acceleration 159

measurements with a precision (SD) of about 0.02 m s−2, Table 1, updated at 160

approximately 100 Hz. When affixed to the boat, we are interested in the component of 161

acceleration tangent to the boat’s travel path on the water surface. 162

The very small yaw (<1°) angular motion during typical rowing [5] allows us to 163

ignore the lateral acceleration component. We also ignore effects of any boat rolling 164

motion, because it is small as well [5]. Pitch angular motion is similarly small (<1 °) [5] 165

but because of the relatively large gravitational acceleration, even small changes in pitch 166

mounting orientation, average boat pitch, and time-varying pitch angle mean that the 167

longitudinal smartphone acceleration measurement cannot be used directly; see Fig 2. 168

In general, we use only the smartphone-fixed longitudinal component of acceleration,
αy to estimate distance, but must take special care to account for the pitch effects and
accumulation of error from twice integrating the biased accelerometer measurement.
Although this could be corrected by a calibration procedure [21], it is generally not
practical in the expected smartphone consumer use case. Fig 2 illustrates how the
smartphone body-fixed sensed acceleration relates to the actual acceleration parallel to
the water’s surface. If the smartphone pitch, θ, and the vertical acceleration of the boat
are small, then the longitudinal acceleration follows

a ≈ αy − gθ. (15)

169
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(a) Elite rower (b) Club-level rower

Fig 3. Boat-fixed longitudinal acceleration as a function of percent stroke
from two trials (elite and club-level 24SE.).
Each stroke is plotted as a red line and the mean of all strokes as a black line. The
repeatability of the measured longitudinal acceleration, especially for the elite rower,
lends credence to the consistency of both rowing technique, the robustness of the stroke
endpoint identification, and the quality of the data itself.

Desired Kinematic Metrics 170

Stroke rate 171

Rowing involves periodic propulsive strokes by the rower(s) delivered through the oars 172

to generate boat movement. These create a periodic kinematic pattern of boat 173

accelerations and pitching that reliably maps to the characteristic phases of the stroke. 174

Similar to others [14], we defined the endpoints of the stroke (the end of one and start 175

of the next) as the time that corresponds to the minimum peak values of longitudinal 176

boat acceleration. This moment reliably corresponds to the beginning of propulsive 177

phase of the stroke, commonly referenced in rowing as the “catch” [5]. These time 178

instants can be detected in real-time using the method from [23], for example. Fig 3 179

illustrates the reliability of individual stroke endpoints detected using this method. 180

These times are used to calculate the stroke-domain metrics of interest: distance per 181

stroke and stroke rate. 182

Boat speed 183

Average boat speed along the shortest path to the finish is the primary metric rowers 184

must maximize to win a race. We compute boat speed for the differential GPS 185

measurements using Eq (5), and for the smartphone we rely on its internal speed 186

estimate directly. Fig 4 provides a look at the DGPS computed speed measures for two 187

trials. 188

Determining instantaneous earth-relative boat speed relies on accurate distance 189

estimates. The smartphone provides a low accuracy and reasonable precision position 190

update at a sample rate on the same order of magnitude as the stroke rate, i.e. 0.3 Hz, 191

which is only useful for average speed estimates for a given stroke. 192

Given a 0.8m precision in the distance measurements (Table 1), the accuracy of the 193

speed estimates from the phone are on the order of 0.3 m s−1. With a 5 cm precision, 194

the accuracy can potentially increase to 0.02 m s−1, thus providing an intimate view of 195

intra-stroke speed variations. 196

Distance per stroke 197

Boat speed is the product of two separate but interrelated variables in the stroke 198

domain: stroke rate and distance per stroke. We calculate distance per stroke for each 199
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(a) Elite rower (b) Club-level rower

Fig 4. DGPS computed boat speed as a function of percent stroke for two
trials (elite and club-level 24SE).
Each stroke is plotted as a red line and the mean of all strokes as a black line. Because
the DGPS data is sampled at only 10 Hz and the relative precision is lower than the
accelerometer, the speed profile is less smooth and repeatable than the acceleration
profiles in Fig 3.

Table 2. Summary DGPS stroke data from the elite 24SE trial
Same data as depicted in Figs 3 and 4.

Stroke Number Duration [s] Distance [m] Avg. Speed [m s−1]

1 2.52 10.10 4.03
2 2.48 10.10 4.05
3 2.37 9.89 4.15
4 2.36 9.98 4.18
5 2.35 10.03 4.26
6 2.31 9.79 4.27
7 2.29 9.89 4.32
8 2.33 10.06 4.30
9 2.25 9.59 4.22
10 2.28 9.84 4.39
11 2.28 9.89 4.36
12 2.43 10.52 4.36
13 2.41 10.36 4.26
14 2.40 10.27 4.34
15 2.39 10.21 4.32
16 2.42 10.20 4.24
17 2.37 9.98 4.20
18 2.38 10.09 4.24
19 2.34 9.95 4.20
20 2.33 9.66 4.16

AVG 2.36 10.02 4.24
STD 0.07 0.23 0.10
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Table 3. Summary DGPS stroke data from the club-level 24SE trial
Same data as depicted in Figs 3 and 4.

Stroke Label Duration [s] Distance [m] Avg. Speed [m s−1]

1 2.50 9.80 3.90
2 2.43 9.43 3.80
3 2.44 9.71 3.98
4 2.37 9.49 4.02
5 2.52 10.02 3.93
6 2.62 10.28 3.95
7 2.37 9.42 3.95
8 2.41 9.59 3.99
9 2.49 9.82 3.91
10 2.49 9.84 3.86
11 2.47 9.63 3.90
12 2.37 9.32 3.95
13 2.57 10.07 3.90
14 2.44 9.66 3.93
15 2.61 10.34 3.97
16 2.43 9.47 3.93
17 2.47 9.76 3.92
18 2.46 9.68 3.96
19 2.46 9.56 3.86
20 2.56 9.98 3.92
21 2.42 9.34 3.91
22 2.43 9.54 3.97
23 2.46 9.62 3.93
24 2.44 9.30 3.78

AVG 2.46 9.69 3.92
STD 0.07 0.29 0.05
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Table 4. Summary DGPS data for strokes from the elite and club-level
24SE trials
Same data as depicted in Figs 3 and 4.

Stroke Number Duration [s] Distance [m] Avg. Speed [m s−1]

1 2.52 10.10 4.03
2 2.48 10.10 4.05
3 2.37 9.89 4.15
4 2.36 9.98 4.18
5 2.35 10.03 4.26
6 2.31 9.79 4.27
7 2.29 9.89 4.32
8 2.33 10.06 4.30
9 2.25 9.59 4.22
10 2.28 9.84 4.39
11 2.28 9.89 4.36
12 2.43 10.52 4.36
13 2.41 10.36 4.26
14 2.40 10.27 4.34
15 2.39 10.21 4.32
16 2.42 10.20 4.24
17 2.37 9.98 4.20
18 2.38 10.09 4.24
19 2.34 9.95 4.20
20 2.33 9.66 4.16

AVG 2.36 10.02 4.24
STD 0.07 0.23 0.10
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Fig 5. Block diagram depicting the complementary filter algorithm.
The smartphone speed and acceleration are fused to create an improved speed estimate
and then that estimate is fused with the smartphone GPS-derived distance to create an
improved distance estimate.

stroke by subtracting the interpolated distance, Eq (4), at each pair of subsequent 200

stroke start/stop times. The same synchronized start/end time values are used for the 201

smartphone-derived and reference differential GPS data allowing a direct comparison of 202

the various estimations of boat distance. This comparison will provide an estimate of 203

the accuracy and precision of each estimate method presented below. 204

As another indication of the effectiveness of the stroke endpoint identification 205

procedure and the subsequent calculations of stroke time, distance per stroke and 206

average speed, Tables 4 and 3 provide statistics on the apparently repeatable strokes 207

contained in the two trials portrayed in Figs 3 and 4. The deviations of the duration 208

and distance of each stroke are of the order of 2-3%, which means that the rowers were 209

rowing steadily and that the stroke endpoint identification procedure and subsequent 210

calculation of the stroke parameters from the DGPS data is robust. 211

Sensor Fusion Method 1: Complementary Filter 212

The first method stems from the classical idea of characterizing input-output behavior 213

based on frequency response. We utilize two complementary filters in series, Fig 5, with 214

each filter made up of two real-time discrete 2nd order Butterworth filters, one low-pass 215

presented in [24] and one high-pass of similar design. Integrating the biased and noisy 216

acceleration measurement introduces drift in the speed and distance estimates, as 217

expected. The high-pass filter is used to extract the high frequency portion of the 218

estimates and to exclude the low frequency drift component. The low-pass filter extracts 219

the low frequency portion of the smartphone speed and GPS-derived distance estimates. 220

Each pair of two filtered signals are then summed at each accelerometer sample time to 221

update the estimates. The result is a more accurate speed and distance estimate. 222

Extrapolating GPS data 223

Since the GPS measurements are updated less frequently than the accelerometer
measurements, the smartphone speed and GPS-derived distance is linearly extrapolated,
Eq (16), between GPS updates at each accelerometer update. This uses the prior two
GPS samples to provide an often improved complementary filter input. This simple
additional ”filtering” technique improves the distance estimate by 37% and the velocity
estimate by 20%. In the below equation the i index represents the accelerometer update
time and the k index represents the last GPS update prior to ti. This amounts to using
the average speed derived from the GPS to make the extrapolation.

d(ti) = d(ti−1) +
d(tk)− d(tk−1)

tk − tk−1
(ti − ti−1) (16)
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Table 5. Average optimal Butterworth filter cutoff frequencies.

Distance Filter Speed Filter

low [Hz] high [Hz] low [Hz] high [Hz]
0.189 3.789 0.0166 0.0457

Cutoff Frequency Selection 224

A unique cutoff frequency is computed for each filter (low-pass and high-pass) for each 225

trial. We select these parameters using an offline nonlinear least squares curve fit 226

comparing the filtered distance to the differential GPS distance to compute the error. 227

These optimal cutoff frequencies are averaged across all trials and the result is used in 228

the real-time implementation. See Table 5. 229

Using the optimal cutoff frequency for each pass as opposed to the average over all 230

passes would decrease the position RMSE by an average of 26% and the velocity RMSE 231

by an average of 16%. However, calculating optimal cutoff frequencies would require 232

post-processing and would render this filter non-real time. 233

Bias and the Butterworth Filter 234

A Butterworth filter creates a maximally flat passband and is relatively easy to
implement digitally. At the cutoff frequency it rolls off gradually but is sufficient for
many biomechanical filtering needs [1]. The transfer functions for the low and high pass
2nd Butterworth filters are shown in Eqs (17) and (18) alongside the equations for the
magnitude in the frequency domain.

Hlow(s) =
ωc

s2 +
√

2ωcs+ ωc

, |Hlow(jω)| = 1√
1 +

(
ω
ωc

)4 (17)

Hhigh(s) =
s2

s2 +
√

2ωcs+ ωc

, |Hhigh(jω)| = 1√
1 +

(
ωc

ω

)4 (18)

We low pass filter the smartphone GPS speed estimate and high pass filter the
longitudinal accelerometer measurement. The accelerometer output is the sum of the
acceleration along the travel path minus a term that varies with boat pitch about a
constant bias, i.e. αy − gθ. In the frequency domain, these two signals are

Xlow(jω) = V (jω) (19)

Xhigh(jω) = A(jω) + a0 (20)

where a0 represents the bias. 235

Once filtered, the magnitude of each signal becomes

|Ylow(jw)| = V (jw)√
1 + ( w

wc
)4

(21)

|Yhigh(jw)| = |A(jw)|√
1 + (wc

w )4
+

a0√
1 + (wc

w )4
(22)

(23)

The low-pass filter can be tuned with the cutoff frequency. However, the high-pass 236

cutoff frequency must be tuned to maximize the expression of the non-bias term and to 237
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minimize the expression of the bias term in the output. If the bias term has frequency 238

content in the same bandwidth as desirable signal in the non-bias term it is difficult to 239

separate. Because the bias term and the longitudinal acceleration both vary with the 240

boat pitch, this the filter may not be ideal, but in practice performance is sufficient. 241

The Kalman filter described in the next section, on the other hand, does not have this 242

limitation. 243

Sensor Fusion Method 2: Kalman filter 244

The Kalman filter algorithm fuses data collected from different sensors with the outputs 245

of a predictive dynamic physical model to estimate the target time-varying variables of 246

interest, known as states. The estimation results are expected to be more accurate than 247

those obtained from any individual sensor [25]. Although the Kalman filter formalism 248

makes several foundational mathematical assumptions, perhaps the most important of 249

which are random Gaussian process and measurement noise, these assumptions are 250

often relaxed in practice and the technique still works [26]. 251

In our case, the body-fixed longitudinal acceleration of the boat is measured and 252

used as an input to a kinematic model to predict the displacement and speed of the boat 253

along its path. The predictions are then compared with the smartphone GPS-derived 254

distance traveled and speed measurement and the error is used as feedback to adjust the 255

estimation in real time. The Kalman gain can be tuned to balance the sensor and model 256

uncertainty to achieve optimal accuracy. Details regarding the application of Kalman 257

filtering to this estimation problem will be discussed in this section. 258

Boat Kinematic Model 259

The Kalman filter uses a discrete dynamic model describing the kinematic relationships
along the path. The actual horizontal acceleration a is discretely twice integrated to
obtain distance d and speed v,

dk+1 = dk + vk∆t. (24)

vk+1 = vk + ak∆t (25)

where the subscripts are shorthand for dk = d(tk), etc. 260

As noted previously and illustrated in Fig 2, the smartphone’s y accelerometer axis
is not, in general, parallel to the boat’s horizontal travel path. If we want to use the
smartphone acceleration for a in Eq (25) above, we must compensate for this
misalignment together with varying boat pitch during rowing by adjusting the
accelerometer’s reading. We introduce an unknown constant bias state, φk for this
purpose

φk+1 = φk (26)

and replace a with αy,k − φk, where φk is essentially the sum of the real accelerometer 261

bias and the mean of gθ(t). The augmented speed state equation follows in Eq. (27). 262

vk+1 = vk + (αy,k − φk)∆t. (27)

This bias can be thought of as the ”effective” bias, in that it is the sum of the ”real” 263

bias and the mean value of gθ and has now become a new state to be estimated by the 264

filter which will effectively account for drift due to integration error accumulation. The 265

time varying component of gθ(t) is the sum of two parts: a roughly periodic remnant 266

and a small truly random measurement noise. These two parts are luped together as 267

”process noise” wk below. 268
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Lastly, we make use of two measurements, d and v, which is the smartphone GPS
derived distance and speed along the travel path to correct our kinematic model
predictions. Eqs (24) and (27) can be written in state space form to facilitate the design
of the filter.

xk+1 = Axk + Buk + wk (28)

yk = Cxk + Duk + νk (29)

where

xk = [dk, vk, φk]T , uk = [αy,k], yk = [dk, vk]T , (30)

and

A =

1 ∆t 0
0 1 −∆t
0 0 1

 , B =

 0
∆t
0

 , C =

[
1 0 0
0 1 0

]
, D =

[
0
0

]
. (31)

The terms wk and νk are the process and measurement noise representing model and 269

sensor uncertainty, respectively. 270

Kalman filter formulation 271

Based on the state space model of the boat kinematics, we design a Kalman filter to
estimate the states xk over time. The Kalman filter generates the estimates in two
steps: the model prediction update and the measurement update. In the prediction
update, an a priori estimate is made based on the input, the estimated state at the
previous time instant, and the model,

x̂−k = Ax̂+
k−1 + Buk−1, (32)

where the superscript − denotes the a priori estimate and + denotes the final (a
posteriori) estimate. In our case, the acceleration measurement is fed as the input to
the kinematic model to calculate the instantaneous speed and distance. Meanwhile, the
Kalman filter provides an estimate of the covariance of the state estimation, P ,
according to

P−k = Ak−1P
+
k−1A

T
k−1 + Q, (33)

which indicates the estimation accuracy. In Eq (33), Q is the estimated covariance 272

matrix of the process noise wk. 273

In the measurement update step, an a posteriori estimate is made based on the
model prediction and the output measurement feedback,

x̂+
k = x̂−k + Lk(yk − ŷ−k ) (34)

ŷ−k = Ckx̂
−
k + Dkuk, (35)

where Lk is the Kalman gain matrix calculated as 274

Lk = P−k C
T
k (CkP

−
k C

T
k + R)−1. (36)

In Eq (36), R is the covariance of the output measurement noise νk. During this 275

step, the estimation covariance is also updated 276

P+
k = (1− LKCT

k )P−k . (37)
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If both the process noise wk and measurement noise νk are Gaussian, the a 277

posteriori estimate obtained in Eq (35) is optimal in the sense of minimum covariance 278

P. In our case, the smartphone GPS derived distance measurement is used to compare 279

with and correct the a priori estimate of the boat distance and speed. 280

The model prediction is performed at approximately 100 Hz in accordance with the 281

sampling rate of the accelerometer, while the measurement update is carried out at the 282

less frequent update rate of the GPS, about 0.3 Hz. 283

The performance of the Kalman filter relies heavily on the filter designer’s choice of 284

values for the Q and R matrices. The correct values for both are difficult, if not 285

sometimes impossible, to know, and the noise is often not actually Gaussian. But in 286

practice, these can often be tuned to create a good estimate. We are able to directly 287

calculate the smartphone measurement variance, taking the DGPS measurements as the 288

true value, see Eqs (10) and (11) and we use it to populate the diagonals of R. 289

R =

[
25.279 0

0 0.309

]
(38)

Our process model is a simple kinematic model and the only terms that may have 290

appreciable process noise are the acceleration input and the bias. We assume that the 291

process noise is negligible because of the quality of the acceleration measurement and 292

the dominance of the bias term in the development of error in the estimate. We thus, 293

set Q = 0, to reflect this and the filter trusts the model fully when no measurements 294

are available. The values for Q and R are generally robust with respect to rower and 295

boat variation. 296

Experimental Methodology 297

Experiments were performed two days apart to validate the effectiveness of the 298

proposed sensor fusion methods using a different rower-boat combination on each day: 299

an experienced club-level (18 years rowing experience, age=63, height=1.68 m, 300

weight=70 kg) sculling a 2 person boat (2002 Hudson mid-weight, 2X) alone, and an 301

elite rower (2016 Olympic participant, age=31 height=2.00 m, weight=100 kg) sculling 302

a single person boat (2004 Hudson heavy-weight, 1X). The 2X boat was used with a 303

single rower to allow for easy mounting of the measurement equipment to the empty aft 304

seat before a mounting option for the single scull was developed. In each experiment, 305

the rower performed a series of trials (each over a distance of approximately 300 m) in 306

the West Sacramento channel in both the northwest and southeast directions(Fig 6). A 307

SpeedCoach GPS (Model 2, Nielson-Kellerman, Boothwyn, PA) was used onboard to 308

display to the rower their current stroke rate. An example trial path is shown in Fig 6. 309

An iPhone 7 smartphone with iOS 11.3 (Apple, Cupertino, USA) running a custom 310

data-logger app SwingRow 1.1 (Hegemony Technologies, Davis, CA) was rigidly 311

attached to the deck of the 1X boat using Dual Lock positive-locking fasteners (3M, St. 312

Paul, MN) at the position and orientation shown in Fig 7. A second smartphone 313

running the same data-logger app was put into a “rowers wallet” (Hegemony 314

Technologies, Davis, CA), positioned flat against the back of the rower at the top of the 315

pelvis, and worn throughout the experiments. A HERO4 Session camera (GoPro, San 316

Mateo, USA) was mounted to stern hull facing the rower to collect video. A Piksi 317

differential GPS roving antenna (Swiftnav, San Francisco, USA) was also attached to 318

the hull as shown in Fig 7 (or in the spare seat in the case of the 2X boat). 319

Each rower performed a series of trials at different target stroke rates and in 320

different directions. The current in the channel was investigated and found to be 321

negligible. This data is available in the supplementary materials. 322
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Fig 6. Satellite image of Washington Lake in West Sacramento, CA, USA
showing the path of one of the trials.
The single red dot on the shore is the location of the DGPS base station. The mean
latitude and longitude are 38.566435 ° and -121.556365 °, respectively.

Fig 7. Sensor locations during the elite experiments.
2004 Hudson heavy-weight rowed by elite rower, annotated with hardware used in the
experiment and with DGPS antenna clearly visible to the sky (15 degrees from
horizontal in all directions has clear view to the sky).
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Fig 8. Convergence of the Kalman filter bias state over a single trial (elite
16NW).
The filter bias state typically takes about 40 seconds to converge to a relatively constant
value.

Results 323

We used the GPS satellite-reported time to synchronize the measurements between the 324

devices and to calculate the distance, speed, stroke rate, and distance per stroke from 325

the smartphone and the differential GPS position data. The smartphone data was also 326

used to calculate the estimates using the two aforementioned filters. This section 327

reports the resulting comparisons among the four different estimates of each of the 328

variables. A description of the detailed analysis procedure can be found in the 329

accompanying software. 330

Filter convergence 331

The Kalman filter’s performance relies on the effective bias φ converging to a constant 332

value. Fig 8 shows φ as a function of time for a single example trial. In this case it takes 333

almost 50 seconds (or 14 strokes) for convergence, which is nearly two thirds of the 334

length of the trial. For this reason we limited the calculation of steady state 335

performance data (RMSE) to the last ten strokes of each trial. 336

The filter converges on a different value of φ for each rower-boat combination and 337

stroke rate. Fig 9 shows the steady state values of φ for every trial. This value increases 338

with stroke rate as does the average boat pitch angle. 339

Distance estimates 340

Fig 10 shows all of the distance estimates and Fig 11 shows the relative error of the 341

distance estimates with respect to the differential GPS derived distance from a single 342

trial after filter convergence, see the prior section for an explanation of filter 343

convergence. The Kalman filter estimate is similar to the smartphone, but provides a 344

reasonably drift free estimate between adjacent smartphone updates. The 345
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Fig 9. Terminal values of the Kalman filter bias state, φk, for each trial.
Each dot represents a single trial at the specified target stroke rate. The bias is dictated
by the rower/boat combination and the boat speed.

complementary filter is less influenced by the smartphone distance measurements and 346

provides a better estimate of the true distance traveled. 347

Fig 12 shows the distribution of RMSE for the distance estimates relative to the 348

DGPS for all trials for the elite and club-level rowers. The complementary filter shows 349

improvement for the club-level rower, but little improvement is seen for any of the other 350

cases relative to the smartphone. The Kalman filter actually is over a meter worse when 351

comparing the medians. The large RMSE for the filters is largely due to the bias in the 352

estimate. 353

Boat speed estimates 354

Fig 13 shows example speed estimations from both the complementary and Kalman 355

filters after convergence compared to those derived from the raw smartphone GPS and 356

the differential GPS measurements for a typical trial. The RMSE of the estimations 357

with respect to the differential GPS are tabulated for the post-convergence portion of 358

time and shown on the graph for that trial. Both filters track the differential GPS 359

derived speed throughout the stroke much more closely than the smartphone GPS 360

derived speed, which is more like an average speed. Both of the filters improve the 361

estimate by over a factor of 2 in this trial. 362

Fig 14 shows the summary of the calculated RMSE values for each rower. It is clear 363

that both of the filters improve the speed estimates, also by about a factor 2 or more 364

when comparing the medians. 365

Distance per stroke estimates 366

Fig 15 compares the distance per stroke estimation computed from the smartphone, 367

complementary filter, and Kalman filter through the relative error with respect to the 368

the distance per stroke computed from the differential GPS measurements. For the 369
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Fig 10. Example boat distance estimates.
The figure indicates the distance traveled as a function of time for the last 30 s of the
elite 16NW trial as estimated by the smartphone, complementary filter, and Kalman
filter. The reported RMSE values are with respect to the DGPS distance shown in
black. Each RMSE is calculated with at the sampling rate of the accelerometer, i.e.
approximately 100 Hz.

Fig 11. Example boat distance estimate error.
Error in the smartphone, complementary filter, and Kalman filter estimates relative to
the DGPS. The smartphone error is based on the piece-wise constant curve shown in
Fig 10 to highlight the issue it poses when one desires to calculate distance per stroke.
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Fig 12. Summary of the distance estimate error for all trials.
Comparisons of the distributions of RMSEd of the distance estimates from the three
methods for each full length trial.

Fig 13. Example boat speed estimates.
The figure indicates the speed as a function of time for the last 30 s of the elite 16NW
trial as estimated by the smartphone, complementary filter, and Kalman filter. The
reported RMSE values are with respect to the DGPS computed speed shown in black.
Each RMSEv is calculated at the sampling rate of the accelerometer, i.e.
approximately 100 Hz.
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Fig 14. Summary of the speed estimate error for all trials.
Comparisons of the distributions of RMSEv of the speed estimates from the three
methods for each full length trial.

group of strokes that make up this trial we see that we obtain a ?× improvement and?× 370

improvement over the smartphone data alone. For this trial, the mean accuracy of this 371

estimation is x m. 372

Discussion 373

Rowing research, training, and racing methodologies are necessarily linked to the 374

accuracy and precision of the available measurement systems. Location-based solutions 375

like GPS make it possible to derive and report speed and related metrics in the stroke 376

domain, e.g., stroke rate and distance per stroke. However, efforts to monitor and effect 377

meaningful elite-level race result changes to these metrics at an individual stroke level 378

were shown in the introduction to require location accuracy and precision better than 379

5 cm, which systems like GPS cannot deliver. Thus, the aforementioned stroke level 380

metrics from available systems should be recognized as approximations. These 381

instrumentation limitations prevent direct and more sensitive investigations of the 382

complex causal relationships that exist between rower-oar-boat system mechanics and 383

boat performance at and within the level of an individual stroke. For these purposes, 384

this study explored methods for building more accurate and precise measures of boat 385

movement. We built a system using consumer electronics and services and focused on 386

designing a general purpose and easy-to-use solution that could be broadly deployed in 387

the rowing community. 388

We presented two alternative estimation methods for boat distance traveled, boat 389

speed, and distance per stroke. They both perform much better than the direct output 390

from the smartphone and have similar performance between the two but neither reaches 391

the 5 cm level of accuracy. The complementary filter has the disadvantage that the 392

filter cutoff frequencies aren’t updated to optimal values in real-time, and the optimal 393

offline values we use do not robustly handle all stroke rates for the two rowers and boats 394

investigated. This makes the Kalman filter method more attractive because the bias 395
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Fig 15. Summary of the distance per stroke error for all strokes.
Comparison of the distance per stroke error relative to the DGPS-derived value for all
trials for the elite and club-level rowers, respectively.

term is adaptively updated for every rower and boat. The filter tunes itself. Both filters 396

take time to converge to a steady error from a zero speed start, so the first strokes in a 397

race will produce less accurate results. A future study could look into minimizing the 398

startup time by tuning the filters further, but there is likely a tradeoff in accuracy and 399

precision of the estimations. 400

Both of our presented methods provide better estimates of boat speed and distance 401

traveled per stroke that any prior work that uses a single low-cost commercially 402

available GPS system. The closest prior work on rowing is the thesis from Hermsen [21]. 403

Hermsen’s concept was similar but did not offer the online adaptation that our Kalman 404

filter design provides and there were no reported improvements in any metric but 405

predicted time. Our methods do not provide estimates as accurate as differential GPS 406

systems, but for the cost and convenience trade-off our methods are likely more 407

attractive for many use cases. 408

We sought to develop a general purpose boat-moving model that was independent of 409

stroke rate, and the models presented in this paper were constructed from experiments 410

involving single rowers assigned rowing rates that ranged from 16 to 34 strokes per 411

minute. The markedly inferior performance of distance per stroke measures in the SP 412

model relative to the CF and KF models is largely attributed to the smartphone’s 413

limitation of only a relatively low sampling frequency of location. In the case of high 414

stroke rate rowing where stroke frequency (at the high end faster than 0.5 Hz) exceeds 415

the smartphone location sampling frequency ( 0.3-0.5 Hz), there are numerous instances 416

between location samples where a stroke ends, a second stroke is completed, and a third 417

stroke begins. In these cases, the distance per stroke error of the second stroke is the 418

entire distance traveled. Accordingly, the CF and KF models stand to add the most 419

value for high rate rowing, e.g., racing rates. It may be possible to further improve 420

model accuracy by relaxing the general purpose model constraint and building more 421

special purpose models, e.g., model parameters tuned to ranges of rowing rates, rowing 422

ability, boat class, etc. Relatively expensive commercial sports position and speed 423
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sensors can sample position at higher rates than a smartphone and thus can be a useful 424

method of addressing the significantly large errors that the low frequency sampling of 425

location of the smartphone model creates. However, these high frequency sampling 426

solutions do not eliminate the inaccuracies and imprecision of the position 427

measurements and thus do not represent a viable method for achieving the goal of 428

distance per stroke accuracy of 5 cm or less. Once we realize model improvements that 429

can achieve this level of accuracy and thus enable more microscopic analyses of rowing 430

mechanics, we anticipate the emergence of a new generation of tools for testing and 431

coaching the improvement of boat-moving performance. 432

Conclusion 433

We have presented two methods to estimate the distance, speed, and distance per stroke 434

along a rowing boat’s path in real time that provide high accuracy and precision from 435

the relatively low accuracy sensors in a single smartphone attached to the boat. These 436

estimates provide an intimate view of the rower’s performance. In particular, we show 437

that the distance per stroke can be estimated to an accuracy of 50 cm which is 438

improved but not good enough to be able to examine relative stroke differences that 439

may contribute to winning or losing a race. Additionally, the inter-stroke view of boat 440

speed that our methods provide is better than any inexpensive commercial on-board 441

boat speed measurement device and begins to compare favorably to very accurate 442

differential GPS systems without the need for more than one GPS receiver. Overall, 443

this paper demonstrates the power that carefully crafted, activity-specific sensor fusion 444

algorithms can have even with poor accuracy sensors. MEMs based inertial 445

measurement units, like those found in smartphones, are continually decreasing in cost 446

and size and will play a larger role in collecting field data in sports. However, the utility 447

of these systems will depend on the development and improvement of 448

application-specific sensor fusion algorithms. 449

Nomenclature 450

Complementary Filter 451

A Smartphone accelerometer input signal 452

a0 Acceleration bias 453

D Smartphone GPS input signal 454

H Transfer function 455

s Denotes the frequency domain (s = jw) 456

w Frequency [Hz] 457

wc Cutoff frequency [Hz] 458

X Input signal 459

Y Output signal 460

Error Calculations 461

d̄e, v̄e Mean error of distance estimate and the speed estimate, respectively, relative to 462

the differential GPS derived value 463
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CEde,ve Central error of the distance and speed, resp. relative to the differential GPS 464

derived value 465

RMSEd,v,ds
Root mean square error of the distance, speed, and distance per stroke, 466

resp., relative to the differential GPS derived value 467

Var(de, ve) Variance of the distance error and speed error, resp., relative to the 468

differential GPS derived value 469

de, ve Error in distance estimate and the speed estimate, resp., relative to the 470

differential GPS derived value 471

Kalman Filter 472

αyk KF input: smartphone longitudinal acceleration component 473

νk KF measurement noise vector 474

A KF state transition matrix 475

B KF input matrix 476

C KF output matrix 477

D KF feed-through matrix 478

Lk KF gain matrix 479

Pk KF estimate covariance 480

Q KF process noise covariance matrix 481

R KF measurement noise covariance matrix 482

uk KF input vector 483

wk KF process noise vector 484

xk KF state vector 485

yk KF output vector 486

φk KF state: accelerometer bias [m s−2] 487

ak KF input: acceleration 488

dk KF state: distance [m] 489

vk KF state: speed [m s−1] 490

Other Symbols 491

αx,y,z Smartphone body-fixed acceleration components [m s−2] 492

α Boat mounted body-fixed smartphone acceleration vector [m s−2] 493

∆t Time differential [s] 494

a Magnitude of the acceleration along the boat’s path [m s−2] 495

d Distance traveled along the boat’s path [m] 496

ds Distance per stroke [m s−1] 497
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ds Distance per stroke 498

t Time 499

v Magnitude of the velocity along the boat’s path 500

x East-West position on the local WGS84 plane [m] 501

y North-South position on the local WDGS84 plane [m] 502

CF Abbreviation for complementary filter 503

KF Abbreviation for Kalman filter 504

SP Abbreviation for smartphone 505
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